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Abstract:  The integration of electric vehicles (EVs) into the modern transportation network 

necessitates advanced charging control and management systems to enhance efficiency and 

sustainability. In this study, we proposed a Hybrid Deep Learning (Hybrid DL) Mechanism for 

Charging Control and Management of EVs, which combines Recurrent Neural Networks (RNN) and 

Gated Recurrent Unit (GRU) techniques. In pursuit of robust feature extraction for battery information, 

we propose the utilization of RNNs. This approach aims to acquire comprehensive feature insights 

crucial for understanding the state of the EV battery. To further enhance predictive capabilities, we 

introduce a bidirectional GRU. The RNN-GRU hybrid model is designed to capture the temporal 

dependencies in EV charging patterns, offering improved prediction accuracy and real -time control 

capabilities. The benefits of this model include enhanced charging scheduling accuracy, faster response 

times to dynamic charging demands, and efficient energy utilization. The RNN component enables the 

model to learn from historical charging data, while the GRU component enhances the model's ability 

to adapt to changing EV usage patterns. By leveraging this hybrid approach, our model aims to make 

charging infrastructure more intelligent and adaptable, contributing to reduced energy costs, minimized 

grid impact, and a more sustainable EV ecosystem. 
 

Index Terms - EVs, Hybrid Deep Learning, GRU, Battery State Prediction, Charging Infrastructure 

Optimization. 

I. INTRODUCTION 

EVs, vital for sustainability, align with the global shift towards renewable energy [1]. Balancing 

EV charging infrastructure optimization with power supply challenges is crucial [2]. This harmonizes 

human mobility with environmental balance, marking a decisive step towards a cleaner, greener future. 

EVs redefine the automotive landscape, with battery life intricately tied to factors like road conditions 

and driving styles [3]. Balancing energy consumption and operational demands is crucial for 

addressing challenges in battery storage [4]. Enhanced energy precision, extended lifespan [5], and 

improved recharging efficiency [6] are vital for sustainable and efficient electric transportation 

solutions. EREVs alleviate range anxiety by integrating an internal combustion engine as a generator, 

supplementing the battery [7]. HEVs optimize fuel efficiency with engine-generator series, enhancing 

flexibility and sustainability for adaptable and reliable transportation solutions. This marks a 

significant stride towards a greener and more energy-efficient future. The battery charger for EVs 

features a Power Supply Unit converting AC to DC [8], a Rectifier [9], and a Charging Controller [10, 

11] ensuring optimal battery health by regulating voltage and current which is shown in fig. 1. 
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Figure 1: Block diagram of EV 

 

The Battery Management System (BMS) is vital for EVs, monitoring SOC and temperature, 

optimizing battery performance, and ensuring safe charging [12]. It considers OCV [13], enhancing 

lifespan and efficiency. Effective charging infrastructure establishment, considering user behavior 

[14], is crucial for sustainable EV operation, addressing grid concerns and meeting market demands. 

A hybrid DL approach for EV state prediction employs RNNs and GRU, distinguishing between 

"outside" and "indoor" charging for tailored predictions. RNNs extract features, and GRU enhances 

predictive power, offering improved accuracy in forecasting diverse EV states, capturing long-term 

dependencies and dynamic charging behaviors. 

 

II. LITERATURE REVIEW 

 

Mazhar et al. [15] analyzed 3395 EV charging sessions, using machine learning (LSTM, DNN, 

KNN, RF, SVM, DT) for optimal control, reducing costs, and improving billing efficiency. Dataset 

limitations and ML advancements are noted. Ullah et al. [16] introduced pioneer ML algorithms for 

EV charging time prediction using ELM, FFNN, and SVR with GWO, PSO, and GA optimization. 

Notable features include SOC and A/C compressor. Kosuru et al. [17] presented IB-DRN, a DL system, 

achieving 98% accuracy in EV battery fault detection. Dataset enhances safety, suggesting future 

upgrades for models and monitoring. Hafeez et al. [18] suggested employing DL for data-driven 

demand-side management in a solar-powered EV charging station, enhancing reliability and reducing 

peak demand. Zafar et al. [19] presented HMDNN with MGO for accurate real-time SoC estimation 

in EVs, outperforming other methods with 0.1% NMSE and 0.3% RMSE, promising efficient 

monitoring. Harippriya et al. [20] employed ML and DL algorithms for EV lithium-ion battery aging 

prediction, favoring Naïve Bayes with 88% accuracy, enhancing driving range estimation. Jafari et al. 

[21] presented an extreme gradient boosting algorithm for accurate SOC estimation in EV lithium-ion 

batteries, handling nonlinear data effectively without initial SOC. Hong et al. [22] introduced a novel 

SOC prediction method for EV batteries using RDC and TA-LSTM, outperforming other algorithms. 

Potential for in-vehicle embedded systems is highlighted. Shi et al. [23] suggested a cloud-based AI 

framework using self-supervised transformer networks for co-estimating SOC and SOH in lithium-ion 

batteries, utilizing IoT devices for real-world data. Tian et al. [24] presented a DNN for precise SOC 

estimation in LiFePO4 batteries, achieving <2.03% error. Integration with a Kalman filter enhances 

robustness and transfer learning adapts quickly. Dabbaghjamanesh et al. [25] studied PHEV charging 

impact on MGs, using a decision-based algorithm addressing non-convexity. DLR constraints show 

variations in optimal dispatching. 

 

III. MATERIALS AND METHODS 

 

The proposed method employs a hybrid DL approach, utilizing RNNs for feature extraction and a 

bidirectional GRU for precise state prediction which is shown in fig 2. The simplified structure ensures 

efficiency, quick convergence, and outperformance of conventional SOC estimation models, validated 

through extensive real-world studies. 
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3.1 Dataset 

 

The RNN-GRU approach uses the Kaggle ElectricCarDataClean.csv file from the mtcars dataset, 

featuring brand, charging, acceleration, powertrain, and plug type. Meticulous preprocessing ensures 

optimal user experience and accurate model training. 

 

3.2 Preprocessing 

 

Preprocessing is vital for model input preparation, addressing missing or duplicate data and 

irrelevant features. Techniques include encoding labels, removal of null values, and special character 

removal to ensure a clean dataset, enhancing machine learning model performance. 

 

 
Figure 2: Proposed method for EV Operations 

 

3.3 Feature Extraction with RNN  

 

DL effectively tackles the intricate nonlinear behavior of EV batteries, preventing long-term 

prediction errors. Fig. 3 outlines the structure of a RNN The RNN-based model produces state variables 

representing battery state information by capturing battery features. 

 
Figure 3: structure of an RNN parse tree 

 

Moreover, for parent node computation, the research employed a neural network with weight 

matrices D1 ∈ On∗n and D2 ∈ On∗n. Each parent node is considered to have a vector representation T1, 

and its calculation is determined by (1). 

                                                                                                                                                   
(1) 

3.4 Forecasting the State of EVs through GRU 

 

The GRU, a variant of RNNs, addresses long-term memory and gradient issues akin to LSTM.  Fig. 

4 shows GRU framework of the proposed method. In this study, GRU is chosen for its comparable 

performance to LSTM with lower computational costs. The GRU structure comprises the output, 

hidden state, reset gate, update gate, and current input. Subsequent process involves input, output, and 

hidden state components. 
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Figure 4: GRU Framework 

3.4.1 Update gate 

The update gate, denoted as ch, regulates the incorporation of information from the prior moment 

into the current condition. A higher value of the update gate signifies an increased intake of information 

from the prior moment. The calculation for the update gate, ch, is provided in equation (2). 

                                                                                                                                   
(2) 

The symbols yc and Dc represent update gate bias and matrices weight. The sigmoidal function 

σ(a) = 1/[1 + exp⁡(−a)] is employed in the equation, serving as a transformation that maps the input 

to values within 0 to 1, functioning as the gate controlling signal. 

 

3.4.2 Reset Gate 

The reset gate sh governs the extent of information to be discarded from the previous hidden layer. 
Its computation is determined by employing equation (3). 

                                                                                                                                             
(3) 

In this, ys and  Ds represent reset gate bias and matrix weight, respectively. The reset gate's output is 
regulated by the sigmoid function, setting it to 0. Conversely, if the output is set to 1, all concealed 

states from the previous instance are preserved. Essentially, a lower reset gate value results in less 

information being retrieved from the previous state. 

 

3.4.3 Output State 

Compute the output state through a mathematical calculation  t̅h is in (4). 

                                                                                                       

(4) 

Here,  yt and Dt  refer to matrix weight and bias. The Hadamard Product function ∗, denoted by θt, 
scales the data to a range from -1 to 1 by multiplying corresponding matrix elements. The reset gate's 

output significantly impacts the resulting state of the GRU. The degree to which the neuron's output 

from the previous time step is preserved is contingent on the value of ah, taking into account the current 

hidden layer state. Neuron's result is preserved to a greater degree when the ahvalue is higher. 

 

3.4.4 Hidden State 

The th state of hidden layer, generated by the GRU, is determined by ch ,th−1 and t′h. Table I shows 

the description of terms used in the equation 5 and its mathematical representation provided as: 

                                                                                                                                    

(5) 
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Table I: Description of terms in Equation (5) 

 

The GRU's hidden layer propagation system is detailed in Equations (6)-(8). Table II shows the 

description of terms used in the following equations. 

                                                                                                           (6) 

                                                                                                             (7) 

                                                                                                                                (8) 

Table II: Description of terms in Equations from (6-8)

 

3.4.5 Estimation of the EV mileage 

The GRU network is employed to compute the accumulated mileage, improving the estimation 

value in this study. The state and measurement functions for range estimation are expressed as 

equations (9) and (10). Table III shows the terms and its descriptions in equation 9 & 10. 

                                                                                              (9) 

                                                                                                                       (10) 
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Table III: Description of terms in Equation 9 & 10  

 

 

Figure 5: RNN-GRU methodology 

3.5 Performance Metrics 

 

In this study, the proposed method's predictive accuracy is assessed using regression metrics, 

including Mean Square Error (MSE) and Mean Absolute Error (MAE). Smaller values of MAE and 

MSE indicate better performance, signifying that the projected values closely align with the actual 

values. Equations (11) and (12) provide the definitions for MSE and MAE. Table IV shows the 

description of terms in the following equations. 

 

                                                                                                             (11) 

                                                                                                                   (12) 

Table IV: Description of terms used in equation 11 & 12 

 

IV. RESULT AND DISCUSSIONS 

 

The proposed method's efficiency is validated via rigorous testing along with simulations, with 

comprehensive battery feature extraction. The GRU-based prediction model accurately estimates and 

tracks EV mileage. Training with Adam optimizer showcases the RNN-GRU network's rapid 

convergence, emphasizing its ability to quickly capture the mapping relationship between input 

variables and mileage. Fig. 5 shows block diagram of RNN- GRU methodology of our study.  

 

Table V: Comparison Of Various Methods 
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Table V compares MAE and MSE, showing time series networks (RNN-GRU and LSTM) have 

lower values than traditional models (multivariate regression, tree-based, ANN). Fig. 6 illustrates RNN-

GRU consistently outperforming other models, especially ANN, with minimal estimation error, 

validating its selection for superior accuracy in real-world scenarios. 

 

Figure. 6: Error Estimation of Different Models. 

V. CONCLUSION 

 

EV pose a challenge to conventional automobiles because of their eco-friendly nature and energy 

efficiency. Predicting states related to EV charging is crucial for anticipating consumers' charging 

needs, managing charging infrastructure effectively, and providing individualized charging capacity 

details determined by the locations of users. To address this, a hybrid DL approach is proposed for 

secure and dependable charging procedures, averting excessive charging or insufficient charging. The 

study employs RNNs to extract feature data on the battery and introduces a GRU for EV state 

prediction. GRU building on the RNN results, significantly enhances the model's efficiency with a 

simpler structure. Test results demonstrate the GRU technique's accuracy in tracking EV mileage. The 

hybrid DL algorithm exhibits fast convergence and reduced error rates compared to traditional models, 

showcasing its effectiveness through comprehensive real-world experiments. 
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