
www.ijcrt.org                                                    © 2023 IJCRT | Volume 11, Issue 11 November 2023 | ISSN: 2320-2882 

IJCRT2311382 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org d278 
 

 Deepgrid: Empowering Smart Grids with 

Autonomous Decision-Making for Optimal 

Utilization of Renewable Energy Resources 

Through Advanced Deep Learning Systems 
 

Sneha Narayanan1, Sarika S2, Manjusha V.A3 

1Lecturer, 2 Head of the Department, 3Lecturer 
1Department of Electrical and Electronics Engineering, NSS Polytechnic college Pandalam, Kerala, India 
2Department of Electrical and Electronics Engineering, NSS Polytechnic college Pandalam, Kerala, India, 
3Department of Electrical and Electronics Engineering, NSS Polytechnic college Pandalam, Kerala, India 

 

Abstract:  The increasing integration of renewable energy sources in smart grids necessitates intelligent 

decision-making systems for optimal utilization. This paper presents an autonomous decision-making 

system leveraging deep learning (DL)techniques to enhance the efficiency of renewable energy resource 

utilization in smart grids. The proposed DeepGrid system employs advanced neural network models to 

analyze real-time data, predict energy production patterns, and dynamically optimize grid operations by 

optimized DL. By autonomously adapting to changing environmental conditions and energy demand, 

DeepGrid ensures a reliable and sustainable power supply. The model's DL architecture enables it to 

learn complex relationships within the data, facilitating accurate decision-making for grid management. 

Through simulation studies, we demonstrate the efficacy of DeepGrid in improving grid stability, 

minimizing reliance on non-renewable sources, and ultimately contributing to a more sustainable and 

resilient energy infrastructure. 
 

Index Terms - Smart Grids, Renewable Energy, Deep Neural Networks, Optimization, Machine 

Learning. 

 

I. INTRODUCTION 

The paradigm shift towards sustainable energy sources has driven the integration of renewable 

resources into smart grids, necessitating advanced decision-making systems for efficient utilization. 

This research focuses on the development of an Autonomous Decision-Making System (ADMS) [1] 

employing Deep Neural Networks (DNNs) [2] within the framework of smart grids [3]. Specifically, 

our approach involves the implementation of feedforward Deep Neural Networks (FfDNN) [4] and 

Artificial Neural Networks (ANN) to enable real-time analysis and optimization of renewable energy 

utilization. The intricate interplay between dynamic environmental factors and fluctuating energy 

demands poses a complex challenge, which our model addresses by leveraging the DL capabilities of 

neural networks. By harnessing the power of DNNs, FfDNNs, and ANNs, our research aims to enhance 

the decision-making process in smart grids, ensuring the seamless integration of renewable energy 

sources and paving the way for a sustainable and intelligent energy infrastructure [5]. 
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II. LITERATURE REVIEW 

Ahmad et al. [6] innovatively integrates renewable energy, privacy-aware Reinforcement Learning 

for optimal Demand Response, achieving an 80% accuracy. Reka et al. [7] presented a robust three-step 

model integrating renewable energy, privacy-aware reinforcement learning, and optimal demand 

response, achieving an impressive 80% accuracy. Jiang et al. [8] advocates economically competitive 

renewable energy solutions with Heuristic Intelligent Neural Decision Support System, showing 

enhanced forecasting and optimized resource management. Ahmed et al.  [9] ingeniously merges ML 

and Gaussian Process Regression for a robust Energy Management Model, enhancing prosumer-based 

smart grid efficiency. Liu e al. [10] innovatively presented AccCap-DRL algorithm, based on deep 

reinforcement learning, adeptly addresses curtailment challenges, ensuring effective policies and 

optimal renewable energy utilization. Azad et al. [11] comprehensively reviewed how machine learning 

fortifies smart grids against challenges, enhancing stability, reliability, and security effectively. 

Mohammadi et al. [12] studied expertly explores the transformative impact of ML on decentralized 

energy systems, enhancing predictability, efficiency, and sustainability effectively. Qadir et al. [13] 

adeptly employed machine learning to predict hybrid PV-wind renewable energy output, showcasing 

superior accuracy and efficiency in smart grid applications. Xia et al. [14] introduced an advanced 

stacked GRU-RNN method, surpassing current models for accurate renewable energy and load 

predictions in smart grid operations. Jahangir et al. [15] presented a robust forecasting method using 

micro clustering and bidirectional LSTM, enhancing accuracy, especially in peak points, for smart grid 

applications. Alotaibi et al. [16] provided a thorough and insightful review of smart grid advancements, 

covering energy data management, pricing modalities, reliability, and cybersecurity challenges. Singh 

et al. [17] exceled in forecasting short-term wind energy generation using optimized robust regression 

machine learning methods, with gradient boosting machine exhibiting superior performance. 

III. MATERIALS AND METHODS 

The primary aim of this approach is to analyze and design grid systems for solar energy production 

and consumption [18], accounting for the dynamic conflicts and variations introduced by the assembly. 

This method seeks to understand how contributors react to deviations. It monitors the specific grid 

property based on its frequency, measured in Hertz (Hz), which represents the alternating current (AC) 

cycles per second. The electrical signal frequency reflects the idea of "increasing time of surplus 

generation and decreasing shortfall of production," providing crucial data for smart grid management. In 

the presented model, the anticipation of grid uncertainty is undertaken through a binary classification 

approach, distinguishing between balanced and unbalanced conditions. However, the model's 

effectiveness is contingent upon comprehensive interpretations. The integration of machine learning 

techniques follows a systematic process: 

1. A specific set of input parameters is fed into the intelligent grid model. 

2. The smart grid model processes this input, generating a binary output categorized as 'balanced' or 

'unbalanced' using the binary classification technique [19]. 

3. These steps are iteratively executed 'n' times. 

 

3.1 System model 

 

The system architecture of the Optimized DNN for Smart Grid involves four stages: dataset 

information, exploratory data analysis, optimized DNN classification, and algorithm performance 

visualization as in fig.1. The dataset, sourced from solar grid reproductions [20], comprises 15,000 

entries across Solar, Wind, Generator, and Water energy stations. It features 12 attributes and two 

dependent variables related to power stability, production response time, and energy rate defiance. 

Employing Keras sequential model Deep Neural Networks, the architecture considers hidden layers, 

epochs, and optimization techniques. Dependent variables encompass Differential Equation outputs 

discerning system balance and a Binary categorical label indicating 'balanced' or 'unbalanced' states . 
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Figure 1: Enhanced Smart Grid Decision System: Optimized DNN Model 

 

3.2 EDA 

 

EDA examines dataset characteristics, ensuring stability and identifying missing values, crucial for 

preprocessing. Missing values are handled through mean, min, max, and standard deviation, ensuring 

normalization. Data is split into 80% training and 20% testing (12,000 and 3,000 instances, 

respectively). 

. 

3.3 DNN classification  

 

The Optimized DNN employs a Keras Sequential model with a linear stack of layers for 

classification. The architecture includes 85 nodes and 1,308 edges. The activation function facilitates 

backpropagation of gradients, aiding biases and weights update, depicted in Equations 1 and 2. 

 

                                                                                                   
(1) 

                                                                                                                                                       
(2) 

In this, Vpred represents the vector output of hidden layer-1, 𝑤 (1) signifies the vector weights 

assigned to 12 neurons in hidden layers 1 to 4, and 𝑏1 and 𝑏2 denote the vectorized form of the general 

linear function. The Rectified Linear Unit (ReLU) serves as a non-linear activation function in DNN 

hidden layers, effectively activating neurons (Eqn.3). It accelerates stochastic gradient descent 

compared to sigmoid activation functions. 

  

                                                                                                                                                               
(3) 

 
.  

The Grid Search Cross-Validation (CV) Algorithm optimizes prediction parameters. Steps include 

fitting values individually, implementing 10-fold CV for parameter groups, and compiling the network 

with binary cross-entropy and ADAM optimizer. A minor hyperparameter refinement involves 

calculating exponentially weighted averages of preceding gradients (𝐺𝐸௪ and G𝐸௕), followed by bias 
correction. The Adam optimization technique, incorporating bias correction, is implemented using 

Equations 4 to 9, updating parameters w and b for optimal momentum and minimizing Mean Square 

Error. 

 

 

 

 

 

 

http://www.ijcrt.org/


www.ijcrt.org                                                    © 2023 IJCRT | Volume 11, Issue 11 November 2023 | ISSN: 2320-2882 

IJCRT2311382 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org d281 
 

                                                                                                                                                      
(4) 

                                                                                                                                                      
(5) 

                                                                                                                                                   
(6) 

                                                                                                                                                   
(7) 

                                                                                             
(8) 

                                                                                                     
(9) 

The parameter epsilon (𝜀) is an actual value introduced to prevent division by zero, while 

hyperparameters β1and β2 normalize two weighted averages exponentially with default values β1 = 0.9 

and β2= 0.999. 
The "fit" method shapes the DNN classification model through training and fine-tuning on the dataset, 

optimizing Batch Size and Epoch. Evaluation and prediction on testing data utilize predefined metrics 

in the smart grid DNN model, ensuring it's free from underfitting and overfitting. Fig 2 Optimized DNN 

classifier models' summary history for accuracy and loss in both training and testing of four smart grid 

datasets. These graphs showcase reduced error loss and maximum accuracy in each epoch iteration vs. 

accuracy and loss. 

 

3.4 Analyzing and Forecasting Performance 

 

The Optimized DNN model undergoes evaluation and prediction, assessing performance using various 

metrics. A Confusion Matrix is presented in matrix format, detailing the model's performance on 3,000 

datasets, with the predicted class (balanced or unbalanced) for the Smart Grid Data set illustrated in Table 

1. The validation split is set at 0.33. Utilizing the confusion matrix, metric scores are calculated to 

determine the Optimized DNN classification model's performance across various Smart Grid types. The 

accuracy rate, representing the ratio of accurate forecasts to the total input samples, is defined in Equation 

10, 

 

                                                                                                                                
(10) 

 

where FP denotes the False Positive Rate, TP the True Positive Rate, FN the False Negative Rate, and 

TN the True Negative Rate. 

 

Table 1: Testing Data Confusion Matrix for Optimized DNN Smart Grid Model 
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Figure 2: summary history for accuracy and loss in both training and testing of four smart grid datasets 

of (a) solar power, (b)wind power, (c) generators, (d) water resources 

 

RESULT AND DISCUSSON 

The Optimized DNN classifier model is implemented using scikit-learn, Keras, and TensorFlow 

libraries in a Jupyter notebook. Performance evaluation predicts "balanced" or "unbalanced" output, 

with the architecture and hyperparameters tailored for optimal prediction on the test set. Key features 

include: 

1. Following preprocessing, the testing set's high accuracy rate affirms the Optimized DNN model's 

effectiveness for Smart Grids. 

2. The increased number of epochs during fitting significantly enhances prediction accuracy on the testing 

set. 

3. Utilizing a test dataset with 3,000 observations contributes meaningfully to improved outcomes. 

 

IV.  CONCLUSION 

 

A powerful Autonomous Decision-Making System leveraging Deep Neural Network (DNN) 

algorithms for optimizing renewable energy source selection in smart grids was introduced in this study. 

Focusing on factors like cost and stable generation, the proposed DNN architecture efficiently predicts 

the optimal energy source among diesel generators, solar plants, windmills, and thermal power plants. 

Achieving over 85% efficiency, our predictive algorithms contribute to cost-effective and productive 

power distribution. Future plans include developing an integrated model for diverse energy sources, 

aiming to further enhance overall system performance and utilization efficiency. This research signifies 

a significant step toward autonomous, intelligent decision-making systems in smart grids, fostering 

sustainable and efficient utilization of renewable energy resources. 
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