IJCRT.ORG

INTERNATIONAL JOURNAL OF CREATIVE RESEARCH THOUGHTS (IJCRT)

An International Open Access, Peer-reviewed, Refereed Journal

A Survey On Lip Reading Recognition Using Artificial Intelligence

Shubham Kalburgi¹, Prof. Vina M. Lomte², Niraj Jain³, Ashutosh Buge⁴, Shreya Kankal⁵

¹⁻⁵Department of Computer Engineering, RMD Sinhgad School of Engineering, SPPU, India.

Abstract – Lip Reading Recognition System is a technology that uses Artificial Intelligence to recognize words or speech by visual interpretation of face, mouth and lip movement without involvement of audio. Imagine you are talking to someone, and they can't hear what you're saying. They might try to understand your words by watching how your lips move. That's called lip reading. This task is difficult as people use different dictions and various ways to articulate a speech. The system works by using a camera to capture a video of a person's face while they are speaking. It's like a recording a video of their lips moving. The video is then analyzed by an AI algorithm that can identify lip movements, extract features, train the classifier by giving user's lip movement frames sequences as input and will identify said word and finally translate them into words. It's not always perfect, but it's often quite accurate. This can help deaf and mute individuals in understanding spoken language through visual cues of the speaker's lips and addressing communication barriers in their daily lives. It can also be used to improve privacy and security in applications for detecting suspicious behavior. The survey focuses on deep learning related approaches such as convolutional neural networks (CNN) [6], recurrent neural networks (RNN) [15] and their variants which have been proven to be more fruitful for both feature extraction and classification. This paper provides comparisons of different audio-visual databases, various algorithmic techniques by highlighting their accuracies, feature extraction methodologies and classification networks.

1. INTRODUCTION

Lip reading is when we understand what people are saying by looking at their lip's moments. Lip reading is an essential skill for some people and has many real-world applications. Lip reading can help people in hearing impairment and have many securities and surveillance uses as well. It can help doctor talk to patients, especially when they can't speak. In school, it can make learning easier. Lip Reading can help in emotion recognition and sentiment analysis and has other applications in different domains. Many Researchers have found the way to implement the Artificial Intelligence and Deep learning techniques for lip reading. There are many techniques developed for image processing in the field for deep Learning and Artificial Intelligence.

In this survey paper we are going to explore lip reading and how the techniques of Artificial Intelligence and Deep Learning helps us to recognize the text just by reading lip movements. We will explore the evolution of the technologies, methods, dataset used in Lip reading. This survey paper aims to provide the comprehensive review on lip reading techniques. We Will take the closer look at how Deep Learning makes sense of Lip movement and turns them into words. Even with technology, lip reading is difficult. The computer becomes confused when there is background noise or poor illumination. Furthermore, a few words have very similar pronunciations, which makes it difficult for the computer to interpret speech. We will examine the transition of lip reading from a specialized field to a widely used technology, the challenges that still need to be addressed, and the fascinating prospects that this field offers through this study. We cordially invite you to join us on this adventure as we explore the world of AI lip reading and its revolutionary possibilities in the field of human-computer interaction and beyond.

www.ijcrt.org

© 2023 IJCRT | Volume 11, Issue 11 November 2023 | ISSN: 2320-2882

i l'

This paper also consists of survey of different datasets available on Lip reading as it is very important to test the model on different datasets to get accurate results. As it is observed in most of the model uses combination of 3D-CNN and LSTM has provided more accurate results[1]. For building this model we need to review the different techniques and datasets so that identify how to build more accurate model. This survey reviews the different Artificial Intelligence and Deep Learning Approaches and different datasets as well. So, continue reading to find out how Artificial Intelligence and Deep Learning is affecting lip reading and how it can help both people and technology. This survey will give the comprehensive understanding of lip-reading invention from this survey.

The post is organized as follows - In part 2, we analyzed lip reading challenges. In part 3, we presented a literature review of similar work. In Section 4, we did a detailed survey of the various algorithms. In Section 5, the characteristics of various lip-reading datasets are generally used. We also trace some deep learning network models used to implement the lip-reading system.

2. CHALLENGES IN LIP READING

- 1. Variability in speech and lip movements: The variety in how people speak and move their lips introduces significant variability. Deep learning models must account for this wide variety of speech patterns, accents, and lip movements, making training and recognition more challenging.
- 2. Phoneme and Visemes Ambiguity: Many phonemes and visemes (visual counterparts of phonemes) have similar lip movements, leading to ambiguity in recognition. Developing models that can differentiate similar lip patterns is a significant challenge.
- 3. Generalization to new languages: Extending reading models to new languages and dialects requires additional efforts in data set collection, model fitting, and linguistic knowledge.
- 4. Overcoming noise and environmental factors: Lip reading in real-world scenarios often faces challenges such as noisy environments, different lighting conditions, and different viewing angles. In order to reliably recognize deep learning models, they must be robust to these environmental factors.
- 5. Real-time processing: Lip reading for applications such as real-time communication or autonomous vehicles requires low-latency processing. Deep learning models must perform quickly without compromising accuracy.

3. Literature Survey

Table -1: Deep Literature Survey of Current Technologies

	Paper Title and Paper publication	Methodology Used	Dataset Used	5	Research gap Identified / Future Scope
[1]	Title: Lipread Net:	3DCNN (3D Convolutional Neural	GRID corpus	93%	Future prospects
Kuldeep	A Deep Learning	Network), Bidirectional LSTM (Long	consists of		include integrating
Vayadande,	Approach to Lip	Short-Term Memory) to transcribe	thousands video		lipreading into
Tejas Adsare,	Reading	speech from lip movements.	clips of thirty-four		hearing aids or
Neeraj			speakers, each		cochlear implants to
Agrawal, Tejas	Journal: IEEE		saying 1000		enhance speech
Dharmik,	Access		sentences,		recognition in
Aishwarya			resulting in a sum		challenging settings.
Patil, Sakshi			of 34,000		
Zod			sentences.		

		© 2023 IJCRT Volume		-	-
	Title: Lip Reading				Γo train the larg
		Network model is used and also			datasets like LR
Martinez,	Convolutional	simplify the training procesure for	•		and LRW 1000 tl
Pingchuan Ma,	Networks.	lip reading.			model must l
Stavros		1 0			strong and the hig
	Journal: IEEE				quality algorithm
-	Access				to extraction a
antic	ALLESS				
					training of tho
					datasets.
[3]	Title: Text	3D convolutional neutral networks	The dataset used,	Average	Due to the size
Youda Wei,	Recognition from	deep learning. First, the visual to	for training the	validation	the GRID datas
Kiaodong Hu	Silent Lip	audio feature architecture maps a	network was the	accuracy is	the vocabulary is
-	-	variable-length sequence of video		-	relatively small. T
		frames to the auditory MFCC			future work is
		features. Second, the audio feature			collect more train
		to text architecture distinguishes			data and to propo
		the text information from the audic	0	-	a more robust a
		feature	different speakers	91.39%.	accurate structu
			(male and female).		to detect the li
					movement in re
		_			life situation f
					large
					-
					vocabulary dataset
· · · · · · · · · · · · · · · · · · ·		Au <mark>tomatic Lip Re</mark> ading (ALR) using			Working On lar
		Deep Neural Network (DNN)	TCD-TIMIT dataset		scale data and al
Fernandez-	Without Large-			WER	focuses on transf
Lopez,	Scale Data			36.58% CER	learning betwee
Federico M.				and 56.29%	languages.
sukno					
	ournal -			WER	
	Journal - IEEE/ACM VOL			WER	
	IEEE/ACM VOL.			WER	
				WER	
	IEEE/ACM VOL.			WER	
	IEEE/ACM VOL. 30, 2022				
5]	IEEE/ACM VOL. 30, 2022 Title: LipSound2:	Self-supervised pre-training, speech	VoxCeleb2 is a		
5] Leyuan Qu,	IEEE/ACM VOL. 30, 2022 Title: LipSound2: Self-Supervised	recognition, speech reconstruction	VoxCeleb2 is a large-scale audio-		a well pretrain
5] Leyuan Qu,	IEEE/ACM VOL. 30, 2022 Title: LipSound2: Self-Supervised Pre-Training	recognition, speech reconstruction LipSound2 which consists of an	VoxCeleb2 is a large-scale audio- visual corpus,		a well pretrain speech recognitie
5] Leyuan Qu, Cornelius Weber and	IEEE/ACM VOL. 30, 2022 Title: LipSound2: Self-Supervised Pre-Training for Lip-to-Speech	recognition, speech reconstruction LipSound2 which consists of an encoder-decoder architecture and	VoxCeleb2 is a large-scale audio- visual corpus, extracted from		a well pretrain speech recogniti model for both
5] Leyuan Qu, Cornelius Weber and	IEEE/ACM VOL. 30, 2022 Title: LipSound2: Self-Supervised Pre-Training for Lip-to-Speech Reconstruction	recognition, speech reconstruction LipSound2 which consists of an encoder-decoder architecture and location aware attention mechanism	VoxCeleb2 is a large-scale audio- visual corpus, extracted from YouTube videos.	CR	a well pretrain speech recogniti model for both English and Chine
5] Leyuan Qu, Cornelius Weber and Stefan	IEEE/ACM VOL. 30, 2022 Title: LipSound2: Self-Supervised Pre-Training for Lip-to-Speech Reconstruction and Lip Reading	recognition, speech reconstruction LipSound2 which consists of an encoder-decoder architecture and location aware attention mechanism to map face image sequences to	VoxCeleb2 is a large-scale audio- visual corpus, extracted from YouTube videos. GRID and TCD-	CR	a well pretrain speech recognition model for both English and Chine lip-reading
5] Leyuan Qu, Cornelius Weber and Stefan	IEEE/ACM VOL. 30, 2022 Title: LipSound2: Self-Supervised Pre-Training for Lip-to-Speech Reconstruction and Lip Reading	recognition, speech reconstruction LipSound2 which consists of an encoder-decoder architecture and location aware attention mechanism to map face image sequences to Mel-scale spectrograms directly	VoxCeleb2 is a large-scale audio- visual corpus, extracted from YouTube videos. GRID and TCD- TIMIT datasets are	CR	a well pretrain speech recognition model for both English and Chine lip-reading experiments.
5] Leyuan Qu, Cornelius Weber and Stefan Wermter	IEEE/ACM VOL. 30, 2022 Title: LipSound2: Self-Supervised Pre-Training for Lip-to-Speech Reconstruction and Lip Reading	recognition, speech reconstruction LipSound2 which consists of an encoder-decoder architecture and location aware attention mechanism to map face image sequences to Mel-scale spectrograms directly without requiring any human	VoxCeleb2 is a large-scale audio- visual corpus, extracted from YouTube videos. GRID and TCD- TIMIT datasets are in controlled	CR	a well pretrain speech recogniti- model for both English and Chine lip-reading experiments. Future work w
5] Leyuan Qu, Cornelius Weber and Stefan Wermter	IEEE/ACM VOL. 30, 2022 Title: LipSound2: Self-Supervised Pre-Training for Lip-to-Speech Reconstruction and Lip Reading Journal: IEEE	recognition, speech reconstruction LipSound2 which consists of an encoder-decoder architecture and location aware attention mechanism to map face image sequences to Mel-scale spectrograms directly	VoxCeleb2 is a large-scale audio- visual corpus, extracted from YouTube videos. GRID and TCD- TIMIT datasets are in controlled experimental	CR	a well pretrain speech recogniti model for both English and Chine lip-reading experiments. Future work w focus on mo
5] Leyuan Qu, Cornelius Weber and Stefan Wermter	IEEE/ACM VOL. 30, 2022 Title: LipSound2: Self-Supervised Pre-Training for Lip-to-Speech Reconstruction and Lip Reading	recognition, speech reconstruction LipSound2 which consists of an encoder-decoder architecture and location aware attention mechanism to map face image sequences to Mel-scale spectrograms directly without requiring any human	VoxCeleb2 is a large-scale audio- visual corpus, extracted from YouTube videos. GRID and TCD- TIMIT datasets are in controlled experimental environments with	CR	a well pretrain speech recogniti model for both English and Chine lip-reading experiments. Future work w focus on mo realistic
5] Leyuan Qu, Cornelius Weber and Stefan Wermter	IEEE/ACM VOL. 30, 2022 Title: LipSound2: Self-Supervised Pre-Training for Lip-to-Speech Reconstruction and Lip Reading Journal: IEEE	recognition, speech reconstruction LipSound2 which consists of an encoder-decoder architecture and location aware attention mechanism to map face image sequences to Mel-scale spectrograms directly without requiring any human	VoxCeleb2 is a large-scale audio- visual corpus, extracted from YouTube videos. GRID and TCD- TIMIT datasets are in controlled experimental environments with fixed frontal face	CR	a well pretrain speech recogniti- model for both English and Chine lip-reading experiments. Future work w focus on mo realistic configuration, su
5] Leyuan Qu, Cornelius Veber and Stefan Vermter	IEEE/ACM VOL. 30, 2022 Title: LipSound2: Self-Supervised Pre-Training for Lip-to-Speech Reconstruction and Lip Reading Journal: IEEE	recognition, speech reconstruction LipSound2 which consists of an encoder-decoder architecture and location aware attention mechanism to map face image sequences to Mel-scale spectrograms directly without requiring any human	VoxCeleb2 is a large-scale audio- visual corpus, extracted from YouTube videos. GRID and TCD- TIMIT datasets are in controlled experimental environments with fixed frontal face angle and clean	CR	a well pretrain speech recogniti- model for both English and Chine lip-reading experiments. Future work w focus on mo realistic configuration, su as the variety
5] Leyuan Qu, Cornelius Weber and Stefan Wermter	IEEE/ACM VOL. 30, 2022 Title: LipSound2: Self-Supervised Pre-Training for Lip-to-Speech Reconstruction and Lip Reading Journal: IEEE	recognition, speech reconstruction LipSound2 which consists of an encoder-decoder architecture and location aware attention mechanism to map face image sequences to Mel-scale spectrograms directly without requiring any human	VoxCeleb2 is a large-scale audio- visual corpus, extracted from YouTube videos. GRID and TCD- TIMIT datasets are in controlled experimental environments with fixed frontal face angle and clean background in	CR	a well pretrain speech recogniti- model for both English and Chine lip-reading experiments. Future work w focus on mo realistic configuration, su as the variety light condition
5] Leyuan Qu, Cornelius Veber and Stefan Vermter	IEEE/ACM VOL. 30, 2022 Title: LipSound2: Self-Supervised Pre-Training for Lip-to-Speech Reconstruction and Lip Reading Journal: IEEE	recognition, speech reconstruction LipSound2 which consists of an encoder-decoder architecture and location aware attention mechanism to map face image sequences to Mel-scale spectrograms directly without requiring any human	VoxCeleb2 is a large-scale audio- visual corpus, extracted from YouTube videos. GRID and TCD- TIMIT datasets are in controlled experimental environments with fixed frontal face angle and clean background in audio and vision.	CR	a well pretrain speech recogniti- model for both English and Chine lip-reading experiments. Future work w focus on mo realistic configuration, su as the variety light condition moving head pos
5] Leyuan Qu, Cornelius Weber and Stefan Wermter	IEEE/ACM VOL. 30, 2022 Title: LipSound2: Self-Supervised Pre-Training for Lip-to-Speech Reconstruction and Lip Reading Journal: IEEE	recognition, speech reconstruction LipSound2 which consists of an encoder-decoder architecture and location aware attention mechanism to map face image sequences to Mel-scale spectrograms directly without requiring any human	VoxCeleb2 is a large-scale audio- visual corpus, extracted from YouTube videos. GRID and TCD- TIMIT datasets are in controlled experimental environments with fixed frontal face angle and clean background in audio and vision. CMLR (Chinese	CR	a well pretrain speech recogniti- model for both English and Chine lip-reading experiments. Future work w focus on mo realistic configuration, su as the variety light condition moving head pos and different
5] Leyuan Qu, Cornelius Weber and Stefan Wermter	IEEE/ACM VOL. 30, 2022 Title: LipSound2: Self-Supervised Pre-Training for Lip-to-Speech Reconstruction and Lip Reading Journal: IEEE	recognition, speech reconstruction LipSound2 which consists of an encoder-decoder architecture and location aware attention mechanism to map face image sequences to Mel-scale spectrograms directly without requiring any human	VoxCeleb2 is a large-scale audio- visual corpus, extracted from YouTube videos. GRID and TCD- TIMIT datasets are in controlled experimental environments with fixed frontal face angle and clean background in audio and vision. CMLR (Chinese Mandarin Lip	CR	a well pretrain speech recogniti- model for both English and Chine lip-reading experiments. Future work w focus on mo realistic configuration, su as the variety light condition moving head pos and different background
5] Leyuan Qu, Cornelius Weber and Stefan Wermter	IEEE/ACM VOL. 30, 2022 Title: LipSound2: Self-Supervised Pre-Training for Lip-to-Speech Reconstruction and Lip Reading Journal: IEEE	recognition, speech reconstruction LipSound2 which consists of an encoder-decoder architecture and location aware attention mechanism to map face image sequences to Mel-scale spectrograms directly without requiring any human	VoxCeleb2 is a large-scale audio- visual corpus, extracted from YouTube videos. GRID and TCD- TIMIT datasets are in controlled experimental environments with fixed frontal face angle and clean background in audio and vision. CMLR (Chinese Mandarin Lip Reading) is	CR	a well pretrain speech recognitio model for both English and Chine lip-reading experiments. Future work w focus on mo realistic configuration, su as the variety light condition moving head pos and different
5] Leyuan Qu, Cornelius Weber and Stefan Wermter	IEEE/ACM VOL. 30, 2022 Title: LipSound2: Self-Supervised Pre-Training for Lip-to-Speech Reconstruction and Lip Reading Journal: IEEE	recognition, speech reconstruction LipSound2 which consists of an encoder-decoder architecture and location aware attention mechanism to map face image sequences to Mel-scale spectrograms directly without requiring any human	VoxCeleb2 is a large-scale audio- visual corpus, extracted from YouTube videos. GRID and TCD- TIMIT datasets are in controlled experimental environments with fixed frontal face angle and clean background in audio and vision. CMLR (Chinese Mandarin Lip Reading) is collected from	CR	a well pretrain speech recogniti- model for both English and Chine lip-reading experiments. Future work w focus on mo realistic configuration, su as the variety light condition moving head pos and different background
5] Leyuan Qu, Cornelius Weber and Stefan Wermter	IEEE/ACM VOL. 30, 2022 Title: LipSound2: Self-Supervised Pre-Training for Lip-to-Speech Reconstruction and Lip Reading Journal: IEEE	recognition, speech reconstruction LipSound2 which consists of an encoder-decoder architecture and location aware attention mechanism to map face image sequences to Mel-scale spectrograms directly without requiring any human	VoxCeleb2 is a large-scale audio- visual corpus, extracted from YouTube videos. GRID and TCD- TIMIT datasets are in controlled experimental environments with fixed frontal face angle and clean background in audio and vision. CMLR (Chinese Mandarin Lip Reading) is	CR	a well pretrain speech recognitio model for both English and Chine lip-reading experiments. Future work w focus on mo realistic configuration, su as the variety light condition moving head pos and different background
[5] Leyuan Qu, Cornelius Weber and Stefan Wermter	IEEE/ACM VOL. 30, 2022 Title: LipSound2: Self-Supervised Pre-Training for Lip-to-Speech Reconstruction and Lip Reading Journal: IEEE	recognition, speech reconstruction LipSound2 which consists of an encoder-decoder architecture and location aware attention mechanism to map face image sequences to Mel-scale spectrograms directly without requiring any human	VoxCeleb2 is a large-scale audio- visual corpus, extracted from YouTube videos. GRID and TCD- TIMIT datasets are in controlled experimental environments with fixed frontal face angle and clean background in audio and vision. CMLR (Chinese Mandarin Lip Reading) is collected from	CR	a well pretrain speech recognitio model for both English and Chine lip-reading experiments. Future work w focus on mo realistic configuration, su as the variety light condition moving head pos and different background
5] Leyuan Qu, Cornelius Weber and Stefan Wermter	IEEE/ACM VOL. 30, 2022 Title: LipSound2: Self-Supervised Pre-Training for Lip-to-Speech Reconstruction and Lip Reading Journal: IEEE	recognition, speech reconstruction LipSound2 which consists of an encoder-decoder architecture and location aware attention mechanism to map face image sequences to Mel-scale spectrograms directly without requiring any human	VoxCeleb2 is a large-scale audio- visual corpus, extracted from YouTube videos. GRID and TCD- TIMIT datasets are in controlled experimental environments with fixed frontal face angle and clean background in audio and vision. CMLR (Chinese Mandarin Lip Reading) is collected from videos by 11 hosts	CR	English and Chine lip-reading experiments. Future work w focus on mo realistic configuration, su as the variety light condition moving head pos and different background
5] Leyuan Qu, Cornelius Weber and Stefan Wermter	IEEE/ACM VOL. 30, 2022 Title: LipSound2: Self-Supervised Pre-Training for Lip-to-Speech Reconstruction and Lip Reading Journal: IEEE	recognition, speech reconstruction LipSound2 which consists of an encoder-decoder architecture and location aware attention mechanism to map face image sequences to Mel-scale spectrograms directly without requiring any human	VoxCeleb2 is a large-scale audio- visual corpus, extracted from YouTube videos. GRID and TCD- TIMIT datasets are in controlled experimental environments with fixed frontal face angle and clean background in audio and vision. CMLR (Chinese Mandarin Lip Reading) is collected from videos by 11 hosts of the Chinese	CR	a well pretrain speech recognitio model for both English and Chine lip-reading experiments. Future work w focus on mo realistic configuration, su as the variety light condition moving head pos and different background

[6]	Title:	The study uses CNNs (Inception V3	1.Miracl-VC1	1.AlexNet:	The paper highlight
PV Sindhura		and Alex Net) to extract mouth		86.6%	the need fo
		regions from films and interpret lips			advanced lig
		to words. Tests that are speaker-		2.Inception	reading technique
	-	-	speakers,10 words	-	especially wit
	-	dependent are administered, along	•	101011070	dynamic mout
	0,	with the application of transfer	and pinases)		contours, ric
		learning.			semantic
	-	iearning.			
	Access				information, an
					application o
					adaptive grap
					structures.
					presents a nev
					application of grap
					convolution in li
					reading tha
					addresses previou
					gaps in the field.
[7]	Title: Lip Reading	Uses Combination of a convolutional	LRW	88.2%	The propose
Dr. Mamatha		neural network (CNN) and an			system may b
	-	attention-based long short-term			trained an
Roshan B R2		memory (LSTM) for lip-reading			evaluated on
Vasudha S R3	-	recognition.			specific datase
	Iournal:				which may limit it
	International				generalizability t
	Journal of				other language
	Engineering				speech modes, an
	Research &				imaging condition
	Technology		· /2		Future researc
	(IJERT)	-			could explor
					techniques t
					improve th
					accuracy an
					reliability of lip
				10	reading systems
[8]	Title: Lip Reading		No Mention	71.76%	The recognition of
Yiting Li, Yuki		Ne <mark>twork</mark> s (CNNs) for p <mark>rocess</mark> ing the			word could be don
Takashima,	Feature of Lip	dy <mark>namic feature, reducin</mark> g negative			from the differer
Tetsuya	Images and	in <mark>fluences and als</mark> o face alignment		9	angles and distance
Takiguchi,	Convolutional	blurring.			which improves th
Yasuo Ariki	Neural Networks				quality of th
					system.
	Iournal: IEEE				-9
	Access				
[9]		The Deep Belief Network (DBN) is		45.63%	The accuracy of th
Fatemeh		used for the recognition part of the			system can b
Vakhshiteh,	Network Using	lip reading.			increased using th
Farshad	Appearance-based	The features are extracted from the			different technique
Almasganj	Visual Features.	images and word using Deep Neural			at the same time fo
		Networks (DNN).			preprocessing.
	Journal: IEEE				
	Access				
		It is evaluated by using Dilated	Turkich dataset	58.90	Extend the dataset
[10]				50.90	
	municiass	Convolutional Neural Network (DCNN), a different variation of			and work o
Nergis Pervan	Classification	ILILININI, a different variation of			developing a nev
Nergis Pervan Akman, Talya	-				preprocessing
Nergis Pervan Akman, Talya Tumer Sivrij	Using Dilated CNN	CNN.			
Tumer Sivrij ali Berkol	Using Dilated CNN with Turkish	CNN.			strategy also th
Nergis Pervan Akman, Talya Tumer Sivrij ali Berkol,	Using Dilated CNN	CNN.			strategy also th extending th
Nergis Pervan Akman, Talya Tumer Sivrij ali Berkol,	Using Dilated CNN with Turkish Dataset	CNN.			strategy also th extending th dataset focusing o
Nergis Pervan Akman, Talya Tumer Sivrij ali Berkol,	Using Dilated CNN with Turkish	CNN.			strategy also th extending th

	-			
			each class improve the re	will
			improve the re	sults.

[11]	Title: A Lip	The methodology includes data	1.LRW (English	1 I DW.	Research has identified
	-	preprocessing, front-end (3DCvT)		88.5%	a need for improved lip-
nuljuan wang	0		-	88.3%	
		and back-end (BiGRU) network,	-		reading methods to
		model variants (3DCvT-I, II, III),			overcome challenges in
		Adam optimizer training, and label		57.5%	capturing temporal and
	Transformer	smoothing for better cross-entropy	1000(Chinese		spatial information
		loss. calibration.	word reading		between video frames,
	Journal: IEEE		Dataset		extracting subtle
	Access				features of lip
					movement, and
					addressing information
					-
					loss due to resolution
					reduction in deep
					networks.
[12]	Title: Adaptive	Th <mark>e lip-reading m</mark> ethod improves	1.LRW	82.6%	This research addresses
Changchong 🧹	Semantic-Spatio-	re <mark>adability with a du</mark> al stream front-			the challenge of
Sheng	Temporal Graph	en <mark>d (ASST-GCN)</mark> and back-end	2.LRS2		dynamic lip-reading
	Convolutional	(s <mark>pecialize</mark> d back-end) for word and			contours, the
	Network for Lip	se <mark>ntence</mark> work, accurately	3.LRS3		underutilization of
		re <mark>produci</mark> ng lip details,			semantic data, the
		spatiotemporal face landmarks, and			introduction of
		overcoming pre-existing limitations.			adaptive graph
	Journal. IEEE	overcoming pre-existing inintations.			
					structures, and the
					introduction of new
					graph convolution for
					lip reading to address
					an existing research
				. C.Y	gap.
[13]	Title: MobiLipNet:	MobileNet convolutional neural	TCD-TIMIT corpus	WER	MobiLipNetV2, that has
Alexandros	Resource-Efficient	network	contains	53.01%,	106 times less
Koumparoulis,	Deep Learning	Architecture for image classification.	audio-visual	This result	parameters and is 37
-		ex <mark>tend</mark> the 2D convolutions of		is verv close	times faster than the
Potamianos			-	-	state-of-the-art ResNet.
		ones, in order to better model the	-		Further, the model
			· -	52.94%	outperforms a
		lipreading problem.	phonetically-rich	52.9470	-
	DUI: 10.21437				
			TIMIT sentences		4.27% absolute in WER,
		learning, ResNet.	(6k word		12 times in
			vocabulary) in	L	computational
			studio-like		efficiency, and 20 times
			conditions		in size.
[14]	Title: Speech	Word recognition experiment using	SSSD (Speech	65%	Requires a huge
	-	VAE encoder and CNN performed	• •		amount of data and can
		with 20 Japanese words. 36 viseme	-		only recognize words
			The training data		existing in the data set.
Yoshihisa	-	small data using VAE (Variational	0		Therefore, they
			uttered 25 words		
					investigated a method
Yumiko O. Kato		training data for word recognition			that can recognize the
		model was generated.	test data uses		word that one wants to
			5000 sample		utter and optimize it for
			utterance videos		the user by using a
			that are not		small amount of data.

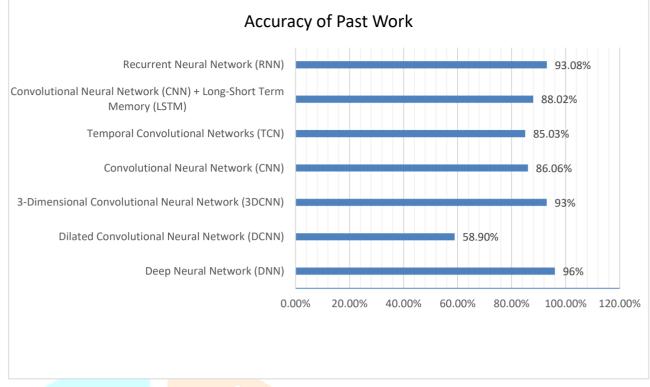
www.ijcrt.org		© 2023 IJCR I	Volume 11, Issue 11 No	vember 2023	133N. 2320-2002
[15] Daehyun Lee,	Lips, Login to the Virtual World	RNN (Recurrent Neural No used for processing seque LSTM (Long Short-Term neural network architec	included in th training data. etwork) isGRID datase ntial data,contains 3 Memory)speakers utte	e t 4 93.8% r	This paper proposes a multi-factor authentication system architecture by lip-
	Journal: IEEE Access	can translate visual utte password as a knowled Open CV was used for extr face region.	erance to with a sequence of ge factor.words in the form racting the "verb colo preposition digi letter adverb".	f n r t	reading and the iterative method to improve accuracy as good as state-of-the-art performance. For future work, various data should be gathered and tested under real-life conditions.
Dong-Won Jang, Hong-In Kim, Changsoo Je, Rae-Hong Park, And Hyung-Min Park	Networks with Two Different Types of Concatenated Frame Images.	It uses convolutional network (CNN) to analyze of combined frame imag complete lip images and image patches around imp landmarks.	two kinds es (CFIs), d smaller		The two different types of CFIs can be improved the accuracy and the performance of the system rather than using a single.
[17] Tayyip Özcan, Alper Basturk	Using Convolutional		ique. Th <mark>e</mark> atase <mark>ts</mark>	CR	Other pre-trained models can be support to the CNN to run on Av Letters and also different datasets.
Souheil Fenghour (Associate Member IEEE), Daqing Chen (Member IEEE)	Sentences Using Deep Learning with Only Visual Cues			g 9 7 3	Efficient conversion of Visemes to words is crucial when using visemes as classification schema for lip reading sentences.
Xi Ai	Language Modeling in Multi-	The paper presents a new to lipreading using a cr language model that elim need for a deep enco emphasizes context-	oss-modal inates the2.LRS3		A research gap relates to the need for comprehensive evaluation, including different datasets and

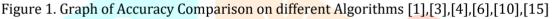
© 2023 IJCRT | Volume 11, Issue 11 November 2023 | ISSN: 2320-2882

Liangliang Cao, from Silent Lip reading. Nima Movements Video Mesgarani [21] Title - Deep 3DCNN Architecture is used toMIRACL-VC1 Praneeth Learning based extracting the Spatio-temporal dataset Nemani, Holistic Speaker features and mapping the elements Ghanta Sai Independent in the croups. Krishna , Nikhil Visual Speech Ramisetty Recognition Journal - IEEE Xplore DOI 10.1109/TAL2022 3220190 [22] Title: Lip-ReadingA novel lip-reading driven deep Grid and ChiME3 Ahsan Adeel, Dearning Approach for Russain, and Finhancement. William M	in miljor tiong	Deedine				
Journal: IEEE Access pre-training strategies in reading models. [20] Title: Lip2audspec: The CNN and LSTM models are used GRID Future work: collect the more trained data and also inclide the emotions in speech. Himani Arora, Reconstruction Liangliang Cao, from Mesgarani Movements Video Training movements Video Training accuracy [21] Title - Deep3DCNN Architecture is used to MIRACL-VC1 Mesgarani Training accuracy In future, the existing protocol can be extended to other languages like French, accuracy [21] Title - Deep3DCNN Architecture is used to MIRACL-VC1 Reaming based extracting the Spatio-temporal dataset Training accuracy In future, the existing protocol can be extended to other languages like French, accuracy Krishna, Nikhil Visual Speech Ramisetty Recognition Recognition Journal - IEEE Xplore Journal - IEEE Xplore Novel lip-reading driven deepGrid and ChiME3 80% [22] Title: Lip-ReadingA novel lip-reading driven deepGrid and ChiME3 80% The noise estimatipopons can be add in the system for better performance and enhance the paction speech Mussain, and Emerging Topics in Computational IEEE Fraining reading- Speech Fraining reading- teating- Approach for Emerging Topics in Computational		0	1			u
Access in reading models. [20] Title: Lip2audspec The CNN and LSTM models are used GRID 79% Future work: collect the more trained data and also inclide the more trained data and also inclide the more more trained data and also inclide the emotions in speech. Himain Arora, Reconstruction reconstruct the speech from lip 79% Future work: collect the more trained data and also inclide the emotions in speech. Nima Movements Video Movements Video In future, the existing accuracy -protocol can be standing accuracy -protocol can be stended to other languages like French, and like in the croups. Recognition -protocol can be stended to other languages like French, anguages like Gromance of similar-sounding words [22] Title: Lip-Reading A novel lip-reading driven deep Grid and ChiME3 (Asan Adeel, Driven Deeplearning framework is used for lip enformance of similar-sounding words 80% The noise add in the system for better performance and enhance the outcome of system. [22] Title: Lip-Reading A novel lip-reading driven deep Grid and ChiME3 (Asan Adeel, Driven Deeplearning framework is used for lip estimational for speech fussain, and fuscant for speech for anguages in comparison on the add in the system for better performance of system. 80% The noise add in the system for better performanc		1	from silent videos.	4.GRID		-
[20] Title: Lip2audspec: The CNN and LSTM models are used GRID 79% Future work: collect the more trained data and also inclide the more trained data and also inclide the indigitar Gao from Silent Lipreading. Nima Movements Video Movements Video Training the system and Minani Arora Reconstruction reconstruct the speech from lip Langliang Cao from Silent Lipreading. In future work: collect the more trained data and also inclide the emotions in speech. [21] Title - Deep 3DCNN Architecture is used to MIRACL-VC1 Training accuracy accuracy between the speech extracting the Spatio-temporal dataset In future, the existing accuracy accuracy accuracy between the speech extracting the spatio-temporal dataset -protocol can be accuracy accur						
Hassan Akbari Speech to training the system and Himani Arora Reconstruction Isangliang Cao from Silent Lipreading. Nima Movements Video Mesgarani Title - Deep 3DCNN Architecture is used to MIRACL-VC1 Iraining Praneeth Learning based extracting the Spatio-temporal dataset Nemani, Holistic Speaker features and mapping the elements Ghanta Sailndependent in the croups. Krishna , Nikhil Visual Speech Ramisetty Recognition Journal - IEEE DOI 10.1109/TAL2022 3220190 [22] Title: Lip-ReadingA novel lip-reading driven deep Grid and ChiME3 Ahsan Adee) Driven Deep learning framework is used for lip Mandar Approach for Hussain, and Enhancement. William M Whitmer Journal: IEEE Transactions on Emerging Topics in Computational						-
Himani Arora Reconstruction reconstruct the speech from lip Liangliang Gao from Silent Lipreading. Nima Movements Video Mesgarani Nue Deep BDCNN Architecture is used to MIRACL-VC1 Praneeth Learning based extracting the Spatio-temporal dataset Remani, Holistic Speaker features and mapping the elements Anstan A Nikhil Visual Speech Ramisetty Recognition Journal - IEEE Xplore DOI 10.1109/TAL2022 3220190 [22] Title: Lip-ReadingA novel lip-reading driven deep Grid and ChiME3 Ahsan Adeel, Driven Deep learning framework is used for lip Mandar Learning Deep learning framework is used for lip Mandar Learning Speech Hussain, and Ensain Materia. (22] Title: Lip-ReadingA novel lip-reading driven deep Grid and ChiME3 Ahsan Adeel, Driven Deep learning framework is used for lip Mandar Learning Transactions on Emerging Topics in Computational			The CNN and LSTM models are used	GRID	79%	
Liangliang Cao, from Silent Lip reading. Nima Movements Video Mesgarani Movements Video Mesgarani Movements Video Mesgarani Movements Video Mesgarani Movements Video Praneeth Learning based extracting the Spatio-temporaldataset Shanta Sailndependent in the croups. krishna , Nikhil Visual Speech Ramisetty Recognition Journal - IEEE Xplore DOI 10.1109/TAL2022 3220190 [22] Title: Lip-Reading A novel lip-reading driven deep Grid and ChiME3 Ahsan Adeel, Driven Deep learning framework is used for lip Ansa		-	0			
Nima Mesgarani Movements Video In future, the existing accuracy [21] Title Deep 3DCNN Architecture is used to MIRACL-VC1 accuracy Training accuracy In future, the existing accuracy Praneeth Learning basedextracting the Spatio-temporaldataset 80.02% Nemani, Holistic Speech in the croups. Testing language like Ramisetty Recognition in the croups. 77.09 Also, the proposed system could be improved [22] Title: Lip-Reading A novel lip-reading driven deepGrid and ChiME3 80% The noise estimatipopons can be add in the system for beetre promance of similar- sounding words [22] Title: Lip-Reading A novel lip-reading framework is used for lip Mandar Approach reading. reading. Solution system. Whitmer Journal : IEEE Trainasactions on Emerging Topics in Computational IEEE framework is used for lip system.	Himani Arora,	Reconstruction	reconstruct the speech from lip			also inclide the
Mesgarani Title - Deep 3DCNN Architecture is used to MIRACL-VC1 Training accuracy - protocol can be Praneeth Learning based extracting the Spatio-temporal dataset Bould accuracy - protocol can be Nemani, Holistic Speaker features and mapping the elements Bould accuracy - Protocol can be Ghanta Sai[Independent in the croups. Training accuracy - Hindi, and Telugu. Ramisetty Recognition Also, the proposed system could be improved to enhance the performance of similar-sounding words Journal - IEEE Xplore DOI 10.1109/TAL2022 Jazo190 Title: Lip-Reading A novel lip-reading driven deep Grid and ChiME3 80% The noise estimatipopons can be add in the system for better performance and enhance the performance and enhance the performance and enhance the performance of similar-sounding words Killiam Mandar Learning Framework is used for lip 80% The noise add in the system for better performance and enhance the only system. William M Murani: IEEE Transactions on Emerging Topics in Computational Fransactions on Emerging Topics in Computational Fransactions on Emerging Topics in Computational Fransactions on Emerging Topics in Computational	Liangliang Cao,	from Silent Lip	reading.			emotions in speech.
[21] Title Deep 3DCNN Architecture is used to MIRACL-VC1 Training accuracy In future, the existing accuracy Praneeth Learning based extracting the Spatio-temporaldataset accuracy -protocol can be Ghanta Sailndependent in the croups. Testing accuracy -protocol can be Krishna, Nikhil Visual Speech in the croups. Testing accuracy -Hindi, and Telugu. Ramisetty Recognition Iournal - IEEE IEE Title: Lip-Reading A novel lip-reading driven deepGrid and ChiME3 80% The noise [22] Title: Lip-Reading A novel lip-reading driven deepGrid and ChiME3 80% The noise Ahsan Adeel, Driven Deeptearning framework is used for lip acd in the system for better performance and enhance the outcome of system. William M Iournal: IEEE Transactions on frading. Transactions on Emerging Topics in Computational system.	Nima	Movements Video				
Praneeth Learning based extracting the Spatio-temporal dataset accuracy protocol can be Nemani, Holistic Speaker features and mapping the elements 80.02% extended to other Ghanta Sailndependent in the croups. Testing anguages like French, krishna , Nikhil Visual Speech Recognition 77.09 Also, the proposed Journal - IEEE Xplore DOI 10.1109/TAL2022 3220190 71.09 Also, the proposed [22] Title: Lip-Reading A novel lip-reading driven deepGrid and ChiME3 80% The noise Ahsan Adeel, Driven Deeplearning reading, Approach for better performance and enhance the outcome of system. William M M M mandar Learning reading, for better performance and enhance the outcome of system. Whitmer Journal: IEEE Transactions on Emerging Topics in computational for	Mesgarani					
Praneeth Learning based extracting the Spatio-temporal dataset accuracy protocol can be Nemani, Holistic Speaker features and mapping the elements 80.02% extended to other Ghanta Sailndependent in the croups. Testing anguages like French, krishna , Nikhil Visual Speech Recognition 77.09 Also, the proposed Journal - IEEE Xplore DOI 10.1109/TAL2022 3220190 71.09 Also, the proposed [22] Title: Lip-Reading A novel lip-reading driven deepGrid and ChiME3 80% The noise Ahsan Adeel, Driven Deeplearning reading, Approach for better performance and enhance the outcome of system. William M M M mandar Learning reading, for better performance and enhance the outcome of system. Whitmer Journal: IEEE Transactions on Emerging Topics in computational for						
Praneeth Learning based extracting the Spatio-temporal dataset accuracy protocol can be Nemani, Holistic Speaker features and mapping the elements 80.02% extended to other Ghanta Sailndependent in the croups. Testing anguages like French, krishna , Nikhil Visual Speech Recognition 77.09 Also, the proposed Journal - IEEE Xplore DOI 10.1109/TAL2022 3220190 71.09 Also, the proposed [22] Title: Lip-Reading A novel lip-reading driven deepGrid and ChiME3 80% The noise Ahsan Adeel, Driven Deeplearning reading, Approach for better performance and enhance the outcome of system. William M M M mandar Learning reading, for better performance and enhance the outcome of system. Whitmer Journal: IEEE Transactions on Emerging Topics in computational for						
Nemani, Holistic Speaker features and mapping the elements 80.02% extended to other Ghanta SaiIndependent in the croups. Testing accuracy - Ramisetty Recognition Journal – IEEE Yellow Also, the proposed System could be Journal – IEEE Yolore DOI 10.1109/TAL2022 3220190 Title: Lip-Reading A novel lip-reading driven deep Grid and ChiME3 80% The noise Randar Learning reading. reading. reading. reading. 80% The noise Mandar Learning framework is used for lip reading. reading. 80% The noise William M. M Transactions on frameging Topics reading. Transactions on Emerging Topics reading. system. system.		-			0	
Ghanta Sai Independent in the croups. Testing languages like French, accuracy Ramisetty Recognition Festing anguages like French, accuracy -Hindi, and Telugu. Journal - IEEE Journal - IEEE Xplore 77.09 Also, the proposed system could be improved to enhance the performance of similar-sounding words Journal - IEEE Xplore DOI 10.1109/TAL2022 3220190 Iz22 Title: Lip-Reading A novel lip-reading driven deepGrid and ChiME3 80% The noise estimatipopons can be add in the system for better performance and enhance the outcome of system. Mandar Learning reading. reading. Feech Mussain, and Enhancement. Feech Speech Speech William M Transactions on Emerging Topics in Computational Testing System.		-			5	protocol can be
krishna , Nikhil Visual Speech Ramisetty Recognition Journal – IEEE Xplore DOI 10.1109/TAI.2022 3220190 [22] Title: Lip-ReadingA novel lip-reading driven deepGrid and ChiME3 Ahsan Adeel Driven Deeplearning framework is used for lip Mandar Learning reading. Gogate, Amir Approach for Speech Enhancement. William M. Whitmer Journal: IEEE Transactions on Emerging Topics in Computational	,	1	features and mapping the elements		80.02%	extended to other
Ramisetty Recognition Journal – IEEE Xplore DOI 10.1109/TAL.2022 .3220190 [22] Ahsan Adeel, Driven Deeplearning framework is used for lip Mandar Learning reading. Gogate, Amin' Speech Hussain, and Enhancement. William M. Whitmer Journal: IEEE Transactions on Emerging Topics in Computational	Ghanta Sai	Independent	in the croups.		Testing	languages like French,
Journal – IEEE System could be improved to enhance the performance of similar-sounding words JOI 10.1109/TAI.2022 3220190 Title: Lip-Reading A novel lip-reading driven deep Grid and ChiME3 Ahsan Adeel, Driven Deeplearning framework is used for lip 80% Mandar Learning Gogate, Amir Approach for reading. Finhancement. Fransactions on Whitmer Journal: IEEE Transactions on Emerging Topics in Computational Computational	krishna , Nikhil	Visual Speech			accuracy -	Hindi, and Telugu.
Journal - IEEE Xplore DOI 10.1109/TAI.2022 .3220190improved to enhance the performance of similar- sounding words[22]Title: Lip-Reading A Driven Learning Ansan Adeel Learning Approach for Speech Enhancement.novel lip-reading driven deep Grid and ChiME380%The noise estimatipopons can be add in the system for better performance and enhance the outcome of system.WhitmerJournal:IEEE Transactions on Emerging Topics in ComputationalThe noise estimation addition additio	Ramisetty	Recognition			77.09	Also, the proposed
Xplore DOI 10.1109/TAI.2022 .3220190To enhance the performance of similar- sounding words[22]Title: Lip-Reading A novel lip-reading driven deep Grid and ChiME3 Ahsan Adeel, Driven Deep learning framework is used for lip Mandar Gogate, Amir Approach for Speech Enhancement.80%The noise estimatipopons can be add in the system for better performance and enhance the outcome of system.William M.Journal: IEEE Transactions on Emerging Topics in ComputationalThe noise estimation of the performance and enhance the outcome of system.						system could be
DOI 10.1109/TAI.2022 3220190 [22] Title: Lip-Reading A novel lip-reading driven deepGrid and ChiME3 Ahsan Adeel Driven Deep learning framework is used for lip Mandar Gogate, Amir Hussain, and William M. Whitmer Journal: IEEE Transactions on Emerging Topics in Computational		Journal – IEEE				improved
10.1109/TAI.2022 .3220190 10.1109/TAI.2022 .3220190 sounding words [22] Title: Lip-Reading A novel lip-reading driven deep Grid and ChiME3 80% The noise estimatipopons can be add in the system for better performance and enhance the outcome of system. Mandar Learning . Approach for Speech Enhancement. reading. William M. Whitmer Journal: IEEE . Transactions on Emerging Topics in Computational		Xplore	_			to enhance the
.3220190 Title: Lip-Reading A novel lip-reading driven deep Grid and ChiME3 80% The noise estimatipopons can be estimatipopons can be add in the system for better performance and enhance the outcome of system. Mandar Learning reading. Mandar Speech Enhancement. William M. Transactions on Emerging Topics in Computational		DOI				performance of similar-
[22] Title: Lip-Reading A novel lip-reading driven deep Grid and ChiME3 80% The noise estimatipopons can be add in the system for better performance and enhance the outcome of system. Mandar Learning reading. reading. reading. reading. Mussain, and William Journal: IEEE Transactions on Emerging Topics in Computational IEEE Transactional IEEE		10.1109/TAI.2022				sounding words
Ahsan Adeel, Driven Deep learning framework is used for lip Mandar Approach for Gogate, Amir Hussain, and William M. Whitmer Journal: IEEE Transactions on Emerging Topics in Computational		.3220190				
Ahsan Adeel, Driven Deep learning framework is used for lip Mandar Approach for Gogate, Amir Hussain, and William M. Whitmer Journal: IEEE Transactions on Emerging Topics in Computational						
Mandar Learning Approach for Speech Enhancement. William M. Whitmer Journal: IEEE Transactions on Emerging Topics in Computational					80%	The noise
Approach for Speech Hussain, and Enhancement. William M. Whitmer Journal: IEEE Transactions on Emerging Topics in Computational			le <mark>arning f</mark> ramewor <mark>k is used </mark> for li <mark>p</mark>			estimatipopons can be
Hussain, and Enhancement. William M. Whitmer Journal: IEEE Transactions on Emerging Topics in Computational	Mandar	Learning	reading.			add in the system for
William M. Whitmer Journal: IEEE Transactions on Emerging Topics in Computational	Gogate, Amir	Approach for		_		better performance and
William M. Whitmer Journal: IEEE Transactions on Emerging Topics in Computational	Hussain, and	Enhancement		× 13		enhance the outcome of
Transactions on Emerging Topics in Computational						system.
Emerging Topics in Computational	Whitmer	Journal: IEEE				
Emerging Topics in Computational		Transactions on				
in Computational						
					10	
		intenigence			C ()	

4. Algorithm Survey

Table -2: Algorithmic Survey of Research Studies


Ref.no	Paper Title	Algorithm Name	Accuracy	Time Complexity	Space Complexity
[1]	Lipread Net: A Deer Learning Approach to Lip Reading		93%	where O, P, Q are the input volume dimensions.	O(I*J*K*O*P*Q) where I, J, K are the filter dimensions and O, P, Q are input volume dimensions
[4]	End-to-End Lip-Reading Without Large-Scale Data	-	96 %	where N is the size of the	O(M) where M is the size of the input.
[10]	ip Reading Multiclass Classification by Using Dilated CNN with Turkish Dataset			where L is the number of	


www.ij	crt.org © 20)23 IJCRT Volun	ne 11, Issue 11 November 2023 ISSN: 2320-2882
[6]	Convolutional Neural Convolutional Networks for PredictingNeural Ne Words: A Lip-Reading(CNN) System	86.06% etwork	O(N*K*M) where N is the number of input features, K is the size of the convolutional Kernel and M is the number of filters the convolutional layer.
[2]	Lip Reading Usingemporal Convolu Temporal ConvolutionalNetworks (TCN) Networks.		O(L*N*K) where L is the number of convolutional layers, N is the length of the input sequence and K is the size of the convolutional kernel.
[15]	Read My Lips, Login to Recurrent I the Virtual World Network (RNN)	Neural93.08%	O(T*D*D') O(D') where T is the number of where D' is the number of steps in the input sequence, hidden units dominates the D is the Dimensionality of memory usage. the input at each time step and D' is the number of hidden units or dimension in the RNN's hidden state.
[7]	Lip Reading to Textpination using Artificial Convolutional I Intelligence Network (CNN) Long-Short Memory (LSTM)) an <mark>d</mark> Te <mark>rm</mark>	O(L*N*C*H*W*F*F') + O(W) + O(D') O(T*D*D') where this term represents where L is the number of the Space complexity of fully layers in the network, N is connected layers the Batch size, H is the height of the input data, W is the width of the input data, F is the number of Filters in the convolutional layers, F' is the number of Filters in the Subsequent layers, T is the Sequence length or time steps D is the number of hidden states in the LSTM layer and D' is the number of LSTM units or hidden states in the subsequent LSTM layer

5. Dataset Survey

Table-3:DatasetSurveyofLip-ReadingRecognition

Dataset Name	Description	Language	Year	Ereator	Advantages	Disadvantages
	Audio-visual speech recognition dataset collected from in-the-wild videos	0	2016	University	and diverse speakers	Variability and data size.
	io-visual speech recognition dataset collected from in-the- wild videos			University	high-quality videos, and diverse speakers	
	Audio-visual speech recognition dataset collected from TED and TEDx videos	0	2019	University		It has smaller size and Privacy Concerns
	A corpus of 1,000 sentences spoken by 34 speakers in a controlled environment.			Sheffield	and audio	It consists of a single speaker, resulting limited variability.
	set of 5,898 sentences <mark>spo</mark> ken by 62 speakers in a con <mark>trolled</mark> environment.			Dublin	and audio	d number of ers
	Audio-visual speech recognition dataset collected from a single speaker	English	2002		The quality of videos and audio is high	ted ry and letters
	dataset of 20 short p <mark>hrases</mark> spoken by 52 speakers in a controlled environment			•		The average number of samples in each class is relatively low
	Audio-visual speech recognition dataset collected from multiple speakers	0	2004	-	Large vocabulary and diverse speakers	Limited number of words
	A naturally-distributed large- scale benchmark for lip reading in the wild, which contains 1,000 classes with 718,018 samples from more than 2,000 individual speakers.			Oxford	Large vocabulary, high-quality videos, and diverse speakers	and Phoneme
(LRW)	A large-scale audio <mark>-visual</mark> database that contains 500 different words from over 1,000 speakers.	-	2016		Large vocabulary, high-quality videos, and diverse speakers	Limited number of

5. CONCLUSION

In conclusion, this lip reading is currently dominated by 3D Convolutional Neural Networks (CNN), LSTM, HMM which are currently showing high accuracy [1],[6]. Numerous datasets have been examined in English and other languages, highlighting the significance of varied and extensive data for training and assessment. There are many available datasets made in various languages but we need to create more datasets in regional languages as well. The research further highlights problems in lip reading, from phoneme ambiguity to changes in lighting, head positions and the need for sufficient training data. It also explores the potential of combining visual and auditory cues to improve accuracy, particularly in noisy environments. Lip reading has the potential to revolutionize a variety of applications, from accessibility for the hearing impaired to safety and autonomous vehicles, and holds promise for a more inclusive and safer future. This survey provides us with a quick overview of the several Deep Learning techniques that can produce superior outcomes.

REFERENCES

- [1] Kuldeep Vayadande, Tejas Adsare, Neeraj Agrawal, Tejas Dharmik, Aishwarya Patil, Sakshi Zod; Lipread Net: A Deep Learning Approach to Lip Reading 2023 International Conference on Applied Intelligence and Sustainable Computing (ICAISC) | 979-8-3503-2379-5/23/\$31.00 ©2023 IEEE | DOI: 10.1109/ICAISC58445.2023.102004
- [2] Brais Martinez, Pingchuan Ma, Stavros Petridis, Maja Pantic; Lipreading Using Temporal Convolutional Networks 978-1-5090-6631-5/20/\$31.00 ©2020 IEEE
- [3] Youda Wei, Xiaodong Hu; Text Recognition from Silent Lip Movement Video 978-1-5386-6396-7/18/\$31.00 ©2018 IEEE
- [4] Adriana Fernandez-Lopez, Federico M. sukno; End-to-End Lip-Reading Without Large-Scale Data 2329-9290 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
- [5] Leyuan Qu, Cornelius Weber and Stefan Wermter; LipSound2: Self-Supervised Pre-Training for Lip-to-Speech Reconstruction and Lip-Reading IEEE Transactions On Neural Networks And Learning Systems arXiv:2112.04748v2 [cs.SD] 12 Sep 2022.
- [6] PV Sindhura; Convolutional Neural Networks for Predicting Words: A lip-Reading System 978-1-5386-5130-8/18/\$31.00
 ©2018 IEEE
- [7] Dr. Mamatha G1, Bharath Roshan B R2, Vasudha S R3; Lip Reading to Text using Artificial Intelligence International Journal of Engineering Research & Technology (IJERT) http://www.ijert.org ISSN: 2278-0181 IJERTV9IS010312 Vol. 9 Issue 01, January-2020
- [8] Yiting Li, Yuki Takashima, Tetsuya Takiguchi, Yasuo Ariki; Lip Reading Using a Dynamic Feature of Lip Images and Convolutional Neural Networks 978-1-5090-0806-3/16/\$31.00 copyright 2016 IEEE

www.ijcrt.org

- [9] Fatemeh Vakhshiteh, Farshad Almasganj; lip-reading via Deep Neural Network Using Appearance-based Visual Features 2017 24th national and 2nd International Iranian Conference on Biomedical Engineering (ICBME), Amirkabir University of Technology, Tehran, Iran, 30 November - 1 December 2017 978-1-5386-3609-1/17/\$31.00 ©2017 IEEE
- [10] Nergis Pervan Akman, Talya Tumer Sivrij, ali Berkol, Hamit Erdem; Lip Reading Multiclass Classification by UsingDilated CNN with Turkish Dataset 2022 International Conference on Electrical, Computer and Energy Technologies (ICECET) | 978-1-6654-7087-2/22/\$31.00 ©2022 IEEE | DOI: 10.1109/ICECET55527.2022.9873011
- [11] Huijuan Wang. GANGQIANG PU, AND TINGYU CHEN; A Lip Reading Method Based on 3D Convolutional Vision Transformer Digital Object Identifier 10.1109/ACCESS.2022.3193231 VOLUME 10, 2022
- [12] Changchong Sheng Xinzhong Zhu, Member, IEEE, Huiying Xu, Member, IEEE, Matti Pietikäinen, Fellow, IEEE, and Li Liu, Senior Member, IEEE; Adaptive Semantic-Spatio-Temporal Graph Convolutional Network for Lip Reading 1520-9210 © 2021 IEEE IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 24, 2022
- [13] Alexandros Koumparoulis, Gerasimos Potamianos; MobiLipNet: Resource-Efficient Deep Learning Based Lipreading DOI: 10.21437/Interspeech.2019-2618 September 15–19, 2019, Graz, Austria
- [14] Kenji Matsui, Kohei Fukuyama, Yoshihisa Nakatoh, Yumiko O. Kato; Speech Enhancement System Using Lip-reading 978-1-7281-6946-0/20/\$31.00 ©2020 IEEE.
- [15] Daehyun Lee, Kyungsik Myung; Read My Lips, Login to the Virtual World 978-1-5090-5544-9/17/\$31.00 ©2017 IEEE 2017 IEEE International Conference on Consumer Electronics (ICCE)
- [16] Dong-Won Jang, Hong-In Kim, Changsoo Je, Rae-Hong Park, And Hyung-Min Park; Lip Reading Using Committee Networks with Two Different Types of Concatenated Frame Images Digital Object Identifier 10.1109/ACCESS.2019.2927166 VOLUME 7, 2019
- [17] Tayyip Özcan, Alper Basturk; Lip Reading Using Convolutional Neural Networks with and without Pre-Trained Models Article in Balkan Journal of Electrical and Computer Engineering · April 2019 DOI: 10.17694/bajece.479891
- [18] Souheil Fenghour (Associate Member IEEE), Daqing Chen (Member IEEE); Lip Reading Sentences Using Deep Learning with Only Visual Cues Digital Object Identifier 10.1109/ACCESS.2020.3040906 VOLUME 8, 2020.
- [19] Xi Ai and Bin Fang; Cross-Modal Language Modeling in Multi-Motion-Informed Context for Lip Reading IEEE/ACM Transactions on Audio, Speech, And Language Processing, VOL. 31, 2023 2329-9290 © 2023 IEEE.
- [20] Hassan Akbari, Himani Arora, Liangliang Cao, Nima Mesgarani; Lip2audspec: Speech Reconstruction from Silent Lip Movements Video 978-1-5386-4658-8/18/\$31.00 ©2018 IEEE.
- [21] Praneeth Nemani, Ghanta Sai krishna, Nikhil Ramisetty; Deep Learning based Holistic Speaker Independent Visual Speech Recognition Citation information: DOI 10.1109/TAI.2022.3220190 © 2022 IEEE.
- [22] Ahsan Adeel, Mandar Gogate, Amir Hussain, and William M. Whitmer; Lip-Reading Driven Deep Learning Approach for Speech Enhancement 2471-285X © 2019 IEEE IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, VOL. 5, NO. 3, JUNE 2021

www.ijcrt.org BIOGRAPHIES

JCR

Mr. Shubham Kalburgi

Project Research Fellow and B.E. Student at Department of Computer Engineering, RMD Sinhgad School of Engineering, SPPU, Pune.

Prof. Vina M. Lomte

Project Guide and Head of Computer Engineering Department at RMD Sinhgad School of Engineering, SPPU, Pune

Mr. Niraj Jain

Project Research Fellow and B.E. Student at Department of Computer Engineering, RMD Sinhgad School of Engineering, SPPU, Pune.

Mr. Ashutosh Buge

Project Research Fellow and B.E. Student at Department of Computer Engineering, RMD Sinhgad School of Engineering,SPPU, Pune.

Ms. Shreya K<mark>ankal</mark>

Project Research Fellow and B.E. Student at Department of Computer Engineering, RMD Sinhgad School of Engineering, SPPU, Pune.