ISSN: 2320-2882

IJCRT.ORG

INTERNATIONAL JOURNAL OF CREATIVE RESEARCH THOUGHTS (IJCRT)

An International Open Access, Peer-reviewed, Refereed Journal

Biomedical Image Processing Using Machine Learning Approaches

Dr. H S Prasantha

Professor, K.S.Institute of Technology, Bangalore, Karnataka, India

ABSTRACT

Biomedical imaging concentrates on the capture of images for both diagnostic and therapeutic purposes. Snapshots of in vivo physiology and physiological processes can be gathered through advanced sensors and computer technology. Biomedical imaging technologies utilize either x-rays (CT scans), sound (ultrasound), magnetism (MRI), radioactive pharmaceuticals (nuclear medicine: SPECT, PET) or light (endoscopy, OCT) to assess the current condition of an organ or tissue and can monitor a patient over time over time for diagnostic and treatment evaluation. Biomedical image processing is a very broad field, it covers biomedical signal gathering, image forming, picture processing, and image display to medical diagnosis based on features extracted from images. Image reconstruction and modeling techniques allow instant processing of 2D signals to create 3D images.

Keywords—Biomedical, machine learning, Images

I. INTRODUCTION

Image processing:

 \succ Image processing is the process of transforming an image into a digital form and performing certain operations to get some useful information from it.

> The image processing system usually treats all images as 2D signals when applying certain predetermined signal processing methods.

Image processing systems include electronic document management, presentation graphics and multimedia systems.

Elements involved in image processing:

- Adjust contrast and brightness
- Remasking-Correcting misregistered images
- Pixel shifting

> Edge enhancement-Edges of the vessels can be enhanced so that small details can be made more obvious.

- ➤ Image Zoom
- > Land masking-A small amount of original image is added into the subtracted image.

> Noise Smoothing-operates by reducing the statistical fluctuations in each pixel by averaging the pixel with its closet neighbors.

There are five main types of image processing:

- > Visualization Find objects that are not visible in the image.
- > Recognition Distinguish or detect objects in the image.
- Sharpening and restoration Create an enhanced image from the original image.
- > Pattern recognition Measure the various patterns around the objects in the image.

Retrieval - Browse and search images from a large database of digital images that are similar to the original image.

Benefits of Image Processing:

> The digital image can be made available in any desired format (improved image, X-Ray, photo negative, etc).

- > Information can be processed and extracted from images for machine interpretation.
- > The pixels in the image can be manipulated to any desired density and contrast.
- ➤ Images can be stored and retrieved easily.

When the original CT scanner was invented, it literally took hours to acquire one slice of image data and more than 24 hours to reconstruct that data into a single image. Today, this acquisition and reconstruction occurs in less than a second. Depending on the imaging technique and what diagnosis is being considered, image processing and analysis can be used to determine the diameter, volume and vasculature of a tumour or organ; flow parameters of blood or other fluids and microscopic changes that have yet to raise any otherwise discernible flags.

Magnetic resonance imaging (**MRI**) is a medical imaging technique used in radiology to form pictures of the organisms of the body and the physiological processes of the body.

> MRI scanners use strong magnetic fields, magnetic field gradients, and radio waves to generate images of the organs in the body.

- > It is a non-invasive imaging technology that produces three dimensional detailed anatomical images.
- > It is often used for disease detection, diagnosis, and treatment monitoring.
- > MRI scanners are particularly well suited to image the non-bony parts or soft tissues of the body.

AUTHOR	TITLE	ALGORITHMS	CONCLUSION		
Bhagyashri H.	Brain Tumour analysis	Support Vector Machine	1)The aim of study is to		
Asodekar, Sonal A.	Based on Shape	Random Forest	analyze the effectiveness of		
Gore, A. D. Thakar	Features of MRI using		shape feature in classification		
	Machine Learning		of brain tumor as benign and		
			malignant tumor.		
			2)Proposed method achieved		
			86.66% accuracy with random		
			forest algorithm. Applications		
			related to this approach are like		
			object detection, medical,		
			classification, security etc.		
MohdShahajad,	Features extraction for	Support Vector Machine	1)The presented results prove		
Deepak Gambhir,	classification of brain		that with increase in no. of		
Rashmi Gandhi	tumour MRI images		features the percentage		
	using support vector		accuracy of SVM classifier		
	machine		increases, however beyond		

II. LITERATURE SURVEY

			certain no. of features, the
			accuracy stagnates.
			2)Pre-processing of image to
			compute the GLCM features
			also plays an important role in
			the final accuracy in system
Xiaoxiao Li, Yuan	BrainGNN:	BrainGNN	1)BrainGNN takes graphs built
Zhouc,	Interpretable Brain	Clustering	from neuroimages as inputs,
NichaDvornek	Graph Neural Network		and then outputs prediction
	for fMRI Analysis		results together with
			interpretation results.
			2) With the built-in
			interpretability, BrainGNN not
			only performs better on
			prediction than alternative
			methods, but also detects
			salient brain regions associated
			with predictions and discovers
			brain community patterns.
			3)Overall, our model shows
			superiority over alternative
			graph learning and machine
			learning classification models
Wasudeo Rahane	Lung Cancer Detection	Support Vector Machine	1)In our proposed system we
Himali Dalvi.	Using Image	2. app	are describing the lungs cancer
Yamini Magar.	Processing and		and its stages using different
Anjali Kalane.	Machine Learning		image processing and machine
Satvaieet Iondhale	HealthCare		learning algorithms such as
			gravscale conversion, noise
			reduction and binarization.
			2) For pre-processing stages.
			median filter and segmentation
			gives accurate result.
			3) For grouping purpose
			Support Vector Machine
			(SVM) classifier classifies the
			positive and negative samples
			of lung cancer images in this
			system.
Lalaatika Sharma	Classification and	PCA-LDA	1)The images cant be used for
Gauray	development of tool	WND	machine learning directly so
Gunta Varun	for heart diseases(MRI		CellProfiler is used for feature
Iaiswal	images)using machine		extraction 2)In the projected
t ulb mul	learning		study CP-CHARM is cast-off
	iourning		for the model building using
			MRI images with this model
			80-85% accuracy is achieved
			with the 25 image set and 97%
			accuracy by merging imaging
			using Amide
			using Annue.

www.ijcrt.org	© 2023 IJCRT Volume 11, Issue 11 November 2023 ISSN: 2320-2882		
HebaMohsen, EI-	A Machine Learning	1)Feedback pulse-coupled	1)This technique first applies
Sayed Ahmed EI-	Technique for MRI	neural network	feedback pulse-coupled neural
Dahshan, Abdel-	Brain Images	2)Discrete wavelet	network (FPCNN) as a front-
Badeeh M. Salem		transform	end processor for image
		3)Principal component	segmentation and detecting the
		analysis	region of interest (ROI) and
		4)Feed forward	then employs the discrete
		backpropagation neural	wavelet transform (DWT) to
		network	extract features from MRI
			images
			2)The principal component
			analysis (PCA) is performed to
			reduce the dimensionality of
			the wavelet coefficients which
			results in a more efficient and
			accurate classifier
Dinggang	Deep Learning in	Convolutional Neural	1)Applying deep learning to
Shen,Guorong Wu	Medical Image	Networks (CNN)	investigate the underlying
and Heung-Il Suk.	A <mark>nalysis</mark>		patterns in images such as
			fMRI, due to the black-box like
			characteristics of deep models.
			2)While the data-driven feature
			representations, especially in
			an unsupervised manner,
			helped enhance accuracy, it is
			also desirable to devise a new
			methodological architecture.
Xiaoqing	Advances in Deep	Convolutional Neural	1)The recent progress of CNN-
Liu <mark>,Kunlun Ga</mark> o	Learning-Based	Networks (CNN)	based deep learning techniques
and Bo Liu.	Medical Image		in clinical applications
	Analysis		including image classification,
			object detection, segmentation,
			and registration.
			2)More detailed image
			analysis-based diagnostic
			applications in four major
			systems of the human body
			involving the nervous system,
			the cardiovascular system, the
			digestive system, and the
			skeletal system were reviewed.
			3)State-of-the art works for
			different diseases including
			brain diseases, cardiac diseases,
			and liver diseases, as well as
			orthopedic trauma, are
			discussed
Pravin R.K	MRI IMAGE BASED	Convolutional Neural	1) The texture based skills are
shirsagar, Anil N.	BRAIN TUMOR	Networks (CNN) and	extracted the use of grey
Rakhonde and	DETECTION USING	FCM algorithm.	diploma co-incidence matrix.

www.ijcrt.org	© 2023 IJCRT Volume 11, Issue 11 November 2023 ISSN: 2320-2882			
Pranav	MACHINE		2)The texture abilities of the	
Chippalkatti.	LEARNING		picture Considered at some	
			stage in this proposed paintings	
			include electricity, evaluation,	
			correlation, homogeneity.	
Hasnae Zerouaoui1	Reviewing Machine	Convolutional Neural	1)The use of ML and IP for BC	
& Ali Idri1	Learning and Image	Networks (CNN)	is gaining more interest in the	
	Processing Based	Multi-layer Perceptron	last years by researchers, and	
	Decision-Making	(MLP)	the number of published	
	Systems for Breast	Deep Neural Networks	articles has significantly	
	Cancer Imaging	(DNN)	increased since 2015.	
			Moreover, the majority of the	
			papers where published in	
			journals (71%) which indicates	
			a high level of maturity within	
			the community.	
			2)The SLR found out that the	
			diagnosis is the most	
			investigated BC task with 73%,	
			followed by screening (17%),	
			treatment and prognosis with	
			6% each.	

III. MACHINE LEARNING ALGORITHM DISCUSSION

Machine learning and deep learning algorithms have achieved better results in biomedical image classification. Examples are:

- Support Vector Machine(SVM)
- Neural network
- Convolutional Neural Network Artificial Neural Networks

IV. TOOLS

JCR

- Python
- Photoshop
- Matlab
- Matlab Simulink
- FPGA-Virtex 2 Pro

APPLICATIONS

- 1) Clinical neurology:
- Segmentation and classification
- Measuring volumes of brain structures
- ➢ Multiple sclerosis, neurodegeneracy, stroke, ...
- 2) Cardiology:
- > Either need to image fast, or deal with heart motion
- 3) Cancer:
- Breast, colorectal, liver, prostate, …
- 4) Soft tissue damage:
- ➤ Cartilage, ligaments, etc..

V. REFERENCES

- Ismael, Mustafa R., and Ikhlas Abdel-Qader. "Brain Tumor Classification via Statistical Features and Back-Propagation Neural Network." 2018 IEEE International Conference on Electro/Information Technology (EIT). IEEE, 2018Patel, MitishaNarottambhai, and PurviTandel. "A Survey on Feature Extraction Techniques for Shape based Object Recognition." Image 137.6 (2016)
- 2. Sehgal, Aastha, et al. "Automatic brain tumor segmentation and extraction in MR images." Advances in Signal Processing (CASP), Conference on. IEEE, 2016
- 3. SunitSivaraj, Dr. B. Surendiran, Hariharan. M et al. "MRI Brain Tumour Image Retrieval Using Low Level Features and High Level Semantics"IEEE (2015).
- 4. B.A.Miah and M.A.Yousuf, "Detection of Lung cancer from CT image using Image Processing and Neural network",2 nd International Conference on Electrical Engineering and Information and Communication Technology(ICEEICT),May 2015.
- 5. L. Nanni and M. Melucci, Combination of projectors, standard texture descriptors and bag of features for classifying images, Neurocomputing, vol. 173, pp. 16021614, 2016.
- E. A. S. El-Dahshan, H. M. Mohsen, K. Revett, and A. B. M. Salem, Computer-aided diagnosis of human brain tumor through MRI: A survey and a new algorithm, Expert Syst. Appl., vol. 41, no. 11, pp. 55265545, 2014.
- 7. Jackway, P.T., 1996. Gradient watersheds in morphological scale-space. IEEE Transactions on Image Processing, 5(6), pp.913-921.

