ISSN: 2320-2882

IJCRT.ORG

INTERNATIONAL JOURNAL OF CREATIVE RESEARCH THOUGHTS (IJCRT)

An International Open Access, Peer-reviewed, Refereed Journal

Video Segmentation And Summarization Using Machine Learning - Detailed Survey

Dr. H S Prasantha Professor Department of Computer Science and Engineering K.S. Institute of Technology, Bangalore, India

Abstract: Many deep learning research works have shown successful results, primarily focusing on three data types: images, speech, and text. In addition, deep learning has also been successfully applied to communication signals/packets. Widely used applications of these kind of data are image classification, speech recognition, regression problem, pattern recognition, and text sentiment classification. The most fascinating of all is video data. Video data is also interesting for research from the perspective of its big size and dimension. Millions of video data are uploaded every day on YouTube; thus, it becomes a rich repository and empowered artificial intelligence (AI) research

Keywords- Video, machine learning, Segmentation, Summarization

1. Introduction

Millions of video data are uploaded every day on YouTube; thus, it becomes a rich repository and empowered artificial intelligence (AI) research. However, video data is challenging to analyse and process because of its large file sizes and complexity despite having rich data. Research on video processing using AI gained popularity after many AI algorithms were developed for Image processing for various applications. Video data is one of the most popular choices of users of different platforms like Twitter, YouTube, Facebook, etc. also the fastest-growing data type nowadays. However, most video representation and summarization approaches that have appeared in the literature relies on static arrangements of key frames. A set of key frames is selected from each video shot and arranged in a variety of pictorial summary forms within the video frame. Such compact representations of video provide viewers with a global picture of the entire video content on a single screen. This is often seen in our google browser search results therefore giving us an idea of what the video might contain

© 2023 IJCRT | Volume 11, Issue 11 November 2023 | ISSN: 2320-2882 2. LITERATURE SURVEY

Author	Title	Methodology used	Remarks
Xue Yang, Zhicheng Wei	Video segmentation and summarization based on Genetic Algorithm", 2011 4th International Congress on Image and Signal Processing	Binary Genatic Algorithm (BGA)	In this paper author compared BGA with DGA(Digital GA) and he obtained a result that is, BGA outperforms the DGA in convergence speed and possibility to get global optimum.Furthermore, he compared BGA with uniform approach and he concluded that BGA method can capture optimal result.In future research he will analyse the effect of parameter and fitness function
A. Sasithradevi, S.	Video object	Issue tackling mode,	and fitness function Author did a detailed
Mohamed MansoorRoomi , M. Mareeswari	segmentation: A survey", 2016 International Conference on Communication and Electronics Systems (ICCES)	Complexity reduction mode, Inference mode	survey on recent researches in object segment domain. This paper categorises video object segmentation algorithm into three partsIssue tackling model, reduction mode,Inference mode. By considering merits and demerits, future Research path are provided.
Hyuncheol Kim, Inhye Yoon, TaeYong Kim, Joonki Paik	Video summarization using feature dissimilarity" 2016 International Conference on Electronics, Information, and Communications.	Iterative Dissimilarity Shrinkage	With this paper author shows that the proposed method generates the appropriate adaptation to the motion energy and produces video segmentation which have more motion energy and represent a significant event.
Hui Chen, Cuihua Li	"A practical method for video scene segmentation", 2010 3rd International Conference on Computer Science and	Twin-threshold method, HLS colour distribution property	In this paper author have proposed a general framework of a practical method for scene segmentation. He followed three steps

www.ijcrt.org		Volume 11, Issue 11 Novem	ber 2023 155N: 2320-2662
	Information		detect raw shots, remove
	Technology		redundant shots ,calculate
			each shot's top 25
			domain colours and
			correlation between
			different shots.
			In future author well
			focus on how to combine
			other information in the
			video that is sound for
			sound is a key factor
			despite the sharp
			difference between shots'
			colour information.
			Finally he would find the
			semantic correlation
			between different shot to
			get more satisfying
			results.
MayuOtani, Yuta	"Video Summarization	Deep Neural Networks	This paper presents a
Nakashima, EsaRahtu,	using Deep Semantic	(DNN), Convolutional	video summarization
JanneHeikkil ⁻ a, and	Features"	Neural networks (CNNs)	technique for an
Naoka <mark>zu</mark> Yokoya			Internet video to
			provide a quick way to
			overview its content.
			They have evaluated
			the video summaries
			using the SumMe
			dataset as well as
			baseline approaches.
			The results
			demonstrated the
			advantages of
			incorporating our deep
			semantic features in a
			video summarization
Hofiz Durhan IIII N	Wideo Summeri-ti-	Speatral Clustering V	technique.
Hafiz Burhan UlHaq, M.	"Video Summarization	Spectral Clustering, K-	This research work
Asif, Maaz Bin Ahmad.	Techniques: A Review"	means clustering.	conducted highlights a
	, International Journal		brief review of video
	of Scientific		summarization,
	Technology,		classifications, and
	November 2020		methods. Various
			techniques have been
			discussed and compared,
			to guide the user in the
			selection of the most
			suitable technique. The
			two analyses are
			performed in this paper.

www.ijcrt.org	© 2023 IJCRT	Volume 11, Issue 11 Novem	ber 2023 ISSN: 2320-2882
			The first analysis is based
			on approaches,
			applications, datasets, and
			pros/cons/findings.
TomohitoShiraiwa ,	"Efficient Video	FCSN and vsLSTM.	This paper investigated
Hajime Nobuhara	Summarization Based	Segmentation models	the use of semantic
	on Semantic	such as U-Net and	segmentation models for
	Segmentation Model"	SegNe	video summarization.
	2021 IEEE 10th Global		The three-layer U-Net
	Conference on		and SegNet Basic were
	Consumer Electronics		explored and their results
	(GCCE)		outperformed existing
			methods in terms of the
			F-measure, or accuracy.
			In addition to further
			improving the accuracy,
			we plan to improve the
			model and algorithms to
			reduce the computation
			time and to perform video
			summarization reflecting the users preferences.
Amir H. Meghdadi,	"Interactive Exploration	Video visual analytics	System that can help
PourangIrani.	of Surveillance Video	system sViSIT algorithm.	users search a video and
r ourangnam.	through Action Shot	system svisit argonulli.	find targets in a fast and
	Summarization and		efficient way. Showed
100 Aug. 100	Trajectory		that except for very short
	Visualization"		videos using sViSIT is
	2013 IEEE Transactions		considerably faster than
	on Visualization and		waiting for the target
	Computer Graphics		event to happen in a 5x
			fast-forward video. This
			is expected as the power
			of our system is due to its
			ability to summarize
			movements individually
			and apply spatiotemporal
			filters to limit the search
			results
Bhattacharya, Koustav	"Video Summarization:	Genetic algorithm and	To sum up they have
and Chaudhury,	A Machine Learning	linkage algorithm	worked on the use of
Santanu&Basak, Jayanta	Based Approach"		learning in Content
	ICVGIP 2004,		Based Retrieval in the
	Proceedings of the		domain of videos. For
	Fourth Indian		exploring video analysis
	Conference on		tasks like video filtering
	Computer Vision,		or shot summarization,
	Graphics & Image		the video is first divided
	Processing, Kolkata,		into shots. Then
	India, December 16-18,		described a novel

www.i	jcrt.org
	joi dioi g

© 2023 IJCRT | Volume 11, Issue 11 November 2023 | ISSN: 2320-2882

	2004		approach to the design of
			a content based filter
			which was based on
			learning the ICs of
			critical windows in a
			shot.
V. Sharma, M. Gupta, A.	"Video Processing	CNN (convolution neural	Deep learning
Kumar and D. Mishra	Using Deep Learning	network)	techniques can be used
	Techniques: A	DNN (deep neural	robustly for video
	Systematic Literature	network)	understanding, video
	Review",	RNN (recurrent neural	classification, video
	IEEE Access .	network)	analysis, action
		Hybrid approach	recognition, and pose
			recognition. Significant
			work has also been done
			on video processing
			using deep learning for
			human action
			recognition, behaviour
			analysis, and crowd
			anomaly detection. This
			paper contributes a
			systematic literature
			review to investigate the
			up-to-date research in
			video processing using
			deep learning
			techniques.

3. MACHINE LEARNING ALGORITHMS

Genetic Algorithm

- A genetic algorithm (GA) is a heuristic search algorithm used to solve search and optimization problems. This algorithm is a subset of evolutionary algorithms, which are used in computation. Genetic algorithms employ the concept of genetics and natural selection to provide solutions to problems.
- These algorithms have better intelligence than random search algorithms because they use historical data to take the search to the best performing region within the solution space.

Iterative Threshold Algorithm

- Thresholding is the most widely used image segmentation method. Thresholding algorithm has histogram bimodal method(also known as the mode method), Otsu method and the iterative threshold method, etc.
- Histogram bimodal method is used to some simple images, which appear two separate peaks in histograms, and then the troughs which correspond gray value between two peaks was selected as threshold value.

Twin threshold approach

- This approach allows to reduce false detections caused by steep intensity fluctuations (due to noise, motion, visual effects, etc.), as well as to retrieve dissolves caught up in other visual effects or scene movements.
- Additionally, to overcome the restraint visual continuity of the animated movies, fading-out and fading-in pixels are selected at intensity level from a reduced time window of only several frames

Spectral clustering

- Communities of nodes (i.e. data points) Clustering is one of the most widely used techniques for exploratory data analysis, with applications ranging from statistics, computer science, biology to social sciences or psychology.
- Spectral clustering is an EDA technique that reduces complex multidimensional datasets into clusters of similar data in rarer dimensions.
- The main outline is to cluster the all spectrum of unorganized data points into multiple groups based upon their uniqueness "Spectral clustering is one of the most popular forms of multivariate statistical analysis" 'Spectral Clustering uses the connectivity approach to clustering', wherein that are connected or immediately next to each other are identified in a graph.
- The nodes are then mapped to a low-dimensional space that can be easily segregated to form clusters. Spectral Clustering uses information from the eigenvalues (spectrum) of special matrices (i.e. Affinity Matrix, Degree Matrix and Laplacian Matrix) derived from the graph or the data set.

K-Means clustering algorithm

K-Means clustering algorithm is defined as an unsupervised learning method having an iterative process in which the dataset are grouped into k number of predefined non-overlapping clusters or subgroups, making the inner points of the cluster as similar as possible while trying to keep the clusters at distinct space it allocates the data points to a cluster so that the sum of the squared distance between the clusters centroid and the data point is at a minimum, at this position the centroid of the cluster is the arithmetic mean of the data points that are in the clusters.

Linkage Algorithm

It determines the distance between sets of observations as a function of the pairwise distance between observations.

- In **Single Linkage**, the distance between two clusters is the minimum distance between members of the two clusters.
- In **Complete Linkage**, the distance between two clusters is the maximum distance between members of the two clusters.
- In **Average Linkage**, the distance between two clusters is the average of all distances between members of the two clusters.
- In Centroid Linkage, the distance between two clusters is is the distance between their centroids.

4. TOOLS

- VsLSTM which can perform video summarization with higher accuracy than a normal bidirectional LSTM.
- A three-layer U-Net, a model used for semantic segmentation and SegNet Basic.
- GoogLeNet to extract features for each frame of the video image.
- SumMe and TvSum which are data sets for video summarization.
- FSCN to compare the means and standard deviations of the F-scores generated .
- ViSIT(Video Summarization and Interaction Tool), a novel video visual analytics system for interactive and analytic exploration of video data.

5. APPLICATIONS

- I. A video visual analytics system (sViSIT) that can help users search a video and find targets in a fast and efficient way.
- II. Consumer video applications, Image-Video databases management and surveillance.
- III. In organizing and indexing large volumes of video data to facilitate efficient and effective use of these resources for internal use.
- IV. A model for finding low-level surprise at every location in video streams.
- V. Deals with problem of categorizing a given videos sequence into one or predefined video genre.

6. REFERENCES

- Dr. H S Prasantha, "NOVEL APPROACH FOR IMAGE COMPRESSION USING MODIFIED SVD", International Journal of Creative Research Thoughts (IJCRT), Volume 8, Issue 8, Page 2234-2243, Aug 2020
- Dr. H S Prasantha, "IMPLEMENTATION OF IMAGE COMPRESSION USING FAST COMPUTATION OF SVD ON DM642", International Journal of Creative Research Thoughts (IJCRT), Volume 8, Issue 8, Page 2364-2368, Aug 2020
- Prasantha, H, H Shashidhara, K N B Murthy, and M Venkatesh. "Performance Evaluation of H.264 Decoder on Different Processors." International Journal on Computer Science & Engineering. 1.5 (2010): 1768. Web. 7 Apr. 2013.
- H. S. Prasantha, H. L. Shashidhara, and K. N. Balasubramanya Murthy. Image compression using SVD. In Proceedings of the International Conference on Computational Intelligence and Multimedia Applications, pages 143–145. IEEE Computer Society, 2007.
- 5. Gunasheela K S, H S Prasantha, "Compressive sensing for image compression: survey of algorithms", Proceedings of Emerging Research in Computing, Information, Communication and Applications, ERCICA, Springer publication, Bengaluru, 2018
- 6. K N Shruthi, B M Shashank, Y. SaiKrishna Saketh, H.S Prasantha and S. Sandya, "Comparison Analysis Of A Biomedical Image For Compression Using Various Transform Coding Techniques", IEEE, pp. 297-303, 2016