IJCRT.ORG

ISSN: 2320-2882

INTERNATIONAL JOURNAL OF CREATIVE **RESEARCH THOUGHTS (IJCRT)**

An International Open Access, Peer-reviewed, Refereed Journal

Stock Market Prediction Using Machine Learning Approaches - Detailed Survey

Dr. H S Prasantha **Professor** Department of Computer Science and Engineering K.S. Institute of Technology, Bangalore, India

Abstract: Stock market prediction and analysis are some of the most difficult jobs to complete. There are numerous causes for this, including market volatility and a variety of other dependent and independent variables that influence the value of a certain stock in the market. These variables make it extremely difficult for any stock market expert to anticipate the rise and fall of the market with great precision. However, with the introduction of Machine Learning and its strong algorithms, the most recent market research and Stock Market Prediction advancements have begun to include such approaches in analysing stock market data. The Opening Value of the stock, the Highest and Lowest values of that stock on the same days, as well as the Closing Value at the end of the day, are all indicated for each date. Furthermore, the total volume of the stocks in the market is provided, with this information, it is up to the job of a Machine Learning Data Scientist to look at the data and develop different algorithms that may 1JCR help in finding appropriate stocks values.

Keywords- Stock market, machine learning, Prediction

1. Introduction

A stock, also known as an equity is a security that represents the ownership of a fraction of a corporation. This entitles the owner of the stock to a proportion of the corporation's assets and profits equal to how much stock they own. Units of stock are called "shares." Corporations issue (sell) stock to raise funds to operate their businesses. The holder of stock (a shareholder) buys a piece of the corporation and, depending on the type of shares held, may have a claim to part of its assets and earnings. In other words, a shareholder is now an owner of the issuing company. Ownership is determined by the number of shares a person owns relative to the number of outstanding shares. For example, if a company has 1,000 shares of stock outstanding and one person owns 100 shares, that person would own and have a claim to 10% of the company's assets and earnings. Indian Stock Market (i) Bombay Stock Exchange. It is the largest stock exchange in India. SENSEX is the index of BSE. Sensex or S&P BSE Sensex index, is the benchmark index of the Bombay Stock Exchange (BSE). (ii) National Stock Exchange NIFTY is the index of NSE. The NIFTY 50 index is National Stock Exchange of India's benchmark broad based stock market index for the Indian equity market. It represents the weighted average of 50 Indian company stocks in 12 sectors and is one of the two main stock indices used in India. The NIFTY 50 index is a free float market capitalization weighted index. More than 7000 companies are listed on BSE and NSE.

2. LITERATURE SURVEY

Title	Objective	Algorithm	Remark
Analysing the Trend	Analysing the Trend	Random Forest, SVM,	The prediction
of Stock Marketand	of Stock Market	Neural Network	accuracy of the stock
Evaluate the	using real time data		exchange has been
performance of	and Evaluate the		analysed and
Market Prediction	performance of		improved to 94.17%
using Machine	Market Prediction		using machine
Learning Approach	using various		learning algorithms.
Learning Approach	Machine Learning		Neural networks yield
	algorithms		the best accuracy.
Machine Learning	Compare various	SVM, Improved	It was concluded that
Algorithms in Stock	ML algorithms for	Levenbergmarquardt	Improved Levenberg
Market Prediction	stock market	Algorithm, Self-	Marquardt is one of
Warket Flediction			the best tools as it has
	prediction	adapting Variant PSO-	
		Elman Neural	the highest level of
		Network, Linear	accuracy and
		Regression.	efficiency with less
			memory consumption
			in the short term but in
	Y Y		the long run but along
			with more
			complexities, the PSO-
	■ =		Elman model is better
			suited.
Improving traditional	Enhance the stock	Decision Tree	SVR provides better
Stock Market	market prediction	Regressor, Random	results compared to
Prediction Algorithms	ability of various	Forest Regressor and	other algorithms and
using Covid-19	common prediction	Support Vector	inclusion of number of
Analysis	models by taking	Regressor (SVR).	cases and the number
	into account the	10	of deaths in a country
	factors related to		due to COVID-19
	COVID-19		improves the
			prediction ability of
			the models.
Study of Machine	Compare various	Random Forest	Random forest
learning Algorithms	ML algorithms for	Classifier, Support	classifier is the best
for Stock Market	stock market	Vector Machine, K-	algorithm with an
Prediction	prediction	nearest neighbour and	accuracy of 80.7%.
		Logistic Regression	
Stock Closing Price	Compare various	Artificial Neural	Artificial Neural
Prediction using	ML models to	Network and Random	Network is the best
Machine Learning	predict stock closing	Forest Classifier	algorithm to predict
Techniques	prices		stock closing prices.
The study making	Compare several	Random forest	Machine learning deep
performance of	machine	classifier,	and reinforcement
various machine	learning algorithms	SVM,MLP,machine,	learning algorithms for
learning algorithms	to predict stock price	deep	predicting stock
favouring investors in	trends	and reinforcement	movement for making
generating profits.	and compare the	learning algorithm	an investment decision

www.ijcrt.org	© 2023 IJCRT	Volume 11, Issue 11 Novem	ber 2023 ISSN: 2320-2882
	outcomes.		is instrumental and
			reliable for traders.
Study of machine	Compare various	Adaptive stock	Adaptive stock
learning algorithms	ML algorithms for	technical indicators,	technique is the best
focusing on making	stock market	computational	and prediction
investment decisions	prediction.	efficient functional	accuracy becomes
		link artificial neural	more accurate and
		network, (ANN) on	reliable.
		technical indicators	
Decision support	Framework	The proposed decision	decision support
framework for the	recognizes patterns,	support framework	framework for the
stock market using	maximizes the profit	aims to build an AI-	stock market based on
deep reinforcement	obtained and	based on deep	deep reinforcement
learning	provides	reinforcement learning	learning to support
	recommendations to	techniques.	stock market investors.
	the investors.		
Stock Price	Aims to predict the	LSTM, a higher	The study attempted to
Prognosticator using	prices of shares more	accurate algorithm in	predict accurately the
Machine Learning	precisely, accurately	giving out a future	next day price of the
Techniques	using special	stock price forecasting	listed share. Hence,
	algorithms using	is proposed.	our active day trading
	RNNby improvising		strategy outperforms
	back propagation.		when compared to
			other papers in the
			Present domain of
			study.
Research on Stock	This paper proposes	Convolutional Neural	The CNN stock price
Price Prediction	a stock price	Network(CNN) which	forecasting method in
Method Based on	prediction model	is a type of feed	this paper has high
Convolutional Neural	based on convolution	forward artificial	accuracy and high
Network	neural network,	neural network.	application value. Can
	which has obvious		be used for any other
	self-adaptability and		stock exchange where
	self-learning ability.		a sufficient amount of
			daily historical prices

3. TOOLS

- Python programming higher installed in windows 10 or any distribution of Linux.
- Arduino IDE software
- Training of an ANN model using Coding Source in MATLAB.
- Python open source library called TensorFlow1 is used in order to train the neural network.

4. RESEARCH GAP

Taking in more parameters allows a model to make more complex computations and hence give better results at the price of memory and time consumption. The local datasets used had limitations in the parameters that could have been used. In future, more complex datasets with more training and testing

is available.

parameters for input could be used making the methods even better by reducing memory wastage, computation time and while giving an even more real precision with the prediction.

5. REFERENCES

- 1. L. Mathanprasad and M. Gunasekaran, "Analysing the Trend of Stock Marketand Evaluate the performance of Market Prediction using Machine Learning Approach," 2022 International Conference on Advances in Computing, Communication and Applied Informatics (ACCAI), 2022, pp. 1-9, doi: 10.1109/ACCAI53970.2022.9752616.
- 2. Potdar, J., Mathew, R. (2020). "Machine Learning Algorithms in Stock Market Prediction". In: Pandian, A., Senjyu, T., Islam, S., Wang, H. (eds) Proceeding of the International Conference on Computer Networks, Big Data and IoT (ICCBI 2018). ICCBI 2018. Lecture Notes on Data Engineering and Communications Technologies, vol 31. Springer, Cham. https://doi.org/10.1007/978-3-030-24643-3_23
- 3. R. Jindal, N. Bansal, N. Chawla and S. Singhal, "*Improving Traditional Stock Market Prediction Algorithms using Covid-19 Analysis*," 2021 International Conference on Emerging Smart Computing and Informatics (ESCI), 2021, pp. 374-379, doi: 10.1109/ESCI50559.2021.9396887.
- 4. Ashwini Pathak, Sakshi Pathak, "Study of Machine learning Algorithms for Stock Market Prediction", International Journal of Engineering Research & Technology (IJERT), ISSN: 2278-0181, Vol. 9 Issue 06, June-2020
- 5. MeharVijh, DeekshaChandola, Vinay AnandTikkiwal, Arun Kumar, "Stock Closing Price Prediction using Machine Learning Techniques", International Conference on Computational Intelligence and Data Science (ICCIDS 2019), ISSN: 1877-0509
- 6. VIKALPA, The Journal for Decision Makers, "The study making performance of various machine learning algorithms favouring investors in generating profits",
- 7. Akhilesh Prasad and ArumugamSeetharaman, "Importance of Machine Learning in Making Investment Decision in Stock Market", The Journal for Decision Makers, Research Article, Vol 46, Issue 4, 2021, November 23, 202, doi:/10.1177/02560909211059992.
- 8. V. Brandão, J. P. C. L. da Costa, B. J. G. Praciano, R. T. de Sousa and F. L. L. de Mendonça, "Decision support framework for the stock market using deep reinforcement learning," 2020 Workshop on Communication Networks and Power Systems (WCNPS), 2020, pp. 1-6, doi: 10.1109/WCNPS50723.2020.9263712.
- 9. S. N. T. Nishitha, S. Bano, G. G. Reddy, P. Arja and G. L. Niharika, "Stock Price Prognosticator using Machine Learning Techniques," 2020 4th International Conference on Electronics, Communication and Aerospace Technology (ICECA), 2020, pp. 1-7, doi: 10.1109/ICECA49313.2020.9297644.
- 10. S. N. T. Nishitha, S. Bano, G. G. Reddy, P. Arja and G. L. Niharika, "Stock Price Prognosticator using Machine Learning Techniques," 2020 4th International Conference on Electronics, Communication and Aerospace Technology (ICECA), 2020, pp. 1-7, doi: 10.1109/ICECA49313.2020.9297644.
- 11. Dr. H S Prasantha, "NOVEL APPROACH FOR IMAGE COMPRESSION USING MODIFIED SVD", International Journal of Creative Research Thoughts (IJCRT), Volume 8, Issue 8, Page 2234-2243, Aug 2020
- 12. Dr. H S Prasantha, "IMPLEMENTATION OF IMAGE COMPRESSION USING FAST COMPUTATION OF SVD ON DM642", International Journal of Creative Research Thoughts (IJCRT), Volume 8, Issue 8, Page 2364-2368, Aug 2020
- 13. Prasantha, H, H Shashidhara, K N B Murthy, and M Venkatesh. "Performance Evaluation of H.264 Decoder on Different Processors." International Journal on Computer Science & Engineering. 1.5 (2010): 1768. Web. 7 Apr. 2013.
- 14. H. S. Prasantha, H. L. Shashidhara, and K. N. Balasubramanya Murthy. Image compression using SVD. In Proceedings of the International Conference on Computational Intelligence and Multimedia Applications, pages 143–145. IEEE Computer Society, 2007.

- 15. Gunasheela K S, H S Prasantha, "Compressive sensing for image compression: survey of algorithms", Proceedings of Emerging Research in Computing, Information, Communication and Applications, ERCICA, Springer publication, Bengaluru, 2018
- 16. K N Shruthi, B M Shashank, Y. SaiKrishna Saketh, H.S Prasantha and S. Sandya, "Comparison Analysis Of A Biomedical Image For Compression Using Various Transform Coding Techniques", IEEE, pp. 297-303, 2016

