RT.ORG

ISSN: 2320-2882

INTERNATIONAL JOURNAL OF CREATIVE **RESEARCH THOUGHTS (IJCRT)**

An International Open Access, Peer-reviewed, Refereed Journal

Detailed Survey of Speech Recognition using Machine Learning Algorithms

Dr. H S Prasantha **Professor** Department of Computer Science and Engineering K.S. Institute of Technology, Bangalore, India

Abstract: Speech recognition is the process of converting human sound signals into words or instructions. The research of speech recognition involves many subject areas such as computer technology, artificial intelligence, digital signal processing, pattern recognition, acoustics, linguistics, and cognitive science. Our speech is made up of many frequencies at the same time. The actual signal is really a sum of all those frequencies stuck together. The conversation or speech that is captured by a microphone or a telephone is converted from acoustic signal to a set of words in speech recognition.

Keywords- speech, machine learning, recognition

1. Introduction

The structure of the speech recognition system includes a feature extraction algorithm, acoustic model, and language model and search algorithm. The major components and topics within the space of ASR are:

- feature extraction
- acoustic modelling
- pronunciation modelling
- language modelling
- Hypothesis search.

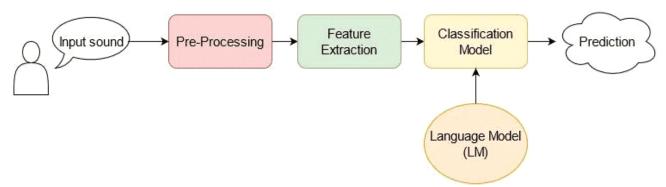


Figure 1: Speech Recognition Structure

Speech recognition has become a practical concept, which is now being implemented in different languages around the world and it is used in real-world human language applications, such as information recovery. Speech processing has a close relationship with computer linguistics, human-machine interaction, natural language processing, and psycholinguistics. Speech recognition can be extended to recognize speakers, exploiting the information present in the speech and various methods including exploiting from the excitation source.

2. SPEECH PROCESSING USING MACHINE LEARNING:

The human brain, like machine learning technology, is essential for speech recognition to interact with machines to humans. The machine learning methodology is used in a lot of assignments through the feature learning capability. The data modelling capability results attained supplementary than the performance of normal learning methodology. So, the speech signal recognition is based on a machine-learning algorithm to merge the speech features and attributes. As a result of voice as a bio-metric implication, the speech signal is converted into a significant element of speech improvement.

Machine learning consists of supervised and unsupervised learning among which supervised learning is used for the speech recognition objectives. Machine learning (ML) software can make measurements of spoken words through a set of numbers that represent the speech signal. There are several acoustic modelling machine learning techniques like Hidden Markov Model (HMM), Gaussian Mixture Model (GMM), Deep Neural Network (DNN), KNN algorithm, Naive Bayse algorithm.

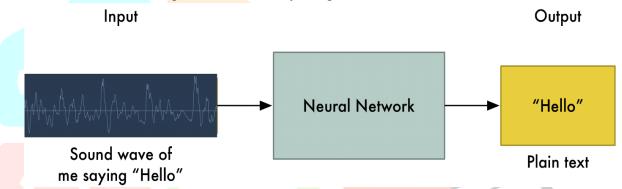


Figure 2: Sound Wave detection using a Deep Neural Network

3. LITERATURE SURVEY

TITLE	AUTHORS	ML	REMARKS
		METHODOLOGY	
Machine	Li Deng and Xiao Li, IEEE	Maximum	To develop automatic systems
Learning		likelihood linear	capable of generalizing from
Paradigms for		regression(MLLR),	previously observed examples,
Speech		Hidden Markov	by constructing or learning
Recognition:		model (HMM),	functional dependencies
An Overview		Bayesian-sensing	between arbitrary input and
		HMM	output domains.
Machine	JayashreePadmanabhan& Melvin	Gaussian mixture	Markov models used in
Learning in	Jose Johnson Premkumar	models, Hidden	prediction problems.
Automatic		Markov models,	determining the probability of
Speech		Machine learning,	the model in generating the
Recognition:		Support vector	sequence.
A Survey		machines,	Determining the most likely
		SVM/HMM hybrid	state sequence that generates
		systems,	the outcome is decoding, using
		MLP/HMM	the Viterbi algorithm; updating
		systems,	the model parameters for

www.ijcrt.org			
			maximizing the likelihood of
			occurrence is training, adopted
			by Baum-welch algorithm.
Applications	AravindGanapathiraju, Jonathan	Support vector	SVM automatically controls
of Support	E. Hamaker, Joseph Picone	machines(SVM),	generalization and
Vector		aussian mixture	parameterization as part of the
Machines to		models(GMM),	overall optimization process.
Speech		Hidden Markov	The Switchboard (SWB) task,
Recognition		models(HMM),	which is based on two-way
		Expectation-	telephone recordings of
		Maximization (EM)	conversational speech, is very
		algorithm,	different from the AD task in
		Empirical risk	terms of acoustic confusability
		minimization	and classifier complexity
		(ERM)	
Speech	Wael Ben Amara, Amani Touihri,	Artificial neural	The proposed method in this
Recognition	Salma Hamza.	network	research is a way to detect
for COVID-		(ANN),Support	individuals carrying the virus
19 Keywords		Vector Machine	based on the list of symptoms
Using		(SVM).	they provide, but in practice
Machine			this should be done very
Learning			precisely in order to avoid false
			outputs and especially false
			negatives.
An	Tribhuwan Kumar, Rajesh K,	Speech Recognition	The speech signal recognition
Evaluation on	KalyanChakravarthi, SumanRajest	with RNN.	is based on a machine-learning
Speech			algorithm to merge the speech
Recognition			features and attributes. As a
Technology			result of voice as a bio-metric
based on			implication, the speech signal
Machine			is converted into a significant
Learning			element of speech
			improvement. The
			experimental result shows the
			improved proposed speech
			recognition algorithms
			accuracy with another state of
			the art method.
Machine	Dr. Yogesh Kumar, Dr. Manish	Support Vector	Performance analysis based on
Learning	Mahajan	Machine (SVM)	different machine learning
Based Speech		classifier.	techniques for different
Emotions		Convolution Neural	languages. In the paper, the
Recognition		network (CNN)	detailed review on KNN,
System		classifier. K-	SVM, CNN classifier for
		Nearest Neighbours	speech emotion recognition
		(KNN).	system is used. The overall aim
			is to work on the emotions
			generated by humans using the
			above mentioned algorithms.
	1	I	

www.ijcrt.org	© 2023 IJCRT	Volume 11, Issue 11 N	lovember 2023 ISSN: 2320-2882
Speech	VineetVashisht, Satya Prakash	Speech computer or	Voice detection with real-time
Recognition	yadav, Aditya Kumar pandey	speech synthesizer,	predictive voice translation
Using		text-to-	device optimization using
Machine		speech(TTS)	multimodal vector sources of
Learning		system,Neural	information and functionality
		Machine	was presented. The key
		Translation(NMT)	production and commitment of
			this work is the manner in
			which external information
			input is used to increase the
			system's accuracy, thereby
			allowing a notable
			improvement, compared to the
			processes of nature. In
			addition, a new initiative has
			been launched from an
			analytical standpoint, while
			remaining a realistic one, and
			was discussed.
Convolutional	Ossama Abdel-Hamid, Abdel-	Hybrid ANN-HMM	This paper describes how to
Neural	rahman Mohamed, Hui Jiang, Li	framework,	apply CNNs to speech
Networks for	Deng, Gerald Penn, and Dong Yu	Convolution Neural	recognition in a novel way,
Speech		network (CNN)	such that the CNN's structure
Recognition		classifier.	directly accommodates some
			types of speech variability.
			This Hybrid CNN-HMM
			approch delegates temporal
			variability to HMM, while
			convolving along the frequency
			axis creates a degree of
			invariance to small frequency
			shifts, which normally occur in
			actual speech signals due to
			speakerdifferences.
"Controlling	Harsh D Shah, Amit Sundas,	A hidden Markov	The proposed system is
Email System	Shabnam Sharma.	model (HMM)	intended to build a framework
Using Audio			for control email over voice
with Speech			and reduce the effort of manual
Recognition			typing the mail along with
and Text to			saving time. The powerful
Speech" 2021			advantage of the HMM
			approach combined with
			MFCC features is better suited
			to these criteria and provides
			strong recognition results
"Sign	Malli Mahesh	Support vector	In this paper the user can speak
Languages to	Chandra,RajkumarS,LakshmiSutha	machines (SVMs)	English or some Indian
Speech	Kumar.	·	languages through the gestures
Conversion			using proposed prototype.
Prototype			Around 22 gestures in ASL and
	1		<u> </u>

www.ijcrt.org	© 2023 IJCRT	Volume 11, Issue 11 November 2023 ISSN: 2320-2882	
using the		11 gestures in ISL are trained	
SVM		and tested successfully. An	
Classifier"		accuracy of 100% is achieved	
		for ISL database with 25% test	
		data and 75% training data.	
		And an accuracy of 98.91% is	
		achieved for ASL database	
		with 25% test data and 75%	
		training data	
	using the SVM	using the SVM	SVM Classifier" and tested successfully. An accuracy of 100% is achieved for ISL database with 25% test data and 75% training data. And an accuracy of 98.91% is achieved for ASL database with 25% test data and 75%

4. TOOLS

- Python programming higher installed in windows 10 or any distribution of Linux.
- Arduino IDE software
- Hardware:MPU6050 sensor
- HC05 Bluetooth module.
- Training of an ANN model using Coding Source in MATLAB.
- Python open source library called TensorFlow1 is used in order to train the neural network.

5. APPLICATIONS

- The first successful use of DNN-based acoustic models for large vocabulary continuous speech recognition (LVCSR) employed Bing voice search data. The system obtained a sentence accuracy of 69.6% on the test set, compared to 63.8% obtained by a GMM/HMM baseline.
- Used in Speech emotion recognition (SER) which is a type of speech recognition whose purpose is to establish a speaker's underlying emotional state by analyzing their voice.
- Popular apps such as Amazon's Alexa, Apple's Siri and Google Maps employ speech recognition.
- Voice search: a digital assistant to help surf the web and search through to help accomplish different tasks.
- Smart home devices leverage speech recognition technology to carry out household tasks, such as, turning on the lights, boiling water, adjusting the thermostat, and more.
- Speech recognition enables hands free computing. Its use cases include, but are not limited to: Writing emails, Composing a document on Google Docs, Automatic closed captioning with speech recognition (i.e. YouTube), Automatic translation, And sending texts.
- Healthcare: Doctors and nurses leverage dictation applications to capture and log patient diagnoses and treatment notes.
- Speech recognition technology has a couple of applications in sales. It can help a call center transcribe thousands of phone calls between customers and agents to identify common call patterns and issues.
- Security: As technology integrates into our daily lives, security protocols are an increasing priority. Voice-based authentication adds a viable level of security.

6. REFERENCES

- 1. Deng, L., & Li, X. (2013). "Machine Learning Paradigms for Speech Recognition: An Overview." IEEE Transactions on Audio, Speech, and Language Processing, 21(5), 1060–1089.
- 2. Padmanabhan, J., & Johnson Premkumar, M. J. (2015). "Machine Learning in Automatic Speech Recognition: A Survey." IETE Technical Review, 32(4), 240–251.
- 3. Ganapathiraju, A., Hamaker, J., &Picone, J. (2004). "Applications of Support Vector Machines to Speech Recognition." IEEE Transactions on Signal Processing.
- 4. Wael Ben Amara, Amani Touihri2, Salma Hamza "Speech Recognition for COVID-19 Keywords Using Machine Learning" Vol.8, Issue.4, pp.51-57, August (2020).

- 5. Tribhuwan Kumar, Rajesh K, Kalyan Chakravarthi, Suman Rajest "An Evaluation on Speech Recognition Technology based on Machine Learning" Webology, Volume 19, Number 1, January, 2022.
- 6. Dr. Yogesh Kumar, Dr. Manish Mahajan "Machine Learning Based Speech Emotions Recognition System" VOLUME 8, ISSUE 07, JULY 2019.
- 7. VineetVashisht, Satya Prakash yadav, Aditya Kumar pandey. "Speech Recognition Using Machine Learning". Article in IEIE Transactions on Smart Processing and Computing · June 2021
- 8. Ossama Abdel-Hamid, Abdel-rahman Mohamed, Hui Jiang, Li Deng, Gerald Penn, and Dong Yu, "Convolutional Neural Networks for Speech Recognition", IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 22, NO. 10, OCTOBER 2014
- 9. Harsh D Shah , Amit Sundas, Shabnam Sharma," Controlling Email System Using Audio with Speech Recognition and Text to Speech". 2021 9th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions) (ICRITO) Amity University, Noida, India. Sep 3-4, 2021
- 10. Chandra, M. M., Rajkumar, S., & Kumar, L. S. (2019). "Sign Languages to Speech Conversion Prototype using the SVM Classifier." TENCON 2019 - 2019 IEEE Region 10 Conference (TENCON).
- 11. Dr. H S Prasantha, "NOVEL APPROACH FOR IMAGE COMPRESSION USING MODIFIED SVD", International Journal of Creative Research Thoughts (IJCRT), Volume 8, Issue 8, Page 2234-2243, Aug 2020
- 12. Dr. H S Prasantha, "IMPLEMENTATION OF IMAGE COMPRESSION USING FAST COMPUTATION OF SVD ON DM642", International Journal of Creative Research Thoughts (IJCRT), Volume 8, Issue 8, Page 2364-2368, Aug 2020
- 13. Prasantha, H, H Shashidhara, K N B Murthy, and M Venkatesh. "Performance Evaluation of H.264 Decoder on Different Processors." International Journal on Computer Science & Engineering. 1.5 (2010): 1768. Web. 7 Apr. 2013.
- 14. H. S. Prasantha, H. L. Shashidhara, and K. N. Balasubramanya Murthy. Image compression using SVD. In Proceedings of the International Conference on Computational Intelligence and Multimedia Applications, pages 143–145. IEEE Computer Society, 2007.
- 15. Gunasheela K S, H S Prasantha, "Compressive sensing for image compression: survey of algorithms", Proceedings of Emerging Research in Computing, Information, Communication and Applications, ERCICA, Springer publication, Bengaluru, 2018
- 16. K N Shruthi, B M Shashank, Y. SaiKrishna Saketh, H.S Prasantha and S. Sandya, "Comparison Analysis Of A Biomedical Image For Compression Using Various Transform Coding Techniques", IEEE, pp. 297-303, 2016