ISSN: 2320-2882

IJCRT.ORG

INTERNATIONAL JOURNAL OF CREATIVE RESEARCH THOUGHTS (IJCRT)

An International Open Access, Peer-reviewed, Refereed Journal

PHYTOMEDICINE: A NEW FIELD TO TREAT DISEASES

Aakash Bhatnagar¹, Aqsa Shamsi¹, Mohd.Adil Tahseen², Anurag Pathak³, Anjali Gangwar³

¹ B.Pharm, Mohammad Ali Jauhar University, Rampur, Uttar Pradesh

² PhD Research Scholar, Shobit University, Saharanpur, Uttar Pradesh

³Assistant Professor, S.R. Institute of Pharmacy, Bareilly, Uttar Pradesh

ABSTRACT

After receiving an unsatisfactory reaction to drugs, people in the West are increasingly turning to phytomedicine as a significant alternative therapeutic option. In fact, patients who reside in Eastern nations with a long history of traditional medicine frequently use herbal drug prescriptions, as the majority of the population finds it difficult to acquire Western medications. The effectiveness and potential adverse effects of herbal treatments have long been a source of debate among clinicians in the West. Except for Allopathy, all of India's officially recognized health systems—Ayurveda, Yoga, Unani, Siddha, Homeopathy, and Naturopathy—include a significant portion of herbal medications. Numerous Institutes/Universities have conducted extensive basic and clinical research using cutting-edge techniques on medicinal plants and their formulations. Therefore, information on the scientific basis of these plants will hopefully contribute to a greater understanding of Ayurveda and Indian herbal remedies worldwide.

Key Words: Phytomedicine, Traditional Medicine, Ayurveda, Unani, herbal remedies, formulations

INTRODUCTION

Phytomedicine derived from herbal sources is in high demand in the industrialized world due to its ability to heal a wide range of infectious disorders. Natural medicine is gaining increasing interest from both practical and scientific perspectives; however, the mechanism of action of traditional herbal remedies and similar natural items is much more complex than the mechanistic elucidation of a single bioactive ingredient. Because of their safety and lack of adverse effects, they have demonstrated their efficacy in basic health care. They also provide treatments for age-related illnesses such as memory loss, osteoporosis, immunological problems, etc. The newfound popularity is owing to their nearly miraculous success with cases that allopathic doctors had written off as hopeless, as well as their side-effect-free therapy. The integration of phytomedicine into the health system should be designed in such a way that there is no conflict between traditional and contemporary healthcare systems. (1)

The Indian subcontinent has a huge storehouse of medicinal plants utilized in traditional medical treatments, which also serves as a rich source of information. Several plant species are used to cure various ailments in indigenous systems such as Siddha, Ayurveda, Unani, and Allopathy. Around 20,000 medicinal plant species have been reported in India, however over 500 traditional groups employ roughly 800 plant species to treat various ailments. Because it has no side effects, plant-derived medicine is used as the first line of primary health care for 80% of the world's population. Finally, instead of using plants harvested in the wild, the trend toward domestication, biotechnological studies, and genetic improvement of medicinal plants will provide significant benefits, as it will be possible to obtain uniform and high-quality raw materials, which are critical to the efficacy and safety of herbal drugs. (2)

Phytochemicals are plant-based bioactive molecules that plants manufacture to defend themselves. Carotenoids, polyphenols, isoprenoids, phytosterols, saponins, dietary fibers, and specific polysaccharides are some of the important phytochemicals. These phytochemicals are powerful antioxidants with antibacterial, antidiarrheal, anthelmintic, antiallergic, antispasmodic, and antiviral properties. They also aid in gene transcription regulation, gap junction communication, immunity, and protection against lung and prostate cancer. The increased emphasis on translational research has broadened the scope of functional meals. (3)

ALKALOIDS AS THERAPEUTIC COMPOUND FROM PLANTS

Alkaloids constitute important secondary metabolites known to have medicinal activities. The chemicals have been divided into several groups based on their biosynthetic precursor and heterocyclic ring system, including indole, piperidine, tropane, purine, pyrrolizidine, imidazole, quinolozidine, isoquinoline, and pyrrolidine alkaloids. Alkaloids can prevent the beginning of numerous degenerative illnesses by scavenging free radicals or interacting with the oxidative reaction catalyst. Several research have been conducted to evaluate alkaloids from various plants for their diverse spectrum of medicinal actions. (4)

Class of	Alkaloids	Plants source	Diseases
alkaloids			
Isoquinoline	Berberine	Hydrastis canadensis	Alzheimer's disease
alkaloids		Coptis chinensis	Parkinson's disease
		Berberis vulgaris	Huntington disease
		Berberis aristata	Epilepsy
	Salsoline	Salsola oppositefolia	Alzheimer's disease
	Galantamine	Galanthus nivalis Leucojum aestivum	Alzheimer's disease
Indole alkaloids	Geissospermine	Geissospermum vellosii	Alzheimer's disease
Pyrroloindole	Physostigmine	Physostigma venosum	Alzheimer's disease
alkaloids			Parkinson's disease
Piperidine	Piperine	Piper nigrum	Alzheimer's disease
alkaloids		Piper longum	Parkinson's disease

ROLE OF ALKALOIDS IN NEURODEGENERATIVE DISORDERS (5)

			Epilepsy
Aporphine	Nantenine	fruit of Nandina domestica	Epilepsy
alkaloids			
Pyridine	Nicotine	Nicotiana tobaccum	Alzheimer's disease
alkaloids	Arecoline	Areca catechu nut	Schizophrenia
Methylxanthine	Caffeine	Coffea arabica	Alzheimer's disease
derivatives			Parkinson's disease
Lycopodium	Huperzine A	Huperzia serrate	Alzheimer's disease
alkaloid			
Indole β-	Harmine	Peganum harmala	Alzheimer's disease
carboline			

ALKALOIDS: THERAPEUTIC POTENTIAL AGAINST HUMAN CORONAVIRUSES

Alkaloids have been reported to be broad-spectrum coronavirus inhibitors in both animals and humans. While the methods by which HHT, oxysophoridine and tylophorine, and tylophorine analogs limit CoV replication are unknown, lycorine affects host factors to disrupt viral replication. Tetrandrine, fangchinoline, and cepharanthine, on the other hand, reduce TGEV replication by blocking virus translocation through the endolysosomal system and acting in tandem with a JAK-family inhibitor for comprehensive anti-CoV efficacy. (6)

EXAMPLES OF ALKALOIDS ACTIVE AGAINST CORONAVIRUSES. (6)

Alkaloid	Coronavirus	Main Finding
Aikaiolu	Corollavirus	
Homoharringtonine	SARS-CoV-2	EC ₅₀ 2.10 μ M (reduction in viral copy
(HHT)		number)
		$EC_{50} 2.55 \mu M$ (reduction in infectious virus)
	MHV, BCoV-L9	Inhibits viral replication
	and	IC ₅₀ 11 nM
	HECoV-4408	
	PEDV	IC_{50} 0.112 μM in Vero E6 cells
		Decreases viral RNA levels in vivo in
		piglets
		Specific blockage of viral replication
Lycorine	SARS-CoV	IC ₅₀ 15.7 nM
Oxysophoridine	SARS-CoV-2	$EC_{50} 0.18 \ \mu M$ and $CC_{50} > 40 \ \mu M$
Tetrandrine,	MERS-CoV	Block MERS-pseudovirus translocation
Fangchinoline, and	HCoV-OC43	through the endolysosomal system
Cepharanthine		Inhibited HCoV-OC43-induced cell death
		in the early stage of infection and reduced

		virus replication by suppressing the		
		expression of viral S and N proteins.		
Tylophorine and	SARS-CoV,	Anti-CoV replication activity; blocks virus-		
Tylophorine analogs	MHV, and TGEV	induced apoptosis and subsequent		
	SARS-CoV,	cytopathic effect in cells in vitro		
	MERS-CoV, and	EC_{50} values for the natural and synthetic		
	TGEV	tylophorine compounds 8 to 1468 nM and 5		
		to 340 nM in ST and Vero 76 cells,		
		respectively		
		Targets viral RNA, thereby inhibiting		
		TGEV replication		
		Acts jointly with JAK family inhibitor for		
		comprehensive anti-CoV		
Indigo	SAR <mark>S-C</mark> oV	Inhibits the cleavage activities of the		
		3CLpro		
		IC ₅₀ values for cell-free and cell-based		
		assays of 300 µM and 752 µM, respectively		
Tryptanthrin and	HCo <mark>V-NL6</mark> 3	Reduces viral yield: tryptanthrin (IC ₅₀ 1.52		
Indigodole B		μM); indigodole B (2.60 μM)		
		Virucidal activity: tryptanthrin (IC ₅₀ = 0.06		
		μ M); indigodole B (IC ₅₀ = 2.09 μ M)		
		Tryptanthrin blocks viral RNA genome		
		synthesis and the activity of the papain-like		
		protease 2		

ALKALOIDS WITH ANTI-INFLAMMATORY ACTIVITY.

The most researched classes for anti-inflammatory action were isoquinoline, quinoline, and indole alkaloids. Berberine was the most researched isoquinoline, active in practically all of the experimental paradigms. This chemical is found in *Berberis* and *Coptis*. It has a number of pharmacologic actions, including the suppression of TPA-induced mouse ear edema, indicating that this alkaloid may have anti-inflammatory potential. Warifteine, a bisbenzylisoquinoline alkaloid isolated from Cissampelos sympodialis, was found to inhibit eosinophil recruitment, eotaxin and cisteinyl leukotriene production in the pleural cavities and lungs of allergic mice, as well as the production of nitric oxide mediators. These findings emphasize warifteine potential as an anti-allergic and anti-inflammatory agent. (7)

Substance and (Source)	Assay	Organism	Dose
		tested	
Acanthine, oxy	In vivo, 5-HT-Induced pedal	Mouse	200 mg/Kg
(Berberis crataegina)	edema		
Ailanthamide	In vivo, inhibitory activity		$IC_{50} \le 5.34$
(Zanthoxylum ailanthoides)	on superoxide generation by	Human	µg/mL
	human neutrophils		
Akuammigine, pseudo	In vivo, carrageenan-induced	Rat	1 mg/Kg
(Picralima nitida)	pedal edema		
Ligustrazine	In vitro, macrophages	Human	400 mg/L
(Ligusticum chuanxiong)		adult	
	In vivo, Cotton pellet	Mouse	50 mg/Kg
	granuloma		
Amide, (2E,4E)-N-isobutyl-	In vivo, inhibitory activity	Human	$IC_{50} \leq 5.34$
6-oxohepta2,4-dien	on superoxide generation by		µg/mL
(Zanthoxylum ailanthoi <mark>des)</mark>	hu <mark>man neu</mark> trop <mark>hils</mark>		
Brucine	In vivo, carrageenan-induced	Rat	15 mg/Kg
(Strychnos nux-vomica)	pedal edema		
Caulerpin	In vivo, capsaicin-induced	Mouse	100 µmol/Kg
(Caulerpa racemosa)	ear edema		
Colchicine	In humans	Human	oral 0.5 mg/
(Colchicum autumnale)		adult	person
Evolitrine	In vivo, carrageenan-induced	Rat	20 mg/Kg
(Evodia l <mark>unuanke</mark> da)	rat paw edema		
Persicaside	In vitro, inhibitory activity	Rat	40 µg/mL
(Prunus persica)	on NO production		
	In vitro, inhibitory activity	Rat	40 µg/mL
	on PGE2 production		

ALKALOIDS WITH ANTI-INFLAMMATORY ACTIVITY. (7)

ALKALOIDS FOR DIABETES MANAGEMENT

Metformin, one of the most extensively used diabetes medications, developed from *Galegine officinalis* is widely used in the treatment of type 2 diabetes. Similarly, anti-diabetic phytochemicals such as flavonoids such as quercetin, alkaloids such as berberine, terpenes such as thymoquinone, and phenylpropanoids such as chlorogenic acid are employed. These phytochemicals have comparable modes of action, which are mediated via DPPH-4 activity by reducing α -glucosidase enzyme activity, inhibiting α -amylase, and enhancing glucose absorption by the body's adipose and muscle cells. These phytochemicals have shown encouraging results in a

variety of in vitro and in vivo investigations; however, because of the scarcity of data on the toxicity profile of these components, additional research into risk-benefit ratios is required.

Phytoconstituent Mechanism of action (Alkaloids) Avarol Inhibition of α -glucosidase enzyme can help in delaying the digestion of carbohydrates, thereby reducing the levels of Dysidea avara glucose in the blood IC₅₀ value for various avarol derivatives: 0.05–0.12 mM Berberine Berberine is known as an AMP-activated protein kinase Berberis (AMPK) activator. Its insulin-independent hypoglycemic Tinospora cordifolia effect is related to the inhibition of mitochondrial function, stimulation of glycolysis, and activation of the AMPK pathway, which inhibits alpha-glucosidase. **IC**₅₀ value: 0.68 μM Casuarine 6-o-a-glucoside It acts by stimulating insulin secretion, inhibiting intestinal α -Syzygium malaccense amylase activity, and increasing muscle basal glucose uptake along with antioxidant activity. IC₅₀ value of casuarine compounds: $9.7 \mu M$ Catharanthine, Vindoline, and Vindoline exhibits an insulinotropic effect by enhancing glucose-stimulated insulin secretion (GSIS). It was also found Vindolinine Catharanthus roseus to increase plasma insulin in STZ-induced diabetic rats. In a recent study, vindoline reduced the voltage-dependent outward potassium currents through Kv2.1 inhibition. The combined effects resulted in fasting plasma glucose, improved oral glucose tolerance, and lowered serum glycated hemoglobin (HbA1c) and triglyceride (TG) levels. IC 50 values: 59.6 μ M, >30 μ M, and >50 μ g/mL, respectively. In an in vitro study, calystegine B2 inhibited mainly sucrose Calystegine B2 Nicandra physalodes activity by β -glucosidase alpha inhibitor and intestinal glucose absorption IC₅₀ value: range 4.6 µM Harmane, Norharmane, Stimulatory action on insulin secretion by the activation of Pinoline imidazoline-I binding sites in the pancreatic cell. IC₅₀ values: 5 µM; 51–58 µM and 0.11 µM Tribulus terrestris

ALKALOIDAL PHYTOCONSTITUENTS USED FOR THE MANAGEMENT OF DIABETES MELLITUS

Jambosine	Reduces free radicals, improves the functioning of beta-		
Syzygium cumini	pancreatic cells, and upregulates the PPAR γ and PPAR α .		
	IC ₅₀ value: 2.5 nM		
Jatrorrhizine, Magnoflorine,	Lowering of blood glucose, increase in insulin sensitivity,		
Palmatine, Tembetarine	inhibition of a-amylase and a-glucosidase activities, direct		
Tinospora cordifolia	effect on carbohydrate metabolism		
	IC ₅₀ value (derivatives): ~1.05 μ M		
Lepidine and semilepidine	Reduction in oxidative damage and modulation of antioxidant		
Lepidium sativum	enzymes, potentiation of pancreatic secretion of insulin from		
	the remaining islet β cells		
	IC ₅₀ value: $1.42 \pm 0.04 \text{ mg/mL}$		
Mahanimbine	Inhibits alpha-amylase and alpha-glucosidase		
Murraya koenigii	IC ₅₀ value: ranges from 3.5 to 64 μ M		
Swerchirin	Lowers blood glucose level by stimulating insulin release from		
Swertia chirayita	islets of Langerhans		
	IC ₅₀ value: 20 μM		

ALKALOIDS AS ANTICANCER AGENTS

Alkaloids show strong antitumor efficacy against a variety of malignancies. They are a chemically heterogeneous group of approximately 2500 basic nitrogen containing substances, found in about 15 percent of all vascular land plants and in more than 150 plant families, widely distributed in higher plants particularly the dicotyledons (in abundance in the families Apocynaceae, Papaveraceae, Papilionaceae, Ranunculaceae, Rubiaceae, Rutaceae and Solanaceae), but less frequently in lower plants and fungi. *Catharanthus roseus* (Apocynaceae) heralded a new era in anticancer drug development with the isolation of the first important anticancer alkaloid, vinblastine and vincristine.

Vinblastine and vincristine are generally used in conjunction with other cancer chemotherapeutic medications to treat a range of malignancies, including leukemias, lymphomas, advanced testicular cancer, breast and lung cancer, and Kaposi's sarcoma.

Camptothecin, which was isolated from *Camptotheca acuminata* (Nyssaceae), has anticancer action in vitro and in animals. Topotecan and irinotecan are semi-synthetic derivatives of camptothecin that are used to treat ovarian and small-cell lung tumors, as well as colorectal malignancies. Naucleaorals A and B were discovered to be a pair of novel isomeric indole alkaloids isolated from the roots of *Nauclea orientalis*. It causes cytotoxicity in HeLa and KB cells.

Liriodenine, an isoquinoline alkaloid derived from *Cananga odorata* (Annonaceae) has powerful cytotoxic, antiproliferative, and apoptosis-inducing actions on human lung cancer cells. It was discovered to be a strong inhibitor of topoisomerase II both in vivo and in vitro. Clivorine, a pyrrolizidine alkaloid derived from *Ligularia hodgsonii* has antiproliferative action in human normal liver L-02 cells via inducing apoptosis. Harmina harmane, harmaline, harmalol, and tryptoline, beta carboline alkaloids derived from *Peganum harmala* showed

anticancer action by blocking DNA topoisomerases and interfering with DNA synthesis. It was the most active molecule, with specific efficacy against lung ($GI_{50} = 0.06 \mu M$), ovarian, and renal cell lines.

Punarnavine, an alkaloid derived from the plant *Boerhaavia diffusa* has antimetastatic action in B16F-10 melanoma cells in C57BL/6 mice. It was found to be effective in inhibiting the metastatic development of B16F-10 melanoma cells in mice. *Arisarum vulgarae* contains the alkaloid bgugaine. In the HepG2 cell line, it causes DNA damage. Stemona alkaloids were isolated from the roots of *Stemona aphylla* and *S. burkillii*. They have a significant function as a (P-glycoprotein) modulator in vitro and may be useful in the treatment of multidrug-resistant malignancies. (9)

PHENOLIC COMPOUNDS FROM PLANTS AS PHYTOMEDICINE

Phenolic compounds are a large class of plant secondary metabolites that are widely distributed in higher plant organs such as vegetables, fruits, spices, grains, legumes, and nuts6, and play important roles in a variety of physiological processes such as plant quality, coloring, flavor, and stress resistance. The inherent antioxidant, antibacterial, anticarcinogenic, and anti-inflammatory effects of phenolic compounds have recently been a focus of research and application. Flavonoids, phenolic acids, tannins, stilbenes, and lignans are the primary families of phenolic compounds, and they all have a similar chemical structure that consists of an aromatic ring with one or more hydroxyl substituents.

Multiple biological effects of phenolic compounds against various illnesses and disorders have received considerable attention in recent years. Such compounds have anticarcinogenic, antithrombotic, antiulcer, antiartherogenic, antiallergenic, anti-inflammatory, antioxidant, immune-modulating, antibacterial, cardioprotective, and analgesic properties. Numerous research studies have been conducted to identify possible active substances as well as to investigate the underlying processes for avoiding and even correcting disease damage. However, further study is needed to understand the mechanisms of action of these active phenolic compounds, as well as their in vivo effects, bioavailability, and efficacy.

Delphinidin has the ability to inhibit cell growth and promote caspase-mediated apoptosis, resulting in tumor size reduction, as demonstrated by in-vitro human cell lines and in-vivo murine model assays, 7-hydroxymatairesinol has the ability to inhibit tumor growth and stop tumor cell proliferation, as demonstrated by in-vivo murine models assay. Caffeic acid inhibited tumor cell growth in the LNCap cell lines experiment, but Ferulic acid inhibited tumor size in the PC-3 cell lines assay, inevitably leading to apoptosis.

Cyanidin-3-rutinoside and cyanidin-3-glucoside have demonstrated dose-dependent tumor inhibitory impact in in-vitro human cell lines assay, p-coumaric acid has shown tumor inhibitory action in A549 assay, and Quercetin in PEG 400 liposomes has Tumor inhibitory activity that leads to apoptosis has been observed in in-vivo mouse models. Cinnamic acid inhibited tumor development in the HT-29 cell line experiment. Gallic acid has been shown to reduce tumor size in the MDA-MB-231 cell line experiment, while Caffeic acid has been shown to suppress tumor development and induce apoptosis in the MDA-HB-231 assay.

Dicoumarol can improve the drug's anticancer efficacy, as revealed by an in-vitro human cell line assay using the MDA-HB-231 assay. Protocatechuic acid and ferulic acid can inhibit MMP and slow tumor cell development. Cinnamic acid derivatives, such as CAA and CAPE, can block MMP-9 and MMP-2 activities, preventing hepatoma cell proliferation and metastasis. As a result, phenolic derivatives with MMP inhibitory properties can prevent malignant cells from spreading metastatically. Polyphenolic substances, such as Ellagic acid (EA), can reduce Bcl-2 expression in breast cancer while increasing p21 levels via phosphatidylinositol-3, 4, 5-triphosphate-3-phosphatase, resulting in tumor death. Flavonoids can also cause biomolecular damage in vitro via peroxynitrite, block carcinogenic metabolite activation, cell-cycle arrest by apoptosis, and limit proliferation and angiogenesis. Apigenin reduces cell adhesion and invasion, lowers diolepoxide 2 forms, inhibits mitochondrial proton F0F1-AT Pase/ ATP synthesis, inhibits prostaglandin and IL-6, 8 productions, and suppresses the expression of intercellular adhesion molecule-1 (ICAM-1). Antimutagenic and anti-angiogenesis properties have been demonstrated for genistein, luteolin, quercetin, and silymarin.¹⁰⁻¹¹

Polyphenols have antibacterial action against a wide range of microorganisms. Among polyphenols, flavanols, flavonols, and phenolic acids have the highest antibacterial activity due to their ability to inhibit bacterial virulence factors such as enzymes and toxins, interact with the cytoplasmic membrane, suppress biofilm formation, and work in tandem with antibiotics. The time-kill test or MBC (minimal bactericidal concentration) tests revealed that substances such as epigallocatechin gallate, galangin, and 3-O-octanoyl-(+)-catechin promoted bacterial cell eradication in MRSA-YK, *S. aureus* NCTC 6571, and EMRSA-16 strains. 3-O-octanoyl- (-)-epicatechin, on the other hand, causes pseudo multicellular aggregates to develop in both methicillin-resistant and susceptible *S. aureus* strains. A similar effect has been reported in the presence of epicatechin gallate, however, it is unclear whether real or pseudo multicellular aggregates were formed in the presence of flavonoids. The aggregates generated are thought to represent a single colony-forming unit (CFU), giving the erroneous appearance of a reduction in the number of CFUs. This sort of action clearly shows that flavonoids do not have bactericidal activity, but that aggregate formation is responsible for the lower number of CFUs.¹²

Phenolic Compound	Examined Strains	Synergism with	
		Antibiotics	
Galangin	S. aureus NCTC 6571	Penicillin G	
Quercetin	MRSA clinical strains	Rifampicin	
		Ciprofloxacin	
Kaempferol	MRSA clinical strains	Rifampicin	
		Ciprofloxacin	
		Fluoroquinolone	
(-)-Epigallocatechin	MRSA and MSSA clinical and	Oxacillin	
gallate	standard strains	Ampicillin/Sulbactam	
		Penicillin	
		Imipenem	
		Panipenem	
		Meropenem	

ANTISTAPHYLOCOCCAL PROPERTIES OF FLAVONOLS, FLAVANOLS AND PHENOLIC ACIDS.¹²

		Tetracyclin
		Oxytetracycline
Epicatechin gallate	MRSA clinical strains	β-lactams
		Ampicillin
		Ampicillin/Sulbactam
		Cefazolin
		Cefepime
		Imipenem/Cilastatin
(+)-catechin	MRSA clinical strains	Ampicillin
		Ampicillin/Sulbactam
		Cefazolin
		Cefepime
		Imipenem/Cilastatin
Catechin hydrate	MRSA and MSSA clinical and	Clindamycin
	standard strains	Erythromycin
Protocatechuic	MRSA and MSSA clinical and	Clindamycin
acid ethyl ester	standard strains	
Caffeic acid	MRSA and MSSA clinical and	Clindamycin
	Erythromycin	
		Cefoxitin

BIOACTIVE CONSTITUENTS OF ESSENTIAL OILS

Terpenes, also known as isoprenoids, are the most abundant and diverse category of naturally occurring substances found mostly in plants, while bigger groups of terpenes such as sterols and squalene can be found in animals. They are in charge of plant scent, flavor, and pigment. Terpenes and terpenoids are a grouping of isoprene units, which are naturally occurring, volatile, unsaturated 5-carbon cyclic chemicals that emit a perfume or flavor to protect themselves from creatures that feed on particular types of plants. Terpenes have several roles in plants, including thermoprotection, signaling activities, pigments, taste, and solvents, but they also have medical benefits.¹³

Several studies have demonstrated that certain terpenes could reduce inflammation symptoms by decreasing the release of pro-inflammatory cytokines. For example, the nuclear transcription factor-kappa B, interleukin 1, and the tumor necrosis factor-alpha. certain terpenes (D-Limonene, α -Phellandrene, Terpinolene, Borneol, Linalool, and triterpene glycosides) can lower the production of TNF- α , IL-1, and IL-6 in the Raw 264.7 macrophages cell line. Experiments utilizing in vivo models such as Swiss mice, Wistar rats, and albino mice (BALB/C) yielded similar results. ¹⁴

Non-alcoholic fatty liver disease (NAFLD), a widespread metabolic illness globally, causes a health burden as well as economic issues. Terpenoids have been shown to effectively prevent and treat FALD by improving lipid metabolism, inhibiting oxidative stress, inhibiting inflammation, and preventing fibrosis. They help to treat

NAFLD by modulating lipid metabolism, insulin resistance, oxidative stress, and inflammation. Terpenoid therapy primarily targets the AMPK, PPARs, Nrf-2, and SIRT 1 pathways.¹⁵

Classification	Carbon	Species produced	Medicinal uses
	atoms	from	
Monoterpenes	C ₁₀	Quercus ilex	Fragrances, repellent
Sesquiterpenes	C ₁₅	Helianthus annuus	Treat malaria, treat bacterial infections, and migraines
Diterpenes	C ₂₀	Euphorbia, salvia miltiorrhiza	Anti-inflammatory, cardiovascular diseases
Triterpenes	C ₃₀	Centella asiatica	Wound healing, increases circulation

DIFFERENT TYPES OF TERPENES AND THEIR PROPERTIES¹³

TERPENES ADDED IN ANTI-INSECT FORMULATIONS¹³

Terpene type	Function			
Limonene	This is strongly preferred. Limonene enhances the properties of other			
	terpenes			
Beta-ionone	Antibacterial and antifungal properties			
Geraniol	Similar level activity like beta-ionone. Geraniol possesses antibacterial and			
	antifungal properties.			
Eugenol	This is also the active terpene in clove oil. This possesses anesthetic			
	properties which help with the itching that comes with bug bites. Also,			
	contain antibacterial and antifungal properties			
Myrcene	Possesses antifungal, antibacterial properties			

THE EFFECTS AND MECHANISMS OF TERPENOIDS ON NAFLD¹⁴

Compound	Animal/Cell	Dosage	Target/Pathways/Mechanis	Effects
	Model	(mg/kg/d;	m	
		μM/24 h)		
Paeoniflorin	HFD-induced	0.05% in	Activation of the	Reduced body weight,
	NAFLD mice	diet	CD36/AMPK signaling	improved insulin
			pathway	resistance, anti-
				inflammatory, inhibition
				of lipid accumulation,
				attenuated hepatic
				adipose infiltration
	Fructose-	10, 20, 40	Activation of the AMPK	Inhibition of hepatic lipid
	induced		signaling pathway	accumulation, improved

	metabolic			insulin resistance,
	syndrome rats			inhibition of hepatic
				steatosis, inhibition of
				hepatic lipogenesis,
				promotion of fatty acid
				oxidation
	HFD-induced	20, 60,	Inhibition of the ROCK/NF-	Anti-inflammatory,
	NAFLD rats	100	кB signaling pathway	ameliorated hepatic
				steatosis, reduced lipids
Geniposide	(PA + OA)-	0, 65, 130,	Upregulation of the	Inhibition of lipid
	induced	260, 390,	Nrf2/AMPK/mTOR signaling	accumulation, anti-
	HepG2 cells	520	pathways	oxidative stress, anti-
		µmol/L/24		inflammatory
		h		
	HFD-induced	25, 50,	Increased expression of	Ameliorated hepatic
	NAFLD rats	100	PPARa gene	steatosis, anti-oxidative
				stress
Genipin	HFD-induced	5, 20; 5,	Regulation of the miR-142a-	Reduced body weight
	NAFLD	20	5p/SREBP-1c axis	gain, increased
	mice; (PA +			locomotor activity,
	OA)-induced			improved insulin
	c <mark>ells prim</mark> ary			resistance, alleviated
	hepatocytes			hyperlipidemia,
	of mice			inhibition of lipid
				accumulation
	HFD-induced	5, 20	Suppressed UCP2	Reversed liver damage,
	NAFLD mice			anti-pyroptosis
Sweroside	HFD-induced	60, 120,	Increases expression of	Reduced body weight,
	NAFLD mice	240	PPARa gene	improved insulin
				resistance, inhibited
				hepatic steatosis, anti-
				inflammatory
Swertiamarin	HFD-induced	10, 100; 1,	Suppressed activation of the	Ameliorated hepatic
	NAFLD	10, 50	p38 MAPK and NF-кВ	steatosis, anti-
	mice; LPSO-		signaling pathways	inflammatory, reduced
	induced			body weight, improved
	murine			insulin resistance

	monocytic			
	cells			
Aucubin	Tyloxapol-	10, 20, 40	Activation of the Nrf2/HO-1	Inhibition of lipid
	induced		and AMPK signaling	accumulation, anti-
	NAFLD mice		pathways	oxidative stress, anti-
				inflammatory
Gentiopicroside	Tyloxapol-	20, 40, 80;	Upregulation of the Nrf2	Inhibition of hepatic lipid
	induced	0, 4, 20,	signaling pathway	accumulation, anti-
	NAFLD	100, 200,		oxidative stress
	mice; (PA +	500		
	OA)-induced			
	HepG2 cells			
Curcumol	HFD-induced	15, 30, 60	Regulation of the	Inhibition of hepatocyte
	NAFLD mic <mark>e</mark>		YAP/NCOA4 signaling	senescence, suppressed
			pathway	ferritinophagy
	HFD-induced	25, 50,	Regulation of the TLR4,	Anti-inflammatory,
	NAFLD rats	100	TAK1, and NF-κB/P65	improved liver function,
			signaling pathways	anti-fibrosis, anti-
				apoptosis
β-patchoulene	HFD-induced	10, 20, 40;	Activation of the AMPK	Inhibition of hepatic lipid
	NAFLD rats;	40	signaling pathway	accumulation, improved
	(FFA + PA +			insulin resistance,
	OA)-induced			ameliorated hepatic
	HepG2 cells			steatosis, inhibition of
				hepatic lipogenesis,
				promotion of fatty acid
				oxidation
	HFD-induced	10, 20, 40	Activation of the	Reduced body weight,
	NAFLD rats		CD36/AMPK signaling	reversed liver damage,
			pathway	ameliorated hepatic
				steatosis, anti-oxidative
				stress, anti-inflammatory
β-caryophyllene	PA-induced	40	Activation o the f AMPK	Inhibition of hepatic lipid
	HepG2 cells		signaling pathway	accumulation
Ginkgolide B	HFD-induced	0.1 % in	Activation of pregnane X	Reduced body weight,
	NAFLD mice	diet	receptor	ameliorated hepatic
				steatosis

© 2023 IJCRT | Volume 11, Issue 10 October 2023 | ISSN: 2320-2882

	HFD-induced	20, 30; 4,	Increased Nrf2 expression	Anti-oxidative stress,
	NAFLD	8, 16		reduced body weight,
	mice; (PA +			inhibition of lipid
	OA)-induced			accumulation, anti-
	HepG2 cells			inflammatory
Acanthoic acid	Modified	20, 40	Via FXR–LXR axis	Inhibition of hepatic lipid
	Lieber-			accumulation, anti-
	DeCarli diet-			fibrosis, regulation of
	induced mice			fatty acid synthesis
Dehydroabietic	HFD-induced	10, 20;	Activation of the Keap1/Nrf2-	Reduced blood lipid,
acid	NAFLD	2.5, 5, 10	ARE signaling pathway	inhibition of ferroptosis
	mice; OA-			
	induced			
	HL7702 cell <mark>s</mark>			
Ginsenoside	(PA + OA)-	25, 50	Regulation of PPAR a and	Inhibition of lipid
Rg1	induced	\sim	PPAR γ expression	accumulation,
	HepG2 cells			ameliorated hepatic
				steatosis
	D-galactose-	40	Upregulation of FOXO1 gene	Anti-inflammatory,
	induced fatty			inhibition of lipid
	liver disease			accumulation
	mice			
Ginsenoside	HFD-induced	2.5, 5, 10	Regulation of the SIRT1	Improvement of lipid and
Rg2	NAFLD mice		signaling pathways	glucose disorders, anti-
				oxidative stress, anti-
				apoptosis, inhibition of
				lipid accumulation
Ginsenoside	HFD-induced	10	Activation of PPAR-γ	Reduced body weight,
Rb1	NAFLD mice		expression	improved glucose
				metabolism, inhibition of
				lipid accumulation, anti-
				apoptosis
Ginsenoside	db/db mice,	10;	Regulation of the SIRT1 and	Alleviated hepatic
Rb2	OA-induced	pretreated	AMPK signaling pathways	steatosis, improved
-	HepG2 cells	with 0.1,	6 . 6 r	glucose tolerance,
	r 	1, 10, 50,		regulation of hepatic
		1, 10, 50,		regulation of hepatie

© 2023 IJCRT | Volume 11, Issue 10 October 2023 | ISSN: 2320-2882

		100		autophagy, inhibition of
		µmol/L/4h		lipid accumulation
Ursolic acid	HFD-induced	0.125,	Regulation of PPAR a	Reduced body weight,
	NAFLD rats;	0.25,	expression	alleviated hepatic
	human	0.5% in	L	steatosis, improved
	normally	diet; 0, 25,		metabolic disorders,
	hepatic	50, 100		improved insulin
	immortal cell			resistance, anti-
	line HL-7702			inflammatory, anti-
				oxidative stress
Betulinic acid	HFD-induced	0.1% in	Regulation of the	Enhanced energy
	NAFLD rats	diet	PERK/EIF2α/ATF4/CHOP	expenditure, modulation
			signaling pathway	of bile acids, alleviated
				hepatic steatosis, anti-
				inflammatory, alleviated
		\mathbb{Z}		ER stress
	HFD-induced	150; 10	Inhibition of the YY1/FAS	Inhibition of lipid
	NAFLD		signaling pathway	accumulation, alleviated
	mice; (PA +	-		fatty acid synthesis, anti-
	OA)-induced			fibrosis, anti-
	mice primary			inflammatory, inhibition
	hepatocytes			of excessive lipogenesis
Oleanolic acid	HFD-induced	25, 50,	Inhibition of LXRs, activation	Alleviated hepatic
	NAFLD rats	100	of the AMPK pathways	steatosis, anti-
				inflammatory, anti-
				oxidative stress,
				improved insulin
				resistance
Astragaloside	(PA + OA)-	50-200	Activation of the AMPK	Inhibition of lipid
IV	induced		signaling pathway	accumulation, inhibition
	HepG2 cells			of lipogenesis, alleviated
	and primary			ER stress
	murine			
	hepatocytes			
	High-	25.6, 51.2,	Inhibition of protein tyrosine	Improved insulin
	concentration	102.4	phosphatase 1B	resistance, inhibition of
	insulin or			lipid accumulation

	OA-induced			
	HepG2 cells			
Mogroside V	HFD-induced	400, 800	Upregulation of pAMPK	Inhibition of lipid
	NAFLD mice		expression	accumulation, anti-
				inflammatory, anti-
				oxidative stress
	HFD-induced	25, 50,	Activation of the AMPK	Inhibition of lipid
	NAFLD	100; 15,	signaling pathway	accumulation,
	mice; (PA +	30, 60,120		ameliorated hepatic
	OA)-induced			steatosis
	human LO2			
	cells			
Asiatic acid	HFD-induced	4, 8	Inhibition of the ERS	Inhibition of lipid
	NAFLD rats		signaling pathway	accumulation, anti-
				inflammatory, anti-
				oxidative stress
Corosolic acid	HFD + CCl4-	10, 20; 5,	Regulation of the TGF-	Inhibition of lipid
	induced	10, 20	β1/Smad2, NF-κB, and AMPK	accumulation, anti-
	NAFLD		signaling pathways	inflammatory, anti-
	mice; FFA +			fibrosis
	OA + PA-			
	induced			
	HepG2 cells			
Arjunolic acid	HFD-induced	100, 200;	Upregulation of PPAR-γ	Inhibition of lipid
	NAFLD rats;	12.5, 50	expression	accumulation,
	(PA + OA)-			ameliorated hepatic
	induced			steatosis, reduced blood
	HepG2 cells			lipids
Ganoderic acid	HFD-induced	20, 40	Activation of the AMPK	Inhibition of lipid
А	NAFLD rats		signaling pathway	accumulation, anti-
				inflammatory, reduced
				live weight
Rotundic acid	HFD-induced	10, 30,	Downregulation of the	Inhibition of lipid
	NAFLD rats;	100; 6.25–	SREBP-1c/SCD1 signaling	accumulation, improved
	insulin-	200	pathway	dyslipidemia, protection
	induced			against hepatic injury,
	primary			anti-inflammatory,
	hepatocytes			
IJCRT2310562 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org e968				

			inh	ibition of excessive
			lipo	ogenesis
Lycopene	HFD-induced	100, 1000	Upregulation of PPARa- Am	neliorated hepatic
	NAFLD mice		inducible genes stea	atosis
	HFD-induced	5, 10, 20	Downregulated expression of Imp	proved lipid profiles,
	NAFLD rats		TNF-a and CYP2E1 red	uced lipid peroxides,
			red	uced blood lipids
	HFD-induced	0.05% in	microRNA-21-induced Am	neliorated hepatic
	NAFLD mice	diet	downregulation of fatty-acid- stea	atosis, inhibition of
			binding protein 7 hep	batic lipid
			acc	rumulation
β-cryptoxanthin	HRCD +	10	Activation of the Inh	ibition of lipid
	DKO-induced		SIRT1/AMPK signaling acc	umulation, alleviated
	NAFLD mic <mark>e</mark>		pathway hep	oatic steatosis,
			inc	reased cholesterol
			effl	lux
Lutein	HFD-induced	<mark>0</mark> , 12.5,	Activation of the Rec	duced body weight,
	NAFLD rats	<mark>25</mark> , 50	SIRT1/PPAR-α signaling alle	eviated hepatic
			pathway stea	atosis, improved
			inst	ulin resistance

Bioactive terpenoids, their sources, and mechanisms of action in psychiatric disorders. (15)

Psychiatric Disorders	Sources	Bioactive Terpenoids	Mechanisms of
			Action
Autism Spectrum	<mark>Salv</mark> ia	Diterpenes	Facilitate the
Disorder			activity of GABA
			transaminase
	Bacopa monniera	Bacosides A and	Decrease
		Saponins A, B, C, and	hippocampal
		triterpenoid saponins	serotonin levels
	Curcuma longa	Curcuminoids and co-	Decrease IL-6 level,
		occurring terpenoids	suppresses the pro-
			inflammatory gene
			expression by
			blocking
			phosphorylation

	Piper nigrum Piper	Piperine alkaloids and	Reduced serotonin
	longum	terpenes	levels and oxidative
	longum	terpenes	
Cabizonhuania	D	Oleanalia asid (aleant	parameters. Affected the
Schizophrenia	P. vulgaris var.lilacina	Oleanolic acid (plant-	
		derived pentacyclic	metabolism of
		terpenoid)	catecholamine and
			increased levels of
			5-HT or NE due to
			MAO inhibition
	Panax ginseng	Ginsenosides (triterpene	Increased certain
		saponins)	neurodevelopmental
			proteins
	Coniferous tree	α-Pinene (monoterpene)	α-Pinene enhanced
	<i>Eucalyptus</i> oil, camphor		the function of the
	oil, and <i>Opunita</i>		GABA-A receptor
	humifusa		and played a vital
			role in GABAergic
			system
Attention-	Radix preparata	Catalpol (iridoids are	Upregulate several
Deficit/Hyperactivity		derivatives of	regulatory proteins
Disorder		monot <mark>erpenes)</mark>	(BDNF), cyclin-
			dependent kinase 5
and the second se			(Cdk5), p35
Bipolar Disorder	Centella asiatica	Asiatic acid	Asiatic acid could
		(Triterpenoid)	cross the blood-
			brain barrier and
			significantly
			restored oxidative
			stress marker
Major Depression	Nigella sativa	Monoterpenes, alkaloids,	Inhibiting the
Disorder		triterpenes, and saponins	reuptake of
		- •	norepinephrine,
			serotonin, and
			dopamine
	Boswellia serrata	Boswellic acids are the	Boswellia
		series of pentacyclic	<i>serrata</i> showed high
		terpenoid molecules	reducing ability of
			scavenging free
IJCRT2310562 Inte		e Research Thoughts (IJCR	

			radicals like NO,
			peroxide radical,
			O2., OH, DPPH
			(1,1-Diphenyl-2-
			picrylhydrazyl)
	Pimenta	Oleanolic acid	OA attenuated the
	pseudocaryophyllus		depletion of
			indolamine and
			catecholamine
	Panax ginseng	Ginsenoside Rg1	Exerted positive
			effects on
			neurogenesis within
			the hippocampus
			and increased
			BDNF protein
			levels
Anxiety Disorder	Centel <mark>la asia</mark> tica	ECa 233,triterpenoid	Facilitated
		glycosides including	GABAergic
		asiaticoside,	mechanism
		madec <mark>assosi</mark> de, asiatic	
		acid and madecassic acid	
Sleeping disorder	Valeriana wallichii	Volatile oil (valerianic	Normalized
		oil) containing valerenic	monoamines
		acid, isovalerenicacid,	neurotransmitters
		and terpineol	

CONCLUSION

Indigenous tribes and cultures, including those of Africa, India, and China, have used herbal treatments for thousands of years. Our apothecaries in the West were similarly stocked with therapeutic herbs and traditional treatments before we had synthetic medication. While many of the chemicals employed by our ancestors have been shown to have medicinal properties, some of the more bizarre remedies were unsubstantiated. Herbal remedies, in contrast, are typically kinder to the body. Natural remedies have fewer adverse effects when used at the prescribed dosages. Traditional medicine is all about holistic health and preserving the body's equilibrium, in contrast to many modern techniques that treat symptoms without addressing the underlying reasons. This implies that your alternative medicine doctor will make an effort to determine what your body is trying to tell you and then create a treatment plan that is tailored to your particular needs and physical condition.

REFERENCES

- Mukeshwar Pandey, Mousumi Debnath, Shobit Gupta, Surendra K Chikara (2011) Phytomedicine: An ancient approach turning into future potential source of therapeutics Journal of Pharmacognosy and Phytotherapy 3(2):27-37
- Mukeshwar Pandey, Mousumi Debnath, Shobit Gupta, Surender K. Chikara (2011) Phytomedicine: An ancient approach turning into future potential source of therapeutics Journal of Pharmacognosy and Phytotherapy 3(1): 113-117
- Ashwani Kumar, Nirmal P, Mukul Kumar, Anina Jose, Vidisha Tomer, Emel Oz, Charalampos Proestos, Maomao Zeng, Tahra Elobeid, Sneha K, Fatih Oz (2023) Major Phytochemicals: Recent Advances in Health Benefits and Extraction Method Molecules. 28(2): 887.
- Arpita Roy (2017) A Review on the Alkaloids an Important Therapeutic Compound from Plants International Journal of Plant Biotechnology 3 (2): 1–9
- Ghulam Hussain, Azhar Rasul, Haseeb Anwar, Nimra Aziz, Aroona Razzaq, Wei Wei, Muhammad Ali, Jiang Li, Xiaomeng Li (2018) Role of Plant Derived Alkaloids and Their Mechanism in Neurodegenerative Disorders Int J Biol Sci. 14(3): 341–357.
- Burtram C. Fielding, Carlos da Silva Maia Bezerra Filho, Nasser S. M. Ismail, Damião Pergentino de Sousa (2020) Alkaloids: Therapeutic Potential against Human Coronaviruses Molecules. 25(23): 5496.
- Augusto Lopes Souto, Josean Fechine Tavares, Marcelo Sobral da Silva, Margareth de Fátima Formiga Melo Diniz, Petrônio Filgueiras de Athayde-Filho, José Maria Barbosa Filho (2011) Anti-Inflammatory Activity of Alkaloids: An Update from 2000 to 2010 Molecules 16: 8515-8534
- Tapan Behl, Amit Gupta, Mohammed Albratty, Asim Najmi, Abdulkarim M. Meraya, Hassan A. Alhazmi, Md. Khalid Anwer, Saurabh Bhatia, Simona Gabriela Bungau (2022) Alkaloidal Phytoconstituents for Diabetes Management: Exploring the Unrevealed Potential Molecules. 27(18): 5851.
- 9. Karthik Mohan, R. Jeyachandran, Deepa (2012) Alkaloids as anticancer agents Annals of Phytomedicine 1(1): 46-53
- Aloisio Mateus Fiuza Sanha, Satyender Kumar, Parmod Kumar Sharma (2019) Phenolic Compounds from Plants - An Important Class of Phytomedicine in Wrestle against Cancer- A Review Global Journal of Medical Research: B Pharma, Drug Discovery, Toxicology & Medicine 19 (1): 25-41
- 11. Yuanyuan Zhang, Ping Cai, Guanghui Cheng, Yongqiang Zhang (2022) A Brief Review of Phenolic Compounds Identified from Plants: Their Extraction, Analysis, and Biological Activity Natural Product Communications Volume 17(1): 1–14
- Maria Miklasińska-Majdanik, Małgorzata Kępa, Robert D. Wojtyczka, Danuta Idzik, Tomasz J. Wąsik (2018) Phenolic Compounds Diminish Antibiotic Resistance of Staphylococcus Aureus Clinical Strains Int J Environ Res Public Health. 15(10): 2321.
- Nirmal Joshee, Sadanand A. Dhekney, Prahlad Parajuli (2019) Therapeutic and Medicinal Uses of Terpenes Medicinal Plants. 12: 333–359.

- Pengyu Yao, Yajuan Liu (2023) Terpenoids: Natural Compounds for Non-Alcoholic Fatty Liver Disease (NAFLD) Therapy Molecules. 28(1): 272.
- Mony, T.J.; Elahi, F.; Choi, J.W.; Park, S.J. (2022) Neuropharmacological Effects of Terpenoids on Preclinical Animal Models of Psychiatric Disorders: A Review. Antioxidants 11: 1834

