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Abstract:  The electrical power system has now grown into a more complex, integrated network that is 

continually expanding. As a result, the power system is afflicted by a variety of problems, including increasing 

power losses, voltage volatility, line overloads, and so on. The optimization of actual and reactive power by 

placing energy resources at appropriate buses can minimize losses and improve voltage profiles, especially in 

congested networks. As a result, the optimal renewable energy allocation (ODGA) issue is viewed as a more 

relevant tool for power system planning and operation operations, as the power grid rapidly changes 

dependent on the type and penetration level of renewable energy sources (RESs). In this article, the Aquila 

optimizer is utilized to alleviate this issue and reduce stress on the primary grid, making the grid more resilient. 

The Aquila optimizer (AO) is also employed in the optimization of distributed network. The approach 

proposed in this work has many objectives, including minimizing power loss and overall voltage fluctuation 

in a distribution system while keeping system operational and security restrictions in mind 

 

Index Terms - Tie switches, Aquila optimizer, binary Aquila optimizer, power loss 

I. INTRODUCTION 

The distribution network (DN) is critical in power systems since it is responsible for power supply from 

transmission systems to customers. However, the ever-increasing load has made it difficult for power providers 

to run DN effectively and dependably. Power loss has a severe impact on DN operational efficiency. As a 

result, reducing power loss is critical for DNs to run efficiently and inexpensively. Many ways have been 

developed in this area to reduce DN power losses. Due to the development context of power sources and 

investment prices, network reconfiguration (NR) and renewable energy integration are two notable strategies 

that have received a lot of attention. NR is an efficient way for reducing power loss in DNs. DNs are operated 

in a radial topology to reduce fault levels and efficiently safeguard coordination. In DNs, there are two types 

of switches: tie-line switches (usually open) and sectionalizing switches. (typically closed). NR creates a new 

network topology by changing the open/closed status of switches while retaining the system's radial topology. 

NR is an important grid approach that reduces active power losses while also improving voltage profile and 

system dependability.[1] 

Furthermore, to minimize overloading, NR can redistribute weight from one branch to another. Due to 

energy deregulation, fossil fuel depletion, and environmental concerns, renewable energy has been rapidly 

integrated into DNs. Aside from NR implementation, the deployment of renewable energy units is a well-

known grid method for reducing power losses and improving RDN voltage profiles. As a result, the use of NR 

in RDNs should be investigated in the presence of renewable energy. Since Merlin and Back first introduced 

the NR problem, a large amount of research has been done on the NR problem using a variety of approaches 

ranging from heuristic approaches such as the branch-and-bound method, modified branch exchange method, 
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and switch exchange method to metaheuristic approaches such as particle swarm optimization (PSO), genetic 

algorithm (GA), biased random key GA (BRKGA), harmony search algorithm (HSA), heuristic rules-based 

fuzzy multiple objectives. Heuristic approaches, in general, have quick convergence, but they are incapable of 

dealing with large-scale systems with multiple restrictions. Meanwhile, metaheuristic approaches, which are 

best suited for large-scale networks, offer robust searchability to uncover optimum or near-optimal solutions. 

As a result, metaheuristic approaches' applicability to NR issues are continually developing. Many academics 

have recently used a variety of artificial intelligence and analytical methodologies to tackle the optimum 

renewable energy allocation problem in RDNs. Comprehensive analytical expressions were proposed to 

describe PV unit allocation for maximising technological benefits in RDN. Active and reactive power losses, 

voltage stability index, line congestion margin, and voltage deviations are among the goal functions. Mahmoud 

and Lehtonen provided general closed-form analytical equations for determining appropriate positions and 

sizes of multi-type REs and capacitors in RDNs in order to minimize reactive power loss [2-8]. Furthermore, 

the suggested technique included an optimum power flow (OPF) algorithm to account for system restrictions. 

Researchers are continually proposing new strategies to improve RDN performance. One of these initiatives is 

the merging of NR and optimum RE deployment at the same time. Recent metaheuristic research on the 

merging of these two effective tactics have been conducted. Shaheen et al. created an enhanced equilibrium 

optimisation algorithm (IEOA) to cope with optimum NR-RE integration. The IEOA approach was tested 

under various load situations on 33- and 69-bus systems, and its superiority was validated. Onlam et al. used 

the adaptive shuffled frogs jumping method to get optimal NR and renewable energy settings on a variety of 

33- and 69-bus DNs in order to minimize system losses and improve voltage profile.  

Murty and Kumar proposed NR and optimum renewable-based RE deployment in the face of load 

uncertainty. Tolabi et al. created a hybrid fuzzy-bees technique. To cope with the coupled problem of NR with 

shunt capacitors and renewable energy allocation, an artificial bee colony was merged with a hybrid approach 

of HSA and PSO. For dealing with NR, a fuzzy multi-objective method was used. Following that, a heuristic 

technique was used to determine the ideal NR, which resulted in a solution based on the original NR. For NR 

with REs present, a better plant growth modelling approach was presented to reduce power loss. Sensitivity 

analysis was used to determine the best RE placements. Bayat et al. created a heuristic strategy for allocating 

NR and renewable energy in order to minimize loss. To deal with NR and REs allocation in 33-bus and 69-bus 

REs, levy flights are integrated in a sine-cosine algorithm. The suggested problem took power losses and 

voltage stability index targets into account. HAS, adaptive CSA, FWA, big-bang crunch algorithm, hybrid grey 

wolf optimizer and PSO (GWO-PSO), electromagnetism-like mechanism (ELM), firefly (FF), and three-

dimensional group search optimization (3D-GSO) are some other typical metaheuristic methods that have been 

used to handle the combination of NR and renewable energy allocation. According to the aforementioned 

literature review, employing metaheuristic algorithms to the integration of NR with renewable energy 

placement has various disadvantages.[9-11] 

Most earlier research has concentrated on small and medium-scale DNs, with little regard for large-scale 

DNs. Furthermore, the integration of NR and RE placement is a combined optimisation issue, which is difficult 

to solve due to its complexity. Although metaheuristic algorithms' tremendous search capabilities are ideally 

suited for obtaining optimum solutions, there is no assurance that they will be beneficial for all optimization 

issues. Such procedures may not produce satisfactory results and may become trapped at a local optimum. As 

a result, establishing a suitable method to successfully address the simultaneous NR and REs placement is of 

importance, particularly for large-scale systems. 

Motivated by the aforementioned issues, this paper introduces a novel binary Aquila optimizer for dealing 

with the simultaneous NR and DGs integration (SNR-RE) problem in REs. The goal of the SNR-RE issue is 

to minimize active power loss and maximize voltage stability index while maintaining system restrictions such 

as power balance, feeder capacity limits, bus voltage limits, renewable energy capacity and penetration limits, 

and radial topology constraints.  

 

II. TYPES OF AI OPTIMIZATION IN POWER SYSTEM 

Many power system planning, operation, and control challenges have been solved using mathematical 

optimization (algorithmic) approaches throughout the years. Real-world mathematical formulations are 

generated under particular assumptions, and even under these assumptions, the solution of large-scale power 

systems is not straightforward. On the other hand, because power systems are huge, complicated, and 

geographically dispersed, there are numerous uncertainties in power system problems. Deregulation of 

electricity utilities has lately added new concerns into the mix of old difficulties. It is preferable that solutions 

to power system issues be optimal worldwide, although solutions found by mathematical optimisation are 
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usually optimal locally. Because of these realities, it is difficult to properly address many power system 

problems by pure mathematical formulation alone. As a result, in recent years, artificial intelligence (AI) 

techniques such as expert systems (ES), artificial neural network (ANN), genetic algorithm (GA), and fuzzy 

logic have evolved as a supplementary tool to mathematical approaches in power systems. The true start of 

AI is commonly cited as 1958. Various optimization strategies have been used to address the power systems 

problem, and a considerable number of articles in this subject have been published since 1950. Kothari et al. 

offered a review of several power system difficulties.  

1. Genetic Algorithm (GA): 

To find an optimized solution, GA employs the principles of genetics and natural selection. Genetic 

algorithms have been the subject of substantial work by David Goldberg (1989). Darwin's idea of evolution 

serves as the foundation for the genetic algorithm search technique. Search techniques based on populations 

include genetic algorithms. The many solutions produced by a genetic algorithm are referred to as 

chromosomes. The chromosomes are made up of a variety of control variables with random values whose 

values must be optimized. These chromosomes move because of the fluctuation in their values, which is 

used in the search process. The objective function of the chromosomal population is assessed. For the 

following iteration, the selection process selects and keeps the chromosomes with the best values of objective 

function. [12-13] 

The crossover and mutation of the chromosomes from the previous iteration produces the chromosomes for 

the subsequent iteration. The chromosomes created for the following iteration are referred to as the kid, while 

the chromosomes from the prior iteration are referred to as the parents. A child chromosome is created during 

the crossover process, which involves combining a portion of one parent chromosome with a portion of 

another parent chromosome. Some parent chromosome values are changed throughout the mutation process 

to create a child chromosome. The objective function of the fresh pool of kid chromosomes is then assessed. 

When the stopping requirement is reached, these kid chromosomes take on the role of parent chromosomes 

again. The stopping criterion may be based on number of iterations or convergence of control variable values 

stored in chromosomes. GA is a rugged optimization technique with simple methodology. The demerit of 

GA is it getting trapped in local minima.  

2. Particle Swarm Optimization: 

The most popular artificial intelligence optimization method is called particle swarm optimization (PSO). It 

is based on how fish in a pool or a flock of birds behave when looking for food. Shi and Eberhart have reported 

the preliminary research on PSO. A population-based search approach is PSO. In PSO, a population is created 

by generating a large number of particles at random. PSO does not waste the particles like GA does. The 

particles travel around the multidimensional space in quest of the best answer 

The particle considers its most recent individual best location and the best position reached by any of the 

particles as it travels across the multidimensional space. A big inertia weight makes it easier to search globally, 

whereas a lower inertia weight makes it easier to search locally. The PSO tends to have greater global search 

capability at the start of the run while having more local search capability near the conclusion of the run by 

linearly lowering the inertia weight from a reasonably big number to a small value during the PSO run.  The 

PSO termination criterion may be a predetermined amount of iterations, particle convergence, or if the global 

best remains unchanged for a predetermined number of iterations. For PSO to operate at its best, the inertia 

weights and constants must be chosen properly. [14-15] 

3. Ant Colony Optimization: 

Ant Colony Optimization (ACO) was first presented by Dorigo in 1992. ACO is based on how actual ant 

colonies forage. A population-based search method called ACO uses ants to find food, or an optimized 

solution. Artificial ants build solutions through a stochastic process. Iteratively adding the elements of a 

solution to incomplete solutions while taking into account (i) any heuristic knowledge about the issue being 

addressed and (ii) pheromone trails results in a solution. Ants leave behind pheromone trails when they go 

along a path.  

These traces disappear over time to make searching in fresh, untouched places easier. Ants adopt a building 

policy that is a function of the problem constraints rather than moving randomly on the construction graph. 

Ants often work to create workable solutions, but they are also capable of creating unworkable ones when 

necessary. The ant colony in ACO builds routes to travel between nearby solutions to the optimization issue. 

The way ants walk contributes to the optimization problem's resolution. The ants carry out daemon acts to 

carry out centralized actions that can only be carried out by a group of ants. ACO's poor computing 

performance is this technique's fundamental flaw.[16-19] 

http://www.ijcrt.org/


www.ijcrt.org                                                       © 2023 IJCRT | Volume 11, Issue 10 October 2023 | ISSN: 2320-2882 

IJCRT2310495 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org e438 
 

4. Simulated Annealing: 

The thermodynamics-based Simulated Annealing (SA) approach takes its cues from the crystallization of 

materials during cooling. A solid can achieve a low energy state through the thermodynamic process of 

annealing. In annealing, the temperature of the solid is raised until it melts, and then the temperature is 

lowered until the solid's particles are arranged in a condition with the least amount of energy. The objective 

function of the issue is comparable to the solid's energy state. Another form of neighborhood search is SA. 

The answer with the highest (or lowest) value of the goal function triggers the search. If the new location 

has a lower (or higher) value for the goal function, the solution shifts to the new position. A move is 

considered to be a negative move if it causes the solution to move to a place with a greater (or lower) value 

of the goal function. Depending on how far along the search is, bad movements are permitted. At first, more 

mistakes could be permitted, but at the conclusion of the search process, fewer mistakes are allowed. At 

freezing point, the lowest temperature, bad behavior is not tolerated. Hill climbing refers to bad manoeuvres 

adopted by solutions to escape a local confinement. [20-21] 

Until a predetermined number of iterations or the freezing point, the search algorithm keeps running. SA's 

flexibility in implementing various optimization issues, its ease of programming, and its capacity to avoid 

local optima trapping are its benefits.  

5. Differential Evolution: 

In 1995, Storn and Price established the concept of differential evolution. The difference between DE and 

GA is that the former can effectively handle both continuous and floating point numbers. A random 

beginning population is created by DE, which iteratively applies mutation, crossover, and selection processes 

to modify and enhance the population. The selection procedure and the mutation strategy that enables DE 

self-adaptive are the two primary distinctions between the genetic algorithm and DE algorithm. The present 

solution is modified during the mutation process using a scaled mutation factor. A parent and a random 

solution or two parents' components are combined in a crossover. The selection process, selects the parent 

or child solution through tournament selection process or any other similar process. The stopping criteria 

applied in DE is similar to that of GA, it may be a certain number of iterations, or convergence of solutions 

or if the best solution does not change for a specific number of iterations. 

6. Tabu Search: 

   An example of a neighborhood search is Tabu Search (TS). Fred Glover has been the principal 

spokesperson for it. The neighborhood of the present solution is then searched by TS after starting with a 

random solution. A move is the modification of the solution value between iterations. Every time the current 

solution iterates, the neighborhood also shifts. The limitations of the optimization problem's restrictions and 

quantity of solutions limit the neighborhood search options. The Tabu List also places limitations on a 

solution's ability to move.  

A list of movements that are forbidden is called the tabu list. The list is typically used to stop cycling and 

eliminates the possibility of looking for a solution that has already been found. The tabu list keeps changing 

as the search process progresses. The older entries in the tabu list are eliminated with newer entries. An 

aspiration criterion may also be introduced to override the tabu list, which helps achieve better results. The 

search process can be stopped after some predefined number of iterations or if the optimum result does not 

change for a certain number of iterations. TS on its own in not efficient to solve power optimization problem, 

it should be combined with some other search process to enhance the capability of the search process. 

III. AQUILA OPTIMIZER (AO) 

The Aquila optimizer (AO) is a recently suggested algorithm that mimics the natural Aquila hunting process. 

Four phases make up the hunting process: broadened exploration by soaring high with a vertical stoop, focused 

exploration by gliding with a contour flight, broadened exploitation by low-flying descending assault, and 

focused exploitation by strolling and seizing prey. The AO algorithm employs a range of behaviors to go from 

the exploration stage to the exploitation stage. The first two-thirds of repetitions replicate the exploration stage, 

while the latter third of iterations represent the exploitation stage. The AO method is shown mathematically as 

follows. [22] 

http://www.ijcrt.org/


www.ijcrt.org                                                       © 2023 IJCRT | Volume 11, Issue 10 October 2023 | ISSN: 2320-2882 

IJCRT2310495 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org e439 
 

start

Initialize number of 

switches, losses

Check switch,obtain 

loss and update

t<=(2/3)T

Rand<=0.5 Rand>0.5

Update loss 

using 

expanded 

exploration

Update 

loss using 

narrowed 

exploration

Update 

loss using 

expanded 

exploration

Update 

loss using 

narrowed 

exploration

Calculate loss of 

snew and st

Calculate loss of 

snew and st

Update st Update st

Loss 

s(t+1)<loss 

s(t)

Return s(t) end

Yes

Yes

No

NoNo Yes

 
 

Figure.1 Flowchart-of-Aquila-Algorithm 

 

Step 1: Initialization 

In this first phase, the population of solutions has been generated at random and AO’s other parameters are 

initialized. Initializing: The AO algorithm begins by spreading N solutions in a D-dimensional search space 

across a present range [L, U] by applying Equation. 

𝑆𝑖,𝑗 =  𝐿𝑗 + 𝑟 × (𝑈𝑗 − 𝐿𝑗)                                                              (1) 

where Xi,j is the j-th dimension of the i-th solution, Lj and Uj refer to the lower and upper bound value of the 

j-th dimension in the search space, and r is chosen at random from the range of 0 to 1. The position of solutions 

is kept in matrix XN×D. Then, by f(Xi ), the fitness value of each solution is calculated.  

Step 2: Expanded Exploration 

Expanded exploration: An Aquila first determines the prey region and picks the optimal hunting location by 

high-soaring while stooping vertically. This behavior leads to the search space being explored from high 

altitudes to estimate where the prey can be located. In AO, this behavior is simulated to expand the exploration 

by Equation (2) and is executed when iter < (2/3 × MaxIter) and randomly generated value < 0.5, 

    𝑆1(𝑖𝑡𝑒𝑟 + 1) =  𝑆(𝑖𝑡𝑒𝑟) × (1 −
𝑖𝑡𝑒𝑟

𝑀𝑎𝑥𝐼𝑡𝑒𝑟
) + (𝑆𝑀(𝑖𝑡𝑒𝑟) −  𝑆𝑏𝑒𝑠𝑡(𝑖𝑡𝑒𝑟) × 𝑟)          (2) 

where S1(iter + 1) is the solution given by the prime method to use in the subsequent iteration and Xbest(iter) 

is the best solution found until the current iteration and approximates the position of prey. The (1 − iter Max 

Iter) term is utilized to regulate the extent of the exploration based on the number of iterations, where iter 

denotes the current iteration and MaxIter is the number of iterations that can be performed. In the iter-th 

iteration, SM (iter) indicates the mean of currently available solutions, as determined by 

(𝑆𝑀(𝑖𝑡𝑒𝑟) =
1

𝑁
∑ 𝑆𝑖(𝑖𝑡𝑒𝑟) )     (3) 

Step 3: Narrowed Exploration 

The second hunting method used by Aquila, the contour combat with brief glide, is intended for the third phase, 

or Narrowed Exploration, in which Aquila organizes the ground in order to circle the target animal to attack.  

Detailed exploration: The second stage is the hunting technique known as contour flight of a brief glide assault. 

Aquila soars above the intended prey, gets ready to dive, and strikes when it is seen from a great height. This 

behavior enables the Aquila to narrowly examine a given area. When iter (2/3 MaxIter) and the randomly 

generated value > 0.5, this behavior is replicated in AO to limit the investigation. 

𝑆2(𝑖𝑡𝑒𝑟 + 1) = 𝑆𝑏𝑒𝑠𝑡(𝑖𝑡𝑒𝑟)𝑥𝐿𝑒𝑣𝑦(𝐷) + 𝑆𝑅(𝑖𝑡𝑒𝑟) + (𝑦 − 𝑥)𝑥𝑟  (4) 
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where S2(iter + 1), SR(iter), and Levy(D) represent the solutions produced by the narrowed exploration 

strategy, a randomly selected solution from entire solutions in the iter-th iteration, and the Levy flight 

distribution function calculated by Equation 

               𝐿𝑒𝑣𝑦(𝐷) = 𝑠𝑥
𝑢𝑥𝜎

𝑣1/𝛽      (5) 

where s = 0.01, β = 1.5, and u and v are random integer numbers ranging in [0, 1]. 

                                                          𝑦 = 𝑝𝑐𝑜𝑠𝜃, 𝑥 = 𝑝𝑠𝑖𝑛𝜃                      (6) 

                                                                𝑝 = 𝑟1 + 𝑢𝐷1                                                        (7) 

                                                           𝜃 = −𝑤𝐷1 + 𝜃1, 𝜃1 =
3𝜋

2
                                                       

(8) 

Step 4: Expanded Exploitation 

The principle behind the third hunting mechanism is essentially depicted in the fourth phase, dubbed Expanded 

Exploitation, where Aquila gradually descends into the targeted area and moves closer to the victim to strike. 

During the enlarged exploitation process, Aquila pursues its target using the third tactic. The Aquila is ready 

to take flight and launch an assault after carefully locating the prey zone. The Aquila descends vertically and 

makes the initial stroke to gauge how the prey would react to the attack. Low-flying descent attacks occur when 

iter > (2/3 MaxIter) and a randomly generated value produced by Equation 0.5. 

𝑆3(𝑖𝑡𝑒𝑟 + 1) = (𝑆𝑏𝑒𝑠𝑡(𝑖𝑡𝑒𝑟) − 𝑆𝑀(𝑖𝑡𝑒𝑟))𝛼 − 𝛾 + ((𝑈 − 𝐿)𝑆𝑟 + 𝐿)   (9) 

Step 5: Narrowed Exploitation 

Finally in the fifth and the final step, the idea is taken from last attacking method of Aquila widely known as 

walk and grab attack to frame the last step known as Narrowed Exploitation 

The fourth hunting strategy is used during the narrower exploitation step when the Aquila approaches the prey 

and attacks randomly. This behavior is called walking and grabbing the prey and is done when iter > (2/3 × 

MaxIter) and randomly generated value > 0.5 by Equation 

𝑆4(𝑖𝑡𝑒𝑟 + 1) = (𝑄𝐹(𝑖𝑡𝑒𝑟)𝑆𝑏𝑒𝑠𝑡(𝑖𝑡𝑒𝑟)) − 𝐺1𝑆(𝑖𝑡𝑒𝑟)𝑟 − 𝐺2𝐿𝑒𝑣𝑦(𝐷) + 𝑟𝐺1 (10) 

where S4(iter + 1) denotes the generated fourth search solutions, S(iter) is the iter-th iteration’s current solution, 

and to balance the search strategy, a quality function called QF is calculated by Equation 

𝑄𝐹(𝑖𝑡𝑒𝑟) = 𝑡
2(𝑟−1)

(1−𝑚𝑎𝑥𝑖𝑡𝑒)2  (11) 

G1 and G2 are values to represent the Aquila’s prey tracking movements such that the G2’s value is decreasing 

from 2 to 0. 

𝐺1 = 2(𝑟 − 1)   (12) 

 

𝐺2 = 2(1 −
𝑖𝑡𝑒𝑟

𝑚𝑎𝑥𝑖𝑡𝑒𝑟
)  (13) 

 

3.1 Binary Aquila Optimizer (BAO) Algorithm 

The search space of a binary optimization problem may be seen as a hypercube, where a point can be moved 

by changing one or more bits of its position. Continuous techniques are unable to update positions for binary 

optimization problems like feature selection because binary space only has two possible values, "0" and "1". 

One of the essential elements of metaheuristic-based feature selection algorithms, which translate the 

continuous search space to the discrete space, is the transfer function. Transfer functions are used to assess the 

probability of altering the elements of a position vector to 0 or 1 based on the value of the i-th solution’s vector 

in the d-th dimension. S-shaped and V-shaped transfer functions are the two most prevalent forms of transfer 

functions such that continuous metaheuristic algorithms can be discretized and utilized to solve binary 

optimization problems by converting a real vector into a binary vector. [23] 

 
Figure.2. S-shaped and V-shaped transfer functions 
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Algorithm  

1. The binary Aquila optimizer (BAO)  

Input: loss, switch combination MaxIter (maximum number of iterations)  

Output: The best solution (Sbest)  

1 : Begin  

2 : Initializing iter = 1, α = 0.1, δ = 0.1.  

3 : Generating a initial loss S.  

4 : While it ≤ MaxIter  

5 : Evaluating the Loss values and set the Sbest(it).  

6 : If iter < (2/3) × MaxIter  

7 : If rand < 0.5  

8 : Calculating S1 (iter + 1) using Equation (2).  

9 : Updating S(iter + 1) and Sbest(iter).  

10 : else  

11 : Calculating S2 (iter + 1)  

12 : Updating S(iter + 1) and Sbest(iter).  

13 : End if  

14 : else  

15 : If rand < 0.5 then  

16 : Calculating S3 (iter + 1) using Equation (9).  

17 : Updating S(iter + 1) and Sbest(iter).  

18 : Else  

19 : Calculating S4 (iter + 1)  

20 : Updating S(iter + 1) and Sbest(iter).  

21 : End if  

22 : End if  

23 : Calculating the probability values  

24 : Updating binary position.  

25 : iter = iter + 1.  

26 : End while  

27 : Return the best solution -loss minimization (Sbest).  

28 : End 
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3.2 MATLAB implementation of proposed method with AI 

Distribution System 69-bus test system with the reclosure of 3 tie switches 

In the default setup of the system, 69–73 tie switches are generally open while 1-68 sectionalize switches are 

normally closed. For every tie switch, there are five loops. There are 2.69 MVAR and 3.8 MW of total actual 

and reactive power demands, respectively. 12.66 KV is the system base voltage. [24-28] 

 
 

Table 1 Test Cases for Case Study 

Case  Closed Tie SW Opened Tie SW 

Case1 No All 

Case2 1,2,6 3,4,5 

Case3 2,3,5 1,4,6 

Case4 3,4,6 1,2,5 

 

Each feeder provides electricity to a variety of loads for household, business, and industrial clients. The 

majority of load profiles vary by client type. The test model's feeder load profiles are shown in Fig. Feeder 3 

has a daylong load that is comparatively light. Feeders 1 and 2, on the other hand, exhibit a significant load. 

                  
                     Figure.3 Load profile , Maximum and minimum voltage of each feeder in the test distribution 

system model 
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Power distribution systems with several linked REs that regulate voltage might malfunction. As a result, we 

contrasted examples 1 and 3's voltage regulation's robustness. At line sections F2-5, F3-6, and F4-14, the REs 

were linked together. The generation capacity was then changed from 1 to 10 MW. Fig. 10 displays the highest 

and minimum voltages in the test power distribution system. In Case 1, the 24 MW produced by the REGs 

caused the LDC technique to fail, resulting in undervoltage. However, in instance 3, the power distribution 

system could supply the 30 MW produced by the REs within a range of acceptable voltages. 

The losses accrued during a 24-hour period for each scenario are shown in Fig.4. The optimal course of action 

for loss minimization is to upgrade to example 3, where the loss is decreased from 6.74 to 6.42 MWh. Power 

flow analysis needs to be done for each case, though, in order to assess loss reduction between scenarios. 

However, the processing time will lengthen if there are more tie changes. 

  

 
Figure 4. Losses during 24 h in the test distribution system model. 

 

                                                             Table 2 Test Cases for Case Study 

Case  Closed Tie SW Opened Tie SW 

Case1 No All 

Case2 2,3,5 1,4,6 

Case3 1,2,6 3,4,5 

Case4 3,4,6 1,2,5 

 

The total ASV is highest in case 3. Therefore, this case is the best loop-upgrading solution for loss 

minimization. This shows that we can select a loop-upgrading path without conducting power flow analysis 

for each case. 

 
Figure.5 ASV for each tie switch 

As seen in Fig5., the suggested switching significantly affects busbar voltage. Following reconfiguration, the 

minimum bus bar  
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          Figure.6 Maximum and minimum voltages                             Figure.7 Initial Losses in the 69-bus system 

             with REGs of case 1 and case 3 

 

 

voltage for the 69 Distribution network increases from 0.95 to 1.01 at bus 61.  

The proposed switching has reduced the initial losses in the 69-bus system from 4.2 to 2.45 kW saving 1.75 

kW. 

 

Table 2 Results Comparison For 69 Bus Network 

Operation Losses Switch 

combination 

Switches 

closed  

Switches 

opened 

Reclosure of 2 tie 

switches  

6.42 MWh Case 3 2,5 1,3,4,6 

Reclosure of 3 tie 

switches 

5.93 MWh Case 3 1,2,6 3,4,5 

 

Operation Minimum voltage Maximum voltage 

Reclosure of 2 tie switches  0.973 1.01 

Reclosure of 3 tie switches 0.975 1.02 

 

The above tables gives the comparison between 2 tie switches closed and 3 tie switches closed in terms of 

losses, ASV, minimum voltage and maximum voltage where 3 tie switches combination gives better 

performance in terms of losses by 7.6% approximately. 

According to Figure, the system's default setup has 69-73 tie switches that are generally open and 1-68 

sectionalize switches that are normally closed. For every tie switch, there are five loops. There are 2.69 MVAR 

and 3.8 MW of total actual and reactive power demands, respectively. 12.66 KV is the system base voltage. 

The REs' actual and reactive power injection limitations are equivalent to those of the Distribution 33-bus test 

system. 

According to Figure, the biggest improvement in power loss reduction is for the scenario employing the 

suggested approach. Power loss for PQ+ type RE installation after reconfiguration is not smaller than RE 

installation before reconfiguration. 
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Figure.8 Accumulated losses vs different combinations             Figure.9 Initial Losses in the Distribution 69-

bus system with      

             with proposed approach                                                                          proposed approach 

 

 

Table 3: Results Comparison For Distribution 69 Bus Network 

 

Operation Losses 

Reclosure of 2 tie switches  6.42 MWh 

Reclosure of 3 tie switches 5.93 MWh 

Binary Aquila Optimizer Algorithm 5.89 MWh 

 

From the above analysis, it is clear that 69 bus system with Binary Aquila Optimizer Algorithm with Artificial 

Intelligence has shown better performance when compared with 69 bus system without Artificial Intelligence. 

 

Conclusion 

In this work, two binary variations of the Aquila optimizer (AO) were introduced and utilized to discover the 

wrapper approach’s effective features. S-shaped and V-shaped transfer functions are utilized to alter the 

continuous version of Aquila optimizer into two binary algorithms, SBAO and VBAO. The Binary Aquila 

optimizer’s performance over numerous iterations indicates its ability to find effective features while balancing 

exploration and exploitation. Binary Aquila Optimizer Algorithm with Artificial Intelligence has shown better 

performance when compared with Distribution 69 bus system without Artificial Intelligence.  
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