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Abstract 

Displacement and stress analysis of a simply supported smart laminate (layered plate) under plane stress and 

plane strain conditions of elasticity has been performed with a new mixed Semi-analytical model. The 

displacements, transverse normal and shear stresses, electric potential and transverse electric displacement 

have been considered as primary variables. The mathematical model is a two-point boundary value problem 

(BVP) governed by set of coupled first ordered ordinary differential equations (ODEs). Accuracy and 

efficiency of the proposed model are assessed by comparing the numerical results obtained from the present 

investigation with available elasticity solutions.  

Keywords: semi-analytical method, laminate, piezoelectricity, smart materials, plane stress, plane strain. 

Introduction 

In a piezoelectric material, the elastic and electric fields are reversibly coupled and this coupling effect is 

used in several engineering applications. The direct piezo-effect is used in sensors to infer the mechanical 

strain in material from induced electric potential. The inverse piezo-effect is used in actuators to control 

deformations due to static loads and vibrations due to dynamic loads, by applying appropriate electric 

potential difference. The combined use of sensing and actuating functions leads to development of a smart 

or intelligent material, which is a self-monitoring, self-controlling material. Use of smart materials is seen 

by and large in aircrafts and aerospace engineering. 

Piezoelectricity was discovered in 1880. However, for a century, it remained to be just a scientific wonder. 

With the growth in aerospace projects, a need for self-governing materials for unmanned laboratories and 

unmanned ships grew. Exhaustive research on smart materials began in the decade of 1980. Since then, a 

substantial number of theories and analytical, numerical models have been reported for the analysis of smart 

materials. Ray et al. (1992, 1993) have presented three dimensional (3D) exact solutions for a single 

piezoelectric plate and 3D exact solutions for intelligent structure in cylindrical bending. Heyliger (1994) has 

obtained exact solution for unsymmetrical cross ply composite laminate attached with layers of piezoelectric 

material. Heyliger (1997) has also provided 3D exact solutions for single and two layers of piezoelectric 

materials. Exact solutions obtained by solving field equations are valuable because they represent near 

accurate response of the member. However, obtaining exact solutions for layered members with complex 

loading and boundary conditions becomes extremely difficult. Hence the researchers have focused their 

attention on approximate methods. Tiersten (1969), Lee and Moon (1989), Lee (1990), Dimitridis et al. 
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(1991), Crawley and Lazarus (1991), Wang and Rogers (1991) have presented analysis of smart materials 

using Classical plate theory (CPT). Chandrashekhara and Agarwal (1993), Jonnalagadda et al. (1994), 

Detwiler et al. (1995), Huang and Wu (1996), Bisegna et al. (2001), Vel and Batra (2001), Wu et al. (2004) 

have presented analytical models based upon First order shear deformation theory (FOST) and Ray et al. 

(1994), Kim et al. (1998) have used Higher order shear deformation theory (HOST) for analysis of smart 

materials.  

In this paper, semi-analytical model developed by Kant et al. (2007) is reformulated for analysis of a smart 

laminate under mechanical and electrical load. A smart laminate under plane stress and plane strain 

conditions of elasticity is modeled as a mixed two-point BVP governed by a set of first ordered ODEs. 

Mathematical Formulation 

A smart laminate consisting of layers of isotropic/orthotropic substrate with piezoelectric material layers 

attached at top and bottom faces is considered. The plan dimensions of the laminate are a × b and thickness is 

h (Figure 1). A simple diaphragm support is assumed along the longitudinal edges, x = 0, a. Longitudinal 

edges of laminate are assumed to be grounded with zero potential. The laminate is subjected to transverse 

mechanical and/or electrical load with uniform intensity in y-direction. If b << h, the laminate is regarded to 

be in 2D plane stress condition of elasticity. If b >> h, the laminate is in 2D plane strain condition. 

 

 

 

 

 

 

 

 

The coupled elastic-electrical field equations in piezoelectric medium due to Tirsten (1969), 2D elasticity 

equilibrium equations, 2D strain-displacement relations and 2D charge equilibrium equation due to Maxwell 

(1865) are respectively given as;  
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In these equations, stress vector {}={x, x, xz}
T, strain vector {}={x, z, xz}

T, electric intensity vector 

{E}={-/x, 0, -/z}T, electric displacement vector {D}={Dx, 0, Dz}
T and Bx, Bz are body force intensities 

in x and y directions. The material coefficients matrix [C], piezoelectric constants matrix [e] due to Cady 

(1946) and dielectric constants matrix [g] due to Tzau and Pandita (1987) for piezoelectric materials, which 

fall in the crystal group Rhombic, Class 7 are respectively; 

Figure 1: Smart laminate under mechanical and electric loading 
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in which, the reduced material coefficients Cij are for plane stress condition of elasticity are; 

3113

1
11

1 


E
C ; 

3113

113
3113

1 






E
CC ; 

3113

3
33

1 


E
C ; 1355 GC   (6) 

and for plane strain condition of elasticity; 
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Equations (1)-(4) have a total of 11 unknowns u, w, x, z, xz, x, z, xz, Dx, Dz and  in 11 equations. 

However, these unknowns are not entirely independent. After some algebraic manipulation of equations (1)-

(4), a set of partial differential equations (PDEs) involving only six variables, called ‘primary variables’ u, w, 

z, xz, Dz and  is obtained as below; 
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(8) 

To convert the PDEs in Equations (8) into ODEs, the displacement field, stress field, applied mechanical 

load and electrostatic potential are expressed in the form of single Fourier series satisfying the boundary 

conditions at x = 0, a as; 
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   (9) 

Substituting Equations (9) and the derivatives into Equations (8), a set of first-ordered ODEs involving 

primary dependent variables u, w, z, xz, Dz and  is obtained as; 
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The above Equations (10) represent the governing two-point BVP in ODEs in the domain      -h/2  z  h/2, 

with stress components known at the top and bottom surfaces of the laminate. Since the model developed is 

of mixed nature i.e. having both stress and displacement terms, the solution to Equations (10) is obtained 

using numerical integration. Change in material properties in case of a layered plate can be easily 

incorporated by changing the material properties matrices.  

The secondary variables may be expressed in terms of primary variables as; 
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Availability of efficient and accurate ODE numerical integrators for BVPs helps in computing reliable values 

of the primary and secondary variables. 

Numerical Investigation and Discussion 

Numerical investigation has been carried out on multi-layered smart beams and plates in cylindrical bending. 

The results obtained from present formulation have been compared with exact solutions available in the 

literature. Illustrative examples considered are discussed next. 

 

Material Properties 

Graphite epoxy 

compositea 

E1 = 181 GPa, E3 = 10.3 GPa, G13 = 7.17 GPa, 13 = 0.28, eij = 0 

g11 = 30.96E-12 F/m,  g33 =  26.53E-12 F/m 

PZT-5Aa 

E1 = 61 GPa, E3 = 53.2 GPa, G31 = 21.1 GPa, 13 = 0.38  

d13 = -171E-12 m/V, d33 = 374E-12 m/V, d15 = 584E-12 m/V  

g11 = 1.53E-8 F/m, g33 = 1.50E-8 F/m  

PVDFb 

E1 = 23.2 GPa, E3 = 10.5GPa, G13 = 2.55 GPa, 13 = 0.177 

 e31 = -0.13 C/m2, e33 = -0.28 C/m2, e15 = -0.01 C/m2, 

11/0 = 11.98, 33/0 = 11.98 

PZT-4c E1 = 81.3 GPa, E3 = 64.5 GPa, G13 = 25.6 GPa, 13 = 0.432  

Table 1: Material properties 
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e31 = -5.20 C/m2, e33 = 15.08 C/m2, e15 = 12.72 C/m2 

11/0 = 1475, 33/0 = 1300 

 

Example 1 

A simply supported layered smart beam with substrate of graphite epoxy composite bonded with a 

piezoelectric layer of PZT-5A at its top surface is considered. All the laminae of substrate have equal 

thickness and the ratio of piezoelectric layer thickness to the laminate thickness is 0.1. The interface of PZT-

5A layer with substrate is grounded to zero potential (Figure 2).  

 

 

 

 

 

 

 

 

 

 

Properties of the graphite epoxy composite and PZT-5A are given in Table 1. The smart beam is referred to 

as a sensory beam when subjected to transverse mechanical load and as an actuating beam when subjected to 

electric potential load. The sensory beam is subjected to a sinusoidal traction at top surface, 
a

x
pP


sin0   

with p0 = 1 and the actuating beam is subjected to a sinusoidal potential at top surface, 
a

x
 sin0   with 0 

= 1.  

Three kinds of beam, viz. thick beam (s = a/h = 4), moderately thick beam (s = 10) and slender beam (s = 

100) have been investigated. 

Results are non-dimensionalised for the sensory beam as; 
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and for the actuating beam as; 
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in which, dT = 374×10-12 C/N.  

Following lamination orders are considered for sensory and actuating beams. Orientation of fibers is given 

relative to x-direction. 

1. Symmetric substrate laminate with PZT-5A layer bonded at top [p/0/90/90/0] 

2. Asymmetric substrate laminate with PZT-5A layer bonded at top [p/0/90/0/90]; 

a Kapuria (2001), b Heylinger and Brooks (1996), c Lu et al. (2005) 

Figure 2: Stacking in laminated smart beam (a) symmetric, (b) asymmetric 
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where alphabet p represents a piezoelectric layer. 

Results obtained using present formulation are compared with the exact solutions given by Kapuria (2001). 

The results are presented in Table 2 for sensory beam and Table 3 for actuating beam. Through thickness 

variations in normalized in-plane displacement, normalized in-plane normal stress and normalized transverse 

shear stress are shown in Figures 3-5, which show that the present model is precisely capturing slope 

discontinuities in u, x and xz at the interface. The non-linearity of in-plane displacement u is much 

pronounced in a thick beam (s = 4) compared to that in a moderately thick beam (s = 10). Actuating voltage 

is observed to create large inter-laminar in-plane normal stresses x. 

Example 2 

A simply supported symmetric 3-layer cross-ply [90/0/90] layered plate of PVDF (material properties 

given in Table 1) in cylindrical bending is investigated. The plate is subjected to two loading cases; a sensory 

plate subjected to sinusoidal mechanical load with maximum intensity p0 = 1 and an actuating plate 

subjected to sinusoidal electric load with maximum intensity 0 = 1. Two aspect ratios, a/h = 4, 100 are 

considered for investigation. Results obtained by present formulation are compared with exact solutions 

given by Heylinger and Brooks (1996). The results for both the cases are presented in Figures 6 to 9. A 

prominent non-linear variation in each layer is seen in in-plane displacement u, in-plane normal stress x and 

transverse shear stress xz in a thick plate (s = 4) in Figures 6-8. These variations approach linearity in layer 

for a slender plate (s = 100). 

  

Example 3 

A simply supported 2-ply bimorph [PZT-4/PVDF] plate with equal layer thicknesses in cylindrical bending is 

investigated. Material properties are given in Table 1. Thickness of each layer is assumed to be 0.005 m. The 

plate is subjected to two loading cases; a sensory plate subjected to sinusoidal mechanical load and an 

actuating plate subjected to sinusoidal electric load, both with unit maximum intensities. Several aspect 

ratios, a/h = 2, 6, 10, 20, 50, 100 are considered for investigation. Numerical values of stresses and 

displacements at critical points are reported in Table 4 for sensory plate and in Table 5 for actuating plate, 

which, in absence of similar data, may serve as benchmark results. 

Example 4 

To further assess the virtuosity of the present model, a PZT-4 based piezoelectric functionally graded 

material (PFGM) plate in cylindrical bending is analyzed. Geometry of the plate is assumed as a = h = 1m. 

Material elastic and electric properties are assumed to vary in the thickness direction according to 

exponential law; 
z

ijij eCC 0 , 
z

ijij eee 0 , 
z

ijij egg 0 , where superscript (0) indicates value of the quantity at 

the base (h = 0) and β is a constant indicating gradient in z direction. Material properties are given in Table 1. 

Three different gradiemts are investigated, viz. β = -1, 0, 1 with β = 0 indicating homogeneous piezo-

material. The plate is subjected to transverse mechanical load 
a

x
pP


sin0 with p0 = 1 and electric potential 

a

x
 sin0   with 0 = 1 at top surface. Results obtained for through-thickness variations in mechanical and 

electric quantities at a section x = 0.25a are compared with exact results given by Lu et.al. (2005). Results 

for mechanical loading are given in Figure 10 and for electrical loading are given in Figure 11, which show 

that change in material gradient index β of PFMG hardly affects the displacements whereas it largely affects 

the stresses.  
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Concluding remarks 

A new Semi-analytical methodology for the analysis of a smart laminate under plane stress and plane strain 

conditions of elasticity has been described in this paper. The mathematical model is highly accurate and 

computationally inexpensive. The methodology is free from any simplifying assumptions in thickness 

direction. The stresses and displacements are found simultaneously and with the same degree of accuracy, 

which is a unique feature of this model. Accuracy of the formulation is ascertained in numerical investigation 

by comparing the results obtained using present formulation with available exact solutions and are found to 

be in very good agreement with the same. The model is versatile and performs equally efficiently for a 

layered smart beam, for a piezoelectric cross-ply and for a PFGM plate too. Additional results for a bimorph 

have been reported for future reference. 
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100 

Exacta -2.89 1.1866 -2.167 1.389 -6.927 -1.504 

Present -2.894 1.188 -2.165 1.391 -6.944 -1.498 

% Error 0.145 0.147 -0.06 0.147 0.253 -0.393 

A
sy

m
m

et
ri

c 

B
ea

m
 4 

Exacta -4.022 2.2938 -1.959 1.734 -6.409 -1.515 

Present -3.9893 2.3002 -1.9552 1.69445 -6.4312 -1.526 

% Error -0.812 0.279 -0.19 -2.28 0.346 0.731 

10 
Exacta -3.47 1.8887 -2.058 1.574 -6.409 -1.508 

Present -3.4697 1.8916 -2.0528 1.55989 -6.6764 -1.5116 

Table 2: Normalized displacements and stresses in a sensory beam 

 

a Kapuria (2001) 
Table 3: Normalized displacements and stresses in an actuating beam 
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% Error -0.006 0.153 -0.249 -0.895 4.172 0.242 

100 

Exacta -3.557 1.801 -2.079 1.541 -6.71 -1.507 

Present -3.362 1.804 -2.073 1.5431 -6.7271 -1.508 

% Error -5.463 0.167 -0.284 0.136 0.255 0.112 

 

 

Parameter 

(Position) 

Aspect ratio a/h 

2 6 10 20 50 100 

u (0, h/2) -0.3282E-12 -0.6792E-11 -0.2998E-10 -0.2345E-9 -0.364E-8 -0.2909E-7 

u (0, 0) 0.2789E-12 0.3787E-11 0.1524E-10 0.1136E-9 0.1738E-8 0.1386E-7 

u (0, -h/2) 0.3154E-12 0.1157E-10 0.5555E-10 0.4517E-9 0.7090E-8 0.5676E-7 

w (0, h/2) 0.9827E-12 0.4182E-10 0.2916E-9 0.4447E-8 0.1713E-6 0.2735E-5 

w (0, 0) 0.9582E-12 0.4198E-10 0.2922E-9 0.4449E-8 0.1713E-6 0.2735E-5 

w (0, -h/2) 0.8909E-12 0.4156E-10 0.2911E-9 0.4445E-8 0.1713E-6 0.2735E-5 

x (0, h/2) 5.8033 38.485 101.59 396.7 2.4619E3 9.8377E3 

x (0, 0) -4.429 -20.15 -49.43 -187.6 -1.162E3 -4.655E3 

x (0, 0) -0.909 -4.149 -10.32 -39.8 -0.249E3 -1.002E3 

x (0, -h/2) -1.155 -14.11 -40.65 -165.3 -1.038E3 -4.154E3 

z (0, 0) 0.2307 0.3558 0.3728 0.3806 0.3828 0.3831 

xz (0, 0) 0.5667 2.3054 3.9751 8.0703 20.262 40.549 

 (0, 0) 0.2909E-4 0.4406E-3 0.0013 0.0054 0.0337 0.1351 

Dz (0, h/2) 0.2338E-9 0.2122E-9 0.2495E-9 0.4531E-9 0.1899E-8 0.7068E-8 

Dz (0, 0) -9E-13 0.0193E-9 0.0632E-9 0.2698E-9 0.1717E-8 0.6885E-8 

Dz (0, -h/2) 0.6123E-12 0.2152E-10 0.6547E-10 0.2721E-9 0.1719E-8 0.6888E-8 

 

 

Parameter 

(Position) 

Aspect ratio a/h 

2 6 10 20 50 100 

u (0, h/2) -0.1451E-9 -0.6499E-10 -0.4208E-10 -0.2592E-10 -0.2337E-10 -0.0348E-9 

u (0, 0) 0.1805E-10 0.0719E-10 -0.0383E-10 -0.2261E-10 -0.0675E-9 -0.1381E-9 

u (0, -h/2) -0.5276E-10 -0.4459E-10 -0.4372E-10 -0.5922E-10 -0.1276E-9 -0.2493E-9 

w (0, h/2) -0.2338E-9 -0.2122E-9 -0.2495E-9 -0.4531E-9 -0.1899E-8 -0.7068E-8 

w (0, 0) -0.1653E-9 -0.2012E-9 -0.2444E-9 -0.4505E-9 -0.1897E-8 -0.7066E-8 

w (0, -h/2) -0.1776E-9 -0.2252E-9 -0.2693E-9 -0.4758E-9 -0.1923E-8 -0.7091E-8 

x (0, h/2) 302.29 56.179 12.825 -7.5062 -13.437 -14.293 

x (0, 0) -338.13 -65.634 -11.882 13.335 20.636 21.672 

x (0, 0) -86.005 -26.558 -14.932 -9.5122 -7.957 -7.74 

x (0, -h/2) 181.73 37.481 14.494 3.9111 0.8462 0.4046 

z (0, 0) -22.062 -0.5259 -0.0556 0.0019 0.001 0.2856 

xz (0, 0) -24.507 -1.2623 0.0602 0.2237 0.1122 0.0577 

 (0, 0) 0.7099 0.9528 0.9782 0.9894 0.9925 0.993 

Dz (0, h/2) -0.1939E-5 -0.2795E-6 -0.1167E-6 -0.4629E-7 -0.2637E-7 -0.2352E-7 

Dz (0, 0) -0.0019E-5 -0.0221E-6 -0.0224E-6 -0.2253E-7 -0.2256E-7 -0.2257E-7 

Dz (0, -h/2) -0.1465E-7 -0.2145E-7 -0.2216E-7 -0.2246E-7 -0.2255E-7 -0.2256E-7 

a Kapuria (2001) 

Table 4: Displacement and stress values in a sensory bimorph [PZT4/PVDF] plate 

 

Table 5: Displacement and stress values in an actuating bimorph [PZT4/PVDF] plate 
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Figure 3: Through thickness variation of normalized in-plane displacement in smart beam 

(a) symmetric sensory, (b) asymmetric sensory, (c) symmetric actuating  
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Figure 4: Through thickness variation of normalized in-plane normal stress in smart beam 

(a) symmetric sensory, (b) asymmetric sensory, (c) symmetric actuating  
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Figure 5: Through thickness variation of normalized transverse shear stress in smart beam 

(a) symmetric sensory, (b) asymmetric sensory, (c) symmetric actuating  
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Figure 6: Through thickness variation of in-plane displacement in PVDF cross ply laminate for 

(a) applied load case, (b) applied electric potential case  
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Figure 7: Through thickness variation of in-plane normal stress in PVDF cross ply laminate 

(a) applied load case, (b) applied electric potential case  
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Figure 8: Through thickness variation of transverse shear stress in PVDF cross ply laminate 

(a) applied load case, (b) applied electric potential case  
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Figure 9: Through thickness variation of electric potential in PVDF cross ply laminate 

(a) applied load case, (b) applied electric potential case  
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Figure 10: Through thickness variation in piezoelectric FGM plate under mechanical load in 

(a) in-plane displacement, (b) transverse displacement, (c) transverse normal stress, 

(d) transverse shear stress, (e) induced electric potential, (f) transverse electric displacement 
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Figure 11: Through thickness variation in piezoelectric FGM plate under electric load in 

(a) in-plane displacement, (b) transverse displacement, (c) transverse normal stress, 

(d) transverse shear stress, (e) applied electric potential, (f) transverse electric displacement 
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