
www.ijcrt.org                                                                  © 2023 IJCRT | Volume 11, Issue 9 September 2023 | ISSN: 2320-2882 

IJCRT2309488 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org e56 
 

MALWARE DETECTION USING DEEP LEARNING

 

MOYYI APPALANAIDU, 

DEPARTMENT OF COMPUTER SCIENCE AND SYSTEM ENGINEERING 

 

ABSTRACT: 

Malware detection is a critical task in 

cybersecurity to protect systems and 

networks from malicious software threats. 

Traditional signature-  based  approaches 

often struggle to keep up with the rapidly 

evolving landscape of malware. In recent 

years, deep  learning   techniques   have 

shown promising results in detecting malware  

by leveraging  the  sequential nature of the 

data. 

This paper presents a novel approach that 

combines     Long      Short- Term     Memory ( 

LSTM) and Gated Recurrent Unit ( GRU) 

networks for effective  malware  detection. 

The LSTM and GRU architectures are bot h 

variants    of    Recurrent    Neural    Networks 

( RNNs) known for their ability  to capture 

long- term dependencies  in sequential data. 

By combining these architectures, the 

proposed method aims to leverage the 

complementary  strengths  of LSTM   and 

GRU models  for enhanced   malware 

detection performance. 

The model's performance is rigorously 

evaluated using  established  metrics, 

including  accuracy,  precision, recall   and 

F1- score. Comparisons are made with 

baseline  models,  including  single  LSTM 

and GRU models, as well as traditional machine 

learning classifiers. 

The results  demonstrate   the   effectiveness 

of the combined LSTM and GRU ensemble 

model in accurately detecting malware, 

particularly  previously   unseen   variants. 

The ensemble approach capitalizes on the 

diverse capabilities of LSTM and GRU 

networks, resulting in improved  detection 

rates  and reduced false  positives.   The 

results obtained  with  model accuracy  of 

99% are presented. 

1.INTRODUCTION 

Malware  can be defined  as a set of 

malicious files or programs  and may take 

many forms like Root kit, Spyware, Botnet, 

Trojan,  Ransomware  and gain   unauthorized 

or unprivileged access to files  in victim 

systems or servers. Malware can affect 

devices like desktops,  laptops, mobile 

phones, health care devices, enterprise 

servers, clients, and network devices. 

Malware detection  means  finding the 

presence of malware in a given host or 

detecting the malicious  behavior  of  a 

program. Email, chat clients, phone 

conversations, SMS messages,  and even 

postal mail are  used to communicate  with 

other systems or software. 

Malware poses significant threats to the 

securit y and integrity of computer systems, 

networks, and sensitive data. Detecting and 

mitigating    these    malicious software 

instances is crucial to safeguarding digital 

environments. Traditional approaches to 

malware detection often struggle to keep up 

with the evolving tactics  employed  by 

malware authors. In recent years,  deep 

learning       techniques      have  gained 

prominence for their ability to effectively 

analyze  complex patterns  and   dependencies 

in sequential data. 

This explores an innovative approach for 

malware  detection that   leverages the  power 

of    two    popular   recurrent   neural   network 

( RNN) architectures: Long Short - Term 

Memory ( LSTM)   and   Gated Recurrent   Unit 

( GRU). LSTM  and GRU are advanced 

variants of RNNs that  excel  at capturing long- 

term dependencies in sequential data, making 

them well- suited for analyzing the dynamic 

and evolving nature of malware. 

By combining the  strengths  of  LSTM  and 

GRU models, this approach  aims to enhance 

the accuracy and robustness of malware 

detection. The paper provides detailed 

http://www.ijcrt.org/


www.ijcrt.org                                                                  © 2023 IJCRT | Volume 11, Issue 9 September 2023 | ISSN: 2320-2882 

IJCRT2309488 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org e57 
 

insights into data preprocessing techniques, 

model  configuration  considerations,     and 

t raining procedures for implementing the 

combined LSTM and GRU approach. It also 

explores  strategies  for customization,  such 

as adjusting model parameters and handling 

imbalanced data, to optimize performance. 

 

With the guidance offered in this paper, 

practitioners and researchers can develop 

advanced  malware  detection   systems 

capable of accurately identifying and 

mitigating the risks posed by malware. By 

harnessing  the  capabilities  of LSTM  and 

GRU     networks, organizations can 

strengthen their security posture, protect 

sensitive information,   and   proactively 

defend against evolving malware threats. 

 
1.1 BACKGROUND: 

The evolution of malware has mirrored  the 

rapid advancements in technology.  In the 

early days of computing, viruses and worms 

were  relatively  simple,  often relying  on 

basic  replication  and propagation 

mechanisms. As computing systems became 

more sophisticated and interconnected, 

malware authors adapted, developing 

increasingly   complex   and   evasive 

strategies. Today, malware can be 

polymorphic, constantly   changing   it s code 

to avoid detection, or it can employ 

sophisticated techniques like zero - day 

exploits to target vulnerabilities  in software 

and hardware. 
 

Traditional  antivirus  solutions   have   relied 

on signature- based detection, where known 

malware patterns  are matched  against  files 

and processes.  While   effective   against 

known threats, these solutions struggle with 

zero-  day attacks and polymorphic  malware, 

as they lack predefined signatures for such 

variants. This limitation necessitates a shift 

towards      more advanced detection 

techniques that can learn and adapt  to 

emerging threats. 

 
1.2  MOTIVATION: 

The motivation for this research is twofold. 

Firstly, it arises from the  pressing  need for 

more     effective      malware detection 

mechanisms that  can identify  both  known 

and previously unseen malware variants. 

Secondly,  it is driven  by the  desire  to 

explore the capabilities of deep learning, 

 

particularly LSTM and GRU networks, in 
addressing this critical cybersecurity 

challenge .    

 

The arms race between  cybersecurity 

defenders and malicious actors necessitates 

innovative  solutions  that  can adapt   and 

evolve     alongside     emerging threats. 

Traditional methods, reliant on static 

signatures or heuristics, often   fall   short  in 

the  face of polymorphic  or zero   -day 

malware. Machine learning offers a dynamic 

approach by learning patterns and behaviors 

from data. This research seeks to harness the 

capabilities of recurrent  neural  networks, 

which are well- suited for sequential data 

analysis, to enhance the accuracy and 

adaptability of malware detection. 

 
1.3 RESEARCH OBJECTIVES: 

The primary objective of this research is to 

develop a state- of- the- art malware detection 

model t hat combines LSTM  and GRU 

networks to exploit their complementary 

strengths in capturing temporal 

dependencies. Specific research objectives 

include: 

 

1. Designing  a novel  ensemble  architecture 

that seamlessly integrates LSTM and GRU 

networks for malware detection. 

2. Preprocessing and feature engineering of 

executable file data to prepare  it for input  to 

the model. 

3. Training the ensemble model on a diverse 

dataset of executable files,  encompassing  a 

wide range of benign and malicious sample s. 

4. Evaluating the model's performance on 

various     metrics,      including accuracy, 

precision, recall and F1- score. 

5. Comparing the  performance  of   the 

ensemble model with baseline  models, 

including single  LSTM  and   GRU   networks, 

as well as traditional machine learning 

classifiers. 

6. Discussing the implications of t he findings 

and the  potential impact   of the   research on 

the field of cybersecurity. 

 
1.4 CONTRIBUTION: 

This research contributes to the fie ld of 

cybersecurity by proposing an innovative 

malware  detection  model t hat combines 

LSTM and GRU networks.  The key 

contributions of this research include: 
 

The development  of a novel ensemble  model 

http://www.ijcrt.org/


www.ijcrt.org                                                                  © 2023 IJCRT | Volume 11, Issue 9 September 2023 | ISSN: 2320-2882 

IJCRT2309488 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org e58 
 

that harnesses the  strengths  of LSTM  and 
GRU networks for improved  malware 

detection. 

Extensive experimentation and evaluation of 

the  model's  performance   on   a   diverse 

dataset of executable files. 

A comprehensive comparative  analysis of 

the ensemble model with baseline models 

and  traditional machine learning classifiers. 

Insights into the adaptability and 

effectiveness of deep learning techniques, 

particularly LSTM and GRU networks, in 

addressing the challenge of malware 

detection. 

 

 
2. RELATED WORK 

Much of  t he published  recent research 

work is focused on building automatic 

malware detection mechanisms which use 

statistical      methods     rather than 

deterministic rules. Many works have also 

proposed Machine Learning based 

approaches solutions for cyber  security 

related  problems. Many  of   these 

operations may be automated  to detect 

cyber- attacks in real time and prevent 

damage. It was found  in the  survey  t hat 

most researchers   are   interested   in 

detection of malware of different types. 

A model is proposed in [ 1] using three 

datasets  for t raining,  testing, and scaling 

up. The paper discusses  the  use of cascade 

one sided perceptron first and cascade 

kernelized one sided perceptron later to 

identify malware files and reduce false 

positives. The work in [ 2] considers 

building a decision model with data 

processing, decision making and malware 

detection to classify and detect  any 

suspicious malware. The malware analysis 

system is ML based  and uses   shared 

Nearest Neighbor technique. 

In [ 3] information  was collected   from 

2510 APK files of which  1260  were 

malicious apps. The paper proposed a 

machine learning based framework for 

detecting      malicious      apps using 

information  from  API calls  and 

permissions. In [ 4] Microsoft office files 

related to malicious macros were analyzed 

using Machine learning methods. In [ 5 ] 

data  is collected  from  packets  instead  of 

port  numbers  and protocols   and   aut o- 

mated  malware  detection  was   proposed 

using Convolution  Neural  Networks  and 

other machine learning methods. In [ 6] 

Malware files are executed in the Cuckoo 

Sandbox and t raced  malware process 

behavior  to determine  generated   and 

injected processes. RNN ( Recurrent Neural 

Network) is used for feature extraction  and 

later CNN is t rained to classify.  In [ 7] a 

model based on  deep  auto  - encoder and 

CNN was proposed. The data was collected 

from 23000  apps  and was processed  for use 

in deep  learning  models to identify malware 

in android apps. In [ 8] data was collected from 

VMs by running various malware like rootkits  

and Trojan  horses. Both 2D and 3D CNN were 

used to impro e accuracy of detection. In [ 9] a 

binary  file was classified  to be malicious  or   

benign. The model  was tested  on a dataset  

with 11130 binaries. In [ 10] data  

augmentation was used to generate variants of 

images obtained from malware samples.  In [ 

11] novel  ensemble   CNN   based   

architecture was used for detection of both 

packed and unpacked malware. In [ 12 ] static  

and dynamic analysis tools were used to extract 

features from  7000  malware  and 3000 

benign  files,   and   a classification   model 

was built. In [ 13] a classification  model  is 

built by extracting requested permissions, 

vulnerable API calls, application’ s key 

information  such  as dynamic  code, 

reflection code, native code, cryptographic 

code,  and   database   from   applications.   In 

[ 14]   An   effective    deep    learning    model 

( MMD) was built to detect malware  and 

1000000 samples from EMBER dataset are 

considered to extract features. 

http://www.ijcrt.org/


www.ijcrt.org                                                                  © 2023 IJCRT | Volume 11, Issue 9 September 2023 | ISSN: 2320-2882 

IJCRT2309488 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org e59 
 

 

 
 

 
Fig 1 PE File Format 

 

 
3. TRAINING DATA 

The selection  and preparation  of t raining 

data for malware detection are paramount  to 

the success of the   model.   In   our   research, 

we adopted  a rigorous  approach to   ensure 

that the t raining dataset is representative, 

diverse, and capable of  capturing  the 

intricacies of both benign and malicious 

software. 

3.1. DATASET COMPOSITION: 

Our training dataset consists of a 

comprehensive  collection   of   executable 

files, encompassing a wide spectrum of 

samples. These samples are meticulously 

curated to strike  a balance  between  benign 

and malicious instances. This balance is 

essential  to avoid t raining   bias   and   to 

enable the model  to generalize  effectively. 

The dataset includes: 
3.1.1. BENIGN EXECUTABLES: 

A substantial portion of the dataset is 

comprised of benign executable files. These 

files are obtained from various legitimate 

software sources and represent the normal 

operating environment of computer systems. 

They include common applications, system 

utilities, and user software . 
3.1.2. MALICIOUS EXECUTABLES: 

To challenge the model and facilitate  the 

learning of malware patterns, we include a 

diverse range of known malicious executable 

files.  These  malware  samples  are  sourced 

from malware repositories  and security 

research datasets. They cover a variety of 

malware families, behaviors, and attack 

vectors. 

 
3.2. DATA PREPROCESSING: 

Before t raining the model, we perform 

extensive data preprocessing  to extract 

relevant features  from  the  executable  files. 

This involves parsing file headers, extracting 

binary patterns, and transforming them into 

numerical representations suitable  for input 

into the model. Additionally,  we conduct 

feature engineering to enhance the 

discriminative power  of the  features,   which 

is crucial for accurate detection. 

 
3.3. DATASPLIT: 

To ensure a robust evaluation of the model's 

performance,  we split   the   dataset   into   two 

distinct   subsets:  t raining  and   test   sets.   The t 

raining set accounts for approximately 80% of 

the dataset, while the  test  sets  each constitute 

20%. This  split allows us to: 

 

Train  the    model  on    a    large   and    diverse 

t raining dataset to learn malware and benign 

software characteristics.  

Fine- tune hyperparameters and monitor the 

model's performance on the validation set 

during t raining to prevent overfitting. 

Evaluate the model's real-  world performance 

on unseen data using the test set. 

 
3.4. LABELLING: 

Each sample  in the t raining  dataset  is labeled 

as either " benign" or " malicious s" based on 

ground t ruth  information.   This   labeling  is 

critical for supervised learning, enabling the 

model to associate input features with  the 

correct class labels during t raining. 

 
The labels  are  0 and 1 for malicious and 

benign with counts of 96724 and 41323 
respectively. 

http://www.ijcrt.org/


www.ijcrt.org                                                                  © 2023 IJCRT | Volume 11, Issue 9 September 2023 | ISSN: 2320-2882 

IJCRT2309488 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org e60 
 

 
 

 
 

 
 

Fig2 Label Distribution in The Dataset 

 
 

4. MODELARCHITECTURE 

The model architecture for malware 

detection combines  the  power  of Long 

Short- Term Memory ( LSTM) and Gated 

Recurrent  Unit ( GRU)  neural   networks. 

This architecture is designed to capture the 

sequential  nature   of   malware  sequences 

and effectively learn complex patterns and 

dependencies. 

The input  to the  model  consists  of 

sequential data  representing   the    behavior 

or characteristics of potential malware 

samples. This input is passed  through  both 

the  LSTM  and GRU   layers  in   parallel. 

Each  layer processes  the input data  and 

learns relevant representations at different 

levels of abstraction. 

4.1. LSTM BRANCH: 

The LSTM layer, known for its ability to 

capture  long-  term  dependencies,  consists 

of multiple LSTM units. Each unit 

incorporates a cell state and a set of gates, 

including the input gate, forget gate,  and 

output  gate.  These  gates  control  the   flow 

of information  within   the   unit,   allowing 

the model to retain  important  information 

over  long sequences.  The LSTM   layer 

learns to selectively update  and utilize  the 

cell   state,   facilitating   the    capture    of 

crit ical dependencies in the malware 

sequences. 

4.1.1. INPUT LAYER: The input to the LSTM 

branch is a sequence of feature vectors 

extracted  from  executable  files.   These 

feature vectors encapsulate essential 

information about the files, including 

characteristics, binary patterns, and other 

relevant data. 

4.1.2. LSTM LAYERS: We employ one or more 

LSTM  layers,  with  each  layer   consisting  of 

a variable  number  of  LSTM  units. These 

units are responsible for processing the 

sequential data and capturing long- term 

dependencies.  The output   of   each  LSTM 

unit    at   each  time step  feeds  into the next 

time step,  allowing  the  network to 

remember  information  over   extended 

periods. 

 
4.1.3. DENSE LAYER: Following the LSTM 

layers,  we include a   densely   connected 

layer with a RELU activation function. This 

layer      acts     as      a      feature      extractor, 

transforming the LSTM's output into a more 

compact and representative feature space. 

 
4.2. GRU BRANCH: 

Similarly, the GRU layer, another  variant  of 

the RNN architecture, is also employed to 

capture  sequential  information.  The   GRU 

unit integrates  an update  gate  and a reset 

gate to control the flow of information. The 

update gate  determines  the  extent  to which 

the unit updates it s hidden  state,  while the 

reset gate decides how much of the previous 

hidden  state  should be   forgotten.   This 

gating mechanism enables the GRU layer to 

effectively model dependencies and adapt to 

varying lengths of input sequences. 

 
4.2.1. INPUT LAYER: Similar to the  LSTM 

branch, the GRU branch also takes the same 

sequence of feature vectors as input. 

 
4.2.2. GRU LAYERS: Just as in   the   LSTM 

branch, we employ one or more GRU layers. 

These layers  consist  of GRU units  that 

process the sequential data, capturing short - 

term  dependencies  efficiently. The GRU 

units, like LSTM units, maintain an internal 

state that can capture  dependencies  within 

short time intervals. 

http://www.ijcrt.org/


www.ijcrt.org                                                                  © 2023 IJCRT | Volume 11, Issue 9 September 2023 | ISSN: 2320-2882 

IJCRT2309488 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org e61 
 

4.2.3. DENSE LAYER: After the GRU layers, we 

introduce another densely connected layer 

with  a RELU  activation  function.   This 

layer plays a critical role  in feature 

extraction,  enabling the  network to 

represent short-term dependencies 

effectively. 

 
4.3. MERGING LSTM and GRU BRANCHES: 

To combine  the  strengths  of LSTM  and 

GRU, the outputs of both layers are merged 

and passed through  additional  fully 

connected layers. These layers act as a 

classifier, mapping the learned 

representations to the target  malware 

detection labels. The final layer uses an 

appropriate activation function, such as 

sigmoid or Soft Max to generate the output 

probabilities for  each malware class. 

 
4.4. FINAL OUTPUT LAYER: 

The merged representation is then passed 

through  a final  densely  connected  layer 

with a sigmoid  activation  function.  This 

layer serves as the   classification   head   of 

the model, making  binary  predictions: 

whether  the input   executable file   is benign 

or malicious.  The sigmoid activation 

function ensures that the output is a 

probability score, allowing us to set a 

threshold for classification. 

 
4.5. TRAINING AND OPTIMIZATION: 

The model is t rained  using  labeled  data, 

where  each  input  sequence  is associated 

with  a   binary   label    indicating    its    class 

( benign or malicious). During t raining, the 

model adjusts its weights and biases to 

minimize the binary cross- entropy loss 

between the predicted probabilities and the 

actual labels.  Optimization technique  such 

as Adam is employed to expedite 

convergence. 

4.6. EVALUATION AND METRICS: 

To assess the model's  performance,  we 

employ a range of  metrics,  including 

accuracy, precision, recall, F1 - score. These 

metrics  provide  a comprehensive  view   of 

the model's ability to correctly classify 

executable files. 

This model architecture facilitates the 

effective representation and analysis of 

malware sequences, enabling accurate 

detection. The LSTM  layer captures  long - 

term dependencies, while the GRU layer 

complements it by efficiently modelling 

sequential information. The combination of 

both architectures allows the model to learn 

intricate patterns and adapt to different 

characteristics of malware samples. 

 

 
Fig 3 System Architecture 

 

Model: Sequential 
 

Layer (type) Output Shape 
===================================== 
===================================== 
LSTM input (Input Layer) [(None, 13, 1)] 

GRU input (Input Layer) [(None, 13, 1)] 

lstm (LSTM) (None, 128) 

 

gru (GRU) (None, 128) 

 

dense (Dense) (None, 64) 

 
dense_1 (Dense) (None, 64) 

concatenate (Concatenate) (None, 128) 

dense_2 (Dense) (None, 1) 

===================================== 
===================================== 

Fig4 Model Layers 

http://www.ijcrt.org/


www.ijcrt.org                                                                  © 2023 IJCRT | Volume 11, Issue 9 September 2023 | ISSN: 2320-2882 

IJCRT2309488 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org e62 
 

5. TESTING MODEL 

The testing phase of our malware detection 

model  is a pivotal  step   in evaluating   it s 

real- world  efficacy.  It involves  subjecting 

the t rained model to a diverse  set of 

executable files  t hat it   has   never 

encountered before, simulating scenarios 

where the  model needs  to   make    predictions 

on previously  unseen  malware  variants. In 

this  comprehensive  explanation,  we will 

detail the various aspects  of the  testing model, 

including dataset preparation, metrics, and 

performance evaluation. 

 
5.1. TESTING DATASET PREPARATION: 

The   testing  dataset   is a critical component of 

the testing model. It represents the real- world 

environment in which the model will operate.  

To ensure  a rigorous   evaluation, the   testing    

dataset    is    distinct    from    the t raining and 

validation datasets, containing executable files  

that  the  model  has never been exposed to 

during t raining. The test ing dataset is divided 

into two subsets: 

 

5.1.1. VALIDATION SET: This subset is used 

during the testing phase for fine-  tuning 

certain hyperparameters and for monitoring 

the     model's performance without 

influencing the final evaluation results. It 

serves as a bridge  between t raining  and 

full- scale testing. 

 

5.1.2. TEST SET: The primary subset used for 

model  evaluation  is the  test  set.  It is 

entirely distinct from the t raining and 

validation  sets   and   contains   executable 

files that the model  has never  seen  before. 

This subset is a true representation of the 

model's real- world performance. 

 
5.2. DATA ENCODING AND PREPROCESSING: 

Like the t raining phase, the test ing data 

undergoes encoding and preprocessing to 

prepare it for input into the model. This 

includes: 

 
5.2.1. EXTRACTING RELEVANT FEATURES: 

Features extracted  from   the   executable 
files include  characteristics,  binary patterns, 

and other relevant data. 

 
5.2.2. . 2 . ENCODING AND 

TRANSFORMATION: 

The feature vectors  extracted  from  the 

testing data are encoded  and t ransformed 

into a suitable  format  for input into the 

model, ensuring consistency with the 

training data preprocessing, 

 
 

5.3. MODEL DEPLOYMENT: 

During the testing phase, the t rained model is 

deployed to make predictions on the testing 

dataset. This deployment phase is crucial for 

evaluating the model's ability to generalize and 

make accurate classifications on previously 

unseen data. 

 
 

5.1 METRICS FOR EVALUATION: 

The performance of the model is evaluated 

using a comprehensive set of metrics these 

metrics provide insights into its abilit y to 

correctly classify  executable files into benign 

or malicious categories. The key metrics  used 

for evaluation include: 

 

5.1.1. ACCURACY: Accuracy measures the 

overall     correctness    of     the model's 

predictions. It is calculated as the rat io of 

correctly classified samples  to the total 

number of samples. 

 

5.1.2. PRECISION: Precision quantifies the 

model's ability to correctly identify malicious 

samples without producing  false positives.   It 

is   calculated   as   the  rat io   oft rue positives 

to the sum of t rue positives and false 

positives. 

 

5.1.3. RECALL: Recall, also  known  as 

sensitivity or t rue positive rate, measures the 

model's ability to identify all  malicious 

samples correctly. It is calculated as the ratio 

of t rue positives to the sum of t rue positives 

and false negatives. 

 

5.1.4. F1-SCORE: The F1- score is the harmonic 

mean of precision and recall. It provides a 

balance between precision and recall, 

considering both false positives and false 

negatives. 

 
 

So, this section discusses the generation of 

customized malware and test ing combined 

model of  Long   Short -Term   Memory( 

LSTM) and Gated  Recurrent  Unit ( GRU) 

model for   classifying  whether  it is a malware 

or not. The data is pr e- processed and uses ek 

tree classifier to extract  features  and is 

submitted to the model for prediction. 

http://www.ijcrt.org/


www.ijcrt.org                                                                  © 2023 IJCRT | Volume 11, Issue 9 September 2023 | ISSN: 2320-2882 

IJCRT2309488 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org e63 
 

6. CONCLUSION 

 

Malware can be classified using deep 

learning  techniques.  This paper  discusses 

a deep learning RNN model for malware 

detection. The paper has extensively 

surveyed     several    works       published 

in literature. combined model  of Long 

Short  - Term  Memory  ( LSTM)  and 

Gated Recurrent Unit ( GRU) was t rained 

and tested with malware dataset and was 

found to   work  with  99% accuracy  which 

is quite a good improvement over [ 15]. 

Later the model was also tested with 

unknown malware generated through MSF 

venom, and it was correctly classified. In 

future the model will be fine- tuned and 

optimized for   better  accuracy.  Detection 

in real time is another area  to be explored 

 

 
7. REFERENCE 

1. Gavriluţ,  D. Cimpoeşu,  M.,   Anton,   D. 

and Ciortuz, L., 2009, October. Mal- ware 

detection using machine learning. In 2009 

IEEE Multiconference  on   Computer 

Science and Information Technology ( pp. 

735- 741). IEE 

2. Liu, L., Wang, B. S., Yu, B. and Zhong, 

Q. X., 2017. Automatic malware 

classification and new malware detection 

using machine learning. Frontiers of 

Information Technology & Electronic 

Engineering, 18( 9), pp. 1336 - 1347. 

 
3. Peiravian, N. and Zhu, X., 2013, 

November. Machine learning for android 

malware  detection  using  permission   and 

API calls.  In 2013  IEEE 25th  inter  - 

national conference on tools with artificial 

intelligence ( pp. 300 - 305). IEEE. 

4. Bearden, R. and Lo, D. C. T., 2017, 

December. Automated Microsoft office 

macro malware detection using machine 

learning. In 2017 IEEE International 

Conference on Big Data ( Big Data)  ( pp. 

4448- 4452). IEEE. 

5. Yeo, M., Koo, Y., Yoon, Y., Hwang,  T., 

Ryu, J., Song,  J. and Park, C.,   2018, 

January. Flow- based malware detection 

using convolutional neural network. In 

2018 International Conf on Information 

Networking ( pp. 910 - 913). 

6. Tobiyama, S., Yamaguchi, Y., Shimada, 

H.,Ikuse, T. and Yagi, T., 2016, June. Malware 

detection with deep neural  network  using 

process behavior. In 2016 IEEE 40th annual 

computer  software  and applications conference 

( COMPSAC) ( Vol. 2, pp. 577 - 582). IEEE. 

7. Wang, W., Zhao, M. and Wang, J., 2019. 

Effective android malware detection with a 

hybrid model based on deep auto encoder and 

convolutional neural network. Journal of 

Ambient Intelligence and Humanized 

Computing, 10( 8), pp. 3035 - 3043. 

8. Abdelsalam, M., Krishnan, R., Huang, Y. and 

Sandhu, R., 2018, July. Mal- ware detection in 

cloud infrastructures using convolutional 

neural networks. In 2018 IEEE 11th 

international   conference   on cloud  computing 

( CLOUD) ( pp. 162 - 169). IEEE. 

9. Sharma,  A., Malacaria,  P. and   Khouzani, 

M. H. R., 2019,  June.  Malware  de- tection 

using 1- dimensional convolutional neural 

networks. In 2019 IEEE  European Symposium 

on Security and Privacy 

Workshops ( Euro S&PW)  ( pp. 247 - 256). 

IEEE. 

10. Catak, F. O., Ahmed, J., Sahinbas, K. and 

Khand, Z. H.,  2021.  Data  augmen- tat ion- 

based malware detection using convolutional 

neural networks.  Peer J Computer  Science,  7, 

p. e346. 

11. Vasan, D., Alazab, M., Wassan,  S., Safaei, 

B. and Zheng, Q.,  2020.  Image-  Based 

malware classification  using  ensemble  of 

CNN architectures ( IMCEC). Computers & 

Security. 

12. Jerlin, M. A. and Marimuthu,  K., 2018.  A 

new malware detection system using 

machine learning techniques for API call 

sequences. Journal of Applied Security 

Research, 13( 1), pp. 45 - 62. 

13. Koli, J. D., 2018,  March.  RanDroid: 

Android malware detection using ran- dom 

machine learning classifiers. In 2018 

Technologies for Smart - City Energy 

Security and Power ( ICSESP) ( pp. 1 - 6). 

IEEE. 

14. Hyrum S. Anderson, Phil Roth., 2018. 

EMBER: An Open Dataset  for Training Static 

PE Malware Machine Learning Models. 

_32_bit_St 

http://www.ijcrt.org/

