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Abstract 

Thermal stress analysis of laminates under plane stress conditions of elasticity have been performed with mixed 

semi-analytical model. The displacements and transverse stresses that occur naturally at an interface of laminae 

are considered as fundamental dependent variables and thus continuity of transverse stresses and displacements 

are implicitly maintained at the laminae interfaces. The mathematical model consists of defining a two-point 

boundary value problem (BVP) governed by a set of coupled first-order ordinary differential equations (ODEs). 

The accuracy and the effectiveness of the proposed model are assessed by comparing numerical results from the 

present investigation with the available elasticity solutions under plane stress conditions. 
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Introduction 

Thermally induced deformations and stresses in layered composite and sandwich laminates represent a major 

concern in design of critical structures. These materials are also getting established in relatively new markets 

such as biomedical and electronic devices and also in civil structures. Due to increase in applications of 

composites in recent years, determination of thermally induced response is of great interest. Thermal stresses 

are present in laminates due to different thermal properties of the adjacent layers and due to change in 

temperature during the manufacturing processes and/or during service life. 

Three dimensional (3D) elasticity solutions based on the solution of partial differential equations (PDEs) with 

appropriate boundary conditions are valuable because they represent a more realistic and closer approximation 

to the actual bahaviour of the structures (Tungikar and Rao 1994, Bhaskar and Varadan 1996) but 3D modelling 

of laminates with a large number of layers becomes intractable due to its complexity. Therefore, researchers 

have focused their attention on two dimensional (2D) analytical models, viz., classical lamination theory (CLT) 

(Timoshenko and Woinowsky-Kreiger 1959, Boley and Weiner 1960), first order shear deformation theory 

(FOST) (Reddy and Chao 1980, Rolfes et al. 1998) and higher-order shear deformation theories (HOSTs) 

(Khdeir and Reddy 1991, Kant and Khare 1994, Kapuria et al. 2003) for thermal analysis of laminates. 

In this paper, a simple and efficient semi-analytical mathematical model is presented for stress analysis of 

laminated beam under thermal loads. A laminate under plane stress of elasticity is formulated as a two-point 

BVP governed by a set of coupled first-order ODEs, 
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in the interval –h/2 < z < h/2 with any half of the dependent variables prescribed at the edges z = ± h/2 under 

thermal loading. Here, y(z) is an n-dimensional vector of fundamental variables whose number (n) equals the 

order of PDE, A(z) is a nn coefficient matrix (which is function of material properties in thickness direction) 

and P(z) is n-dimensional vector of non-homogenous (loading) terms. It is clearly seen that mixed and/or non-

homogeneous boundary conditions are easily admitted in this formulation. 

Formulation 

A layered, narrow beam composed of homogeneous isotropic or orthotropic laminae of uniform thickness 

subjected to thermal loading is considered. The plan dimension of a beam is a  b and thickness is h. Under 

such conditions, the beam domain is in a 2D plane stress condition. A simple support is assumed on the 

longitudinal edges, x = 0, a (Figure 1) 

 
 

 

The material constitute relations for each layer can be written as, 
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The reduced material coefficients, Cij for plane stress condition are, 
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The 2D equations of equilibrium are, 
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where, Bx and Bz are the body forces per unit volume in x and z directions, respectively and from the linear 

theory of elasticity, the general linear strain-displacement relations in 2D are, 

x

u
x




 , 

z

w
z




  and 

x

w

z

u
xz









  (5) 

The above Equations (2), (4) and (5) have a total of eight unknowns in eight equations. After a simple algebraic 

manipulation of the above sets of equations, a set of PDEs involving only four dependent variables are obtained 

as follows, 
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Figure 1: Beam in plane strain condition 
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This set of dependent variables is called as ‘primary variables set’. A secondary dependent variable, x _ can be 

expressed as a function of the primary set of variables as follows, 
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The above PDEs defined by Equation (6) can be reduced to a coupled first-order ODEs by using Fourier 

trigonometric series expansion for primary variables satisfying the simple support end conditions at x = 0, a as 

follows; 
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and from the basic relations of theory of elasticity, it can be shown that, 
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Further, temperature variation along x direction is also expressed in sinusoidal form as, 
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Substituting Equations (8)-(10) and its derivatives into Equation (6), the following ODEs are obtained, 
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Equation (11) represents the governing two-point BVP in ODEs in the domain –h/2 < z < h/2 with stress 

components known at the top and bottom surfaces of a beam. The basic approach to the numerical integration of 

the BVP defined in Equation (11) and the associated boundary condition, is to transform the given BVP into a 

set of IVPs- one non-homogeneous and n/2 homogeneous (Kant and Ramesh 1981). Availability of efficient, 

accurate and robust ODE numerical integrators for IVPs helps in computing reliable values of the primary 

variables through the thickness. Changes in material properties are incorporated by changing the coefficients of 

material matrix appropriately for each lamina. Numerical Investigation Numerical studies have been performed 

in various symmetric/unsymmetric composite laminates for validation of the presented analytical approach. In 

this paper, results of symmetric, three-layered, square sandwich ((0/core/0) beam with simple support end 

conditions and subjected to thermal load has been presented for sake of brevity. Material properties are 

presented in Table (1). 
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Layer Material Properties 

Face sheet E1 = 131.1 (GPa), E2 = 6.90, E3 = 6.90 

G12 = 3.588 (GPa), G13 = 3.588, G23 = 2.332 

12 = 0.32, 13 = 0.32, 23 = 0.32 

1 = 0.02310-6 (k-1), 2 = 22.510-6 , 3 = 22.510-6  

1 =1.5, 2 = 0.5, 3 = 0.5 

Core sheet E1 = 0.2208 (GPa), E2 = 0.2001, E3 = 2760 

G12 = 16.56 (GPa), G13 = 545.1, G23 = 455.4 

12 = 0.99, 13 = 310-5, 23 = 310-5 

1 = 30.610-6 (k-1), 2 = 30.610-6 , 3 = 30.610-6  

1 =3.0, 2 = 3.0, 3 = 3.0 

 

Thickness of each face sheets is one tenth (h/10) of the total thickness of the laminate. The exact 2D thermo-

elasticity solutions presented by Kapuria et al. (2003) have been used for proper comparison of the obtained 

results.  

Two thermal load cases are considered here for numerical studies; 

1. Equal temperature rise of the bottom and the top surface of the plate with sinusoidal inplane variations: 
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sin2/, 0  (Case A), 

2. Equal rise and fall of temperature of the top and bottom surface of the plate with sinusoidal in-plane 

variations:    
a

x
ThxThxT


sin2/,2/, 0  (Case B). 

The variations of temperature across the thickness, for case A and for case B, are presented by Kapuria et al. 

(2003) by solving exactly 2D thermal problem of heat conduction equation for all layers. Same variations are 

used here for proper comparison of the obtained results. Following normalizations have been used in all 

examples considered here for the comparison of the results; 
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Figures 2 and 3 show the through thickness variations of in-plane displacement (u ) and transverse 

displacement ( w ) for an aspect ratio of 5 for case A and case B, respectively.  

 

 
 

 

 

 

(a) (b) 

Figure 2: Through thickness variation (Case A) of normalized  

(a) in-plane displacement u  (b) transverse displacement w   

Table 1: Material Properties 
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Excellent agreement between exact and present results is observed. Through thickness variation of in-plane 

displacement ( u ) is found to be in cubic in nature and transverse displacement ( w ) are almost linear with small 

change in slope at the interface between core and face sheets is observed in case A. On the other hand, in case 

B, smooth non-linear variation is observed for in-plane displacement without mid-surface stretching. Symmetric 

behavior of all quantities about the mid-surface is also observed due to symmetric configuration of laminate 

with respect to geometry and material properties. 

Concluding remarks 

A simple semi-analytical methodology for thermal analysis of laminates under plane stress condition of 

elasticity is described in this paper. The proposed mathematical model is very simple, efficient and highly 

accurate. A two-point BVP governed by a set of linear coupled first order ODEs is formed by assuming all 

primary variables in the form of trigonometric functions along the inplane directions and methodology is free 

from any simplified assumptions. Another important feature of this approach is that both the displacements and 

stresses are computed simultaneously with the same degree of accuracy. 
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Figure 3: Through thickness variation (Case B) of normalized  

(a) in-plane displacement u  (b) transverse displacement w   
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