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Abstract:  A major global public health issue linked to increased morbidity and mortality is chronic kidney 

disease (CKD), a continuum of kidney disease ranging from minor kidney impairment to end-stage renal 

disease (ESRD). For ESRD patients, longevity and quality of life have improved thanks to advancements in 

dialysis treatments and the availability of kidney transplantation. In survival analysis, survival data might 

include patient characteristics that are connected to response, survival, and the development of a disease, as 

well as survival time and response to a particular treatment. Comparing the survival distributions of 

experimental animals or human patients, predicting the likelihood of response, survival, or mean lifespan, and 

identifying risk and/or prognostic factors related to response, survival, and the onset of a disease have been 

the main goals of the study of survival data. In the modelling of survival data under various types of diseases, 

parametric regression models are frequently utilised. This study uses the CKD data to examine the 

effectiveness of the four most used parametric regression modelling techniques: Exponential, Weibull, 

Gamma, and Lognormal. Based on the results and the minimum values of AIC and BIC, it is concluded that 

the Gamma model performs better than other models. 

 

Index Terms - Non-communicable disease, Akaike’s Information Criterion (AIC), Bayesian information 

criterion (BIC), Chronic Kidney Disease, Survival analysis, Parametric regression model. 

I. INTRODUCTION 

 

As per the National Kidney Foundation (NKF), the definition of chronic kidney disease is defined as kidney 

damage for three months with eGFR < 60 ml/min/1.73 m2 and or structural or functional abnormalities in 

pathology, imaging, urine analysis, blood composition indicating abnormal kidney function. [1] 

Chronic Kidney Disease (CKD), a continuum of kidney disease ranging from mild kidney damage to End 

Stage Renal Disease (ESRD) is a major public health problem worldwide associated with increased morbidity 

and mortality.[2] Improvements in techniques of dialysis and availability of renal transplantation have 

improved survival and quality of life for patients of ESRD. The 5-year survival rate for patients on hemodialysis 

is 30-50 % in nondiabetics and 25% in diabetics, while the 5-year survival rate for living donor transplantation 

is 81%. According to the first annual report published by the CKD registry of India, treatment of chronic kidney 

disease and its advanced stage end stage renal disease is expensive and beyond the reach of average Indian.[2]. 

Patients with CKD are at high risk for cardiovascular disease (CVD) and cerebrovascular disease, and they are 

more likely to die of CVD than to develop end-stage renal failure [3]. There is paucity of Indian studies 

depicting clinical profile of CKD. 
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Survival analysis can also be used to measure the time to any defined event. Methods for survival analysis 

allow analysis of such rates without assuming that they are constant. Survival analysis methods are important 

in trials where participants are entered over a period and have various lengths of follow-up. These methods 

permit the comparison of the entire survival experience during the follow-up and may be used for the analysis 

of time to any dichotomous response variable. [4] 

Survival analysis involves the time until the occurrence of a specific event can be used to define survival 

time in general terms. A disease's onset, a patient's response to treatment, a recurrence, or death are all examples 

of this event. The term "survival time" describes the period of time between the start of the patient's observation 

and the occurrence of an observed event. It can be measured in years, months, weeks, or days (death). 

Therefore, the length of remission, the amount of time spent without a tumor, and the period until death can all 

be considered components of survival time.[5] Data on survival may include length of survival, responsiveness 

to a particular treatment, and patient traits associated with response, survival, and illness progression. [6] 

In the last four decades, survival analysis has emerged as one of the most popular techniques for data 

analysis across a variety of fields, including criminology, marketing, astronomy, epidemiology, and 

environmental health. Participants or patients may drop out of clinical and epidemiological research frequently, 

making them unreachable for follow-up. 

Regression models are frequently employed in a variety of disciplines to examine the relationship between 

an outcome variable and one or more predictor variables. Regression models using parametric techniques are 

frequently used to model survival data for a variety of diseases, including for the examination of breast cancer 

survival data, parametric regression models were used to compare five different survival models from the breast 

cancer registry, nonlinear regression models for heart attack data, and survival models from tuberculosis 

clinical trials, [7-10] comparison of parametric methods for regression models namely, Exponential, Weibull, 

Gamma, Lognormal and Log-logistic using the heart attack data.[11-12] 

Inspected by the work done in this direction, an attempt is made in the present study to compare the 

performance of the commonly used parametric regression models in survival analysis namely, Exponential, 

Weibull, Gamma, and Lognormal distributions using the chronic kidney disease patient’s data. 

 

MATERIALS AND METHODS: - 

A retrospective study of 100 chronic kidney disease patterns (eGFR < 60) over a period of one year 

whose age was 60 years and above was collected from the hospital records of the nephrology department at a 

tertiary care hospital, Nellore district, AP, India. 

The parametric methods for regression model namely, Exponential, Weibull, Gamma, and, Lognormal 

models are as follows. 

Exponential distribution: - 

The exponential distribution is often referred to as a purely random failure pattern. It is famous for its unique 

“lack of memory”. The exponential distribution is characterized by a constant hazard rate , its only 

parameter. When the survival time T follows the Exponential distribution with a parameter , the hazard, 

density and survivorship functions is defined as, 

h.(t)=;  f(t)= 𝑒−λ𝑡;  S(t)= 𝑒−λ𝑡; where >0 

The exponential distribution successfully used as the model for survival time in a study of new 

anticancer drugs in the L1210 animal leukaemia system [12]. 

Weibull distribution: - 

The Weibull distribution is a generalization of the exponential distribution. The distribution was proposed by 

Weibull in the year 1939 and is used in many studies of reliability and human disease mortality, since it allows 

the survival distribution of a population with increasing, decreasing, or constant risk [13]. A random variable 

T has the Weibull distribution with the following hazard, density and survivorship functions is defined as,  

ℎ(𝑡)= 𝜆𝛾(λ𝑡)−1 ;  

f(𝑡)= 𝜆𝛾 (λ𝑡)𝛾−1  𝑒−(λ𝑡)𝛾
;  

S(𝑡)= 𝑒−(λ𝑡)𝛾
 ;     where λ>0, γ>0  
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Weibull distribution is preferred for performing survival data analysis in industrial engineering uses. The 

Weibull distribution was applied to a two-group experiment on vaginal cancer in rats exposed to the 

carcinogen DMBA [14]. The distribution of the survival period of childhood leukaemia patients was analysed 

using Weibull distribution [15]. 

 

Gamma Distribution: - 

The gamma distribution, which includes the exponential and chi-square distribution, was used to describe the 

life of glass tumblers circulating in a cafeteria [16] and as a statistical model for life length of materials and 

an application of the gamma distribution to the lifetime of aluminium coupon [17]. Stored platelet survival 

data analysis by a gamma model [18]. This distribution has been used frequently as a model for industrial 

reliability problems and human survival. The probability density function, hazard function and survivorship 

function of a gamma distribution is defined as follows, 

f(t) = 
𝜆

ɼ(𝛾)
 (𝜆𝑡)𝛾−1𝑒−𝜆𝑡; 

h(t) = 
𝜆(𝜆𝑡)𝑛−1

(𝑛−1)! ∑
(𝜆𝑡)𝑘

𝑘!
𝑛−1
𝑘=0

; 

S(t) = 𝑒−𝑡 ∑
(𝜆𝑡)𝑘

𝑘!

𝑛−1
𝑘=0  ; where >0. 

Where  is the shape parameter and ɼ is the gamma function. 

The hazard function of a gamma distribution can provide varieties of forms depending on the value of the ã 

parameter. 

Lognormal distribution: - 

The lognormal distribution is defined as the distribution of a variable whose logarithm follows the normal 

distribution. The theory of the lognormal distribution was described by McAlister in the year 1879 and is used 

in many areas of medicine. A random variable T has the lognormal distribution with the following density, 

hazard and survivorship function is, 

f(t) = 
1

𝑡𝜎√2𝜋
𝑒−

1

2
 (

𝑙𝑜𝑔𝑡−𝜇

𝜎
)

2

; 

ℎ(𝑡)= 

1

𝑡𝜎√2𝜋
 𝑒

−
1
2

(
𝑙𝑜𝑔𝑡−𝜇

𝜎
)

2

1−𝐺(𝑙𝑜𝑔 
𝑎𝑡

𝜎
)

 ; where σ > 0. 

S(t) = 1 − 𝐺 (𝑙𝑜𝑔 
𝑎𝑡

𝜎
) ;  

Where G(y) is the cumulative distribution function. 

A review of lognormal distribution and its application in biology, followed by applications in cancer research 

[19]. Its history, properties, estimation problems, and uses in economics have been discussed [20]. The 

distribution of survival time of several diseases such as Alzheimer’s disease, Hodgkin’s disease and chronic 

leukaemia could be rather closely approximated by a lognormal distribution since they are markedly skewed 

to the right and the logarithms of survival times are approximately normally distributed. In a study of chronic 

lymphocytic and myelocytic leukaemia patients, applied the lognormal distribution to analyse survival data 

of 649 white residents of Brooklyn diagnosed from 1943 to 1952 [21]. The lognormal distribution is suitable 

for survival patterns with an initially increasing and then decreasing hazard rate. 

 

Model selection criteria 

When comparing the efficacy of the models related to the CKD data and to compare the goodness of fit of the 

fitted parametric models in terms of fitting the observed data, log likelihood (LL), the Akaike’s Information 

Criterion (AIC) (Akaike, 1973) or Bayesian information criterion (BIC) (Schwarz, 1978) can be used for 

model selections [24]. A lower value of AIC indicates a better model. In the case of analysing clinical trial 

data, both BIC and AIC will give similar results as the sample sizes are relatively small in clinical trials 

(Lindsey and Jones, 1998). The formula for AIC equation is defined as, AIC = −2LL + (2c+a), where LL is 

the log likelihood statistic, ‘c’ indicates number if parameters in the survival distribution function and ‘a’ 

denotes the number of parameters in the model. The statistical analysis has been done by using statistical 

software STATA Version 17 (STATA Inc., NC, USA). All the p values having less than 0.05 were considered 

as statistically significant. 
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RESULTS AND DISCUSSION 
In a total of 100 CKD patients data, 57.0% of patients were males, and 43.0% of patients were females. The 

mean age of patients was 66.69±6.61 years with a range of age was 60 years to 90 years respectively. The 

mean of BMI was 21.51±3.03. The descriptive statistics for CKD patient’s data was shown in Table-1 and the 

histogram of age distribution (years) was shown in Figure-1. 

 

Table-1: Descriptive Statistics for the CKD patient’s data 

Variable (s) Mean 
95% Con. Limits of Mean 

Std. Dev. 
Lower Limit Upper Limit 

Age 66.690 65.38 68.00 6.6084 

BMI 21.506 20.91 22.11 3.0307 

MCV 82.547 80.97 84.13 7.9733 

SGOT 24.540 20.90 28.18 18.3427 

SGPT 24.100 20.63 27.57 17.4775 

Creatinine 4.516 3.72 5.31 4.0172 

eGFR 19.630 16.99 22.27 13.3251 

pCO2 27.119 25.43 28.81 8.5165 

Sr_Sodium 135.630 134.24 137.02 6.9843 

Sr_Potassium 4.568 4.36 4.78 1.0553 

EF 52.460 50.22 54.70 11.2703 

 

 

Graph-1: Histogram of age distribution (Years) of CKD data 
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(a)                           (b) 

 

 
(c)          (d) 

Figure-2: Graphical presentation of failure rate functions of (a) Exponential,  (b) Weibull, (c) Gamma 

and (d) Lognormal Distributions for CKD data. 

 

Table 2: Covariates comparison of analysis of maximum likelihood parameter estimates of five 

parametric methods for Regression models to CKD data. 

Parameter Exponential Weibull Gamma Lognormal 

Age -0.014 (0.017) -0.017 (0.013) -0.003 (0.010) -0.006 (0.010) 

BMI -0.026 (0.032) -0.026 (0.024) -0.037 (0.025) -0.033 (0.024) 

MCV -0.023 (0.013) -0.026 (0.010) * -0.007 (0.008) -0.012 (0.008) 

SGOT 0.011 (0.010) 0.120 (0.008) 0.006 (0.005) 0.008 (0.060) 

SGPT -0.013 (0.044) -0.014 (0.008) -0.011 (0.006) -0.110 (0.006) 

Creatinine 0.032 (0.043) 0.042 (0.036) 0.017 (0.022) 0.017 (0.024) 

eGFR -0.003 (0.012) -0.002 (0.010) 0.005 (0.008) 0.002 (0.008) 

pCO2 -0.003 (0.015) 0.001 (0.012) -0.010 (0.008) -0.004 (0.009) 

Sr. Sodium 0.019 (0.011) 0.022 (0.008) * 0.001 (0.008) 0.111 (0.008) 

Sr. Potassium 0.114 (0.106) 0.111 (0.081) 0.085 (0.070) 0.099 (0.073) 

EF 0.010 (0.010) 0.125 (0.008) 0.004 (0.006) 0.006 (0.007) 

Values are expressed as maximum likelihood estimate (standard error), * - Significant. 
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Table 3: Model selection criteria of the fitted models for CKD data 

Parametric 

distribution 
-2LL AIC BIC 

Exponential -126.411 274.822 303.479 

Weibull -118.657 261.315 292.577 

Gamma -103.677 233.353 267.220 

Lognormal -105.762 235.525 266.787 

 

Table-2 shows that the Covariates comparison of analysis of maximum likelihood parameter estimates 

of five parametric methods for Regression models to CKD data and Figure-2 showed Graphical presentation 

of failure rate functions of Exponential, Weibull, Gamma, and Lognormal Distributions for CKD data. Table 

3 shows that the values of -2LL, AIC and BIC criteria for the fitted models. The AIC and BIC results provide 

strong evidence that Gamma model is performing better than other models. 

In a study, the results indicated that the early detection of a cancer at a young patient age and in primary 

stages is important to increase survival from gastric cancer [7]. In a study result, the Gompertz distribution 

model is determined as the most suitable model than the Weibull, Lognormal and Gamma models for the breast 

cancer data by considering lower value of AIC and as a result of the analyses depending on the parameter 

estimates, age variable was not found as a risk factor [8]. The Gamma model was the best fitting parametric 

model for applied likelihood-based criteria in a tuberculosis clinical trial data [10]. The lognormal model is 

better than the Exponential, Weibull, Gompertz, Lognormal and Log-logistic models in the analysis of breast 

cancer data by using likelihood ratio values [11]. A study showed that, likelihood-based criteria for model 

selection indicated that the Weibull model was the best fitting parametric model for predicting survival 

following both HIV and AIDS diagnoses [23]. In this study, the results stated that the Gamma distribution 

model is most suitable than the Exponential, Weibull, and Lognormal models for CKD data. A parametric 

survival model with restricted cubic spline function was applied to assess prognostic factors was done by Jha 

et al. (2018) [2], they concluded that the risk of death was dramatically increased after developing kidney 

failure, and they identified three major transitions for prognostic factors that effects the CKD progression such 

as Diabetes, hypertension, and cardiovascular disease that increased the risks of death before and after kidney 

failure. In a study of Shaik et al. (2015) [10], compared the parametric methods for regression models namely, 

Exponential, Weibull, Gamma, Lognormal and Log-logistic using the heart attack data, they concluded that 

Weibull and Gamma models are performing better than other models. Our study is coinciding with this study. 

 

CONCLUSIONS: - 

Many researchers, who used various approaches in their tests, have proposed and advised the various models. 

The results of comparing various models revealed that the Gamma model is the most effective, outperforming 

all others. The results need to be confirmed by other research. 
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