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Abstract 

 

 The non-linear properties of ion-acoustic (IA) waves in an electron-positron-ion plasma(e-p-i) plasma with 

arbitrary degeneracy of electrons and positrons. For this purpose hydrodynamic model is used and a 

variable coefficient Korteweg-de-Vries (KdV) equation is derived by using the standard reductive 

perturbation technique. The parameter  𝑝 =
𝑛𝑝0

𝑛𝑒0
, which is the equilibrium density ratio of the positron to 

electron, plays a vital role in the forming of both bright and dark solitons. It is also found that two 

parameters, defining the ratio of the ion to electron temperature (𝜎𝑖) and the parameter(𝜎𝑝) describing the 

ratio of the positron to electron temperature are shown to play crucial roles in the formation of bright 

solitons. The present results may be relevant to intense laser produced plasma, high density astrophysical 

plasmas(i.e. white dwarfs, neutron stars) as well as large density electronics devices. 
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INTRODUCTION 

 

Degenerate plasmas have gain much interests in strong laser produced plasmas [1], high density 

astrophysical plasmas such as in white draft or neutron stars [2] or large density electronic devices [3] and 

laboratory experiments (plasmas of semiconductors and metals[4]).The wave propagation in a degenerate 

plasma can be studied using hydrodynamic models. But in hydrodynamic models, the momentum equation 

for electron is made consistent with the equation of state of a degenerate electron Fermi gas [5, 6].  

In the present paper, we investigate the non-linear properties of ion-acoustic(IA) waves in an electron-

positron-ion plasma(e-p-i) plasma with arbitrary degeneracy of electrons and positrons. The equation of state 

for electron and positron follow from a local Fermi-Dirac distribution function of an ideal Fermi gas [7, 8]. 

By using the standard reductive perturbation technique, we have derived Korteweg-de Vries (KdV) equation. 

The effect of p, i. e. the ratio of the positron to electron number density, on the profiles of the amplitudes and 

widths of the solitary structures are examined numerically. We have also shown that two parameters, 

defining the ratio of the ion to electron temperature(𝜎𝑖) and the parameter(𝜎𝑝) describing the ratio of the 

positron to electron temperature are shown to play crucial roles in the formation of bright solitons. 
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BASIC EQUATIONS AND DERIVATION OF THE KdV 

A. Basic equations 

We consider an electron-positron-ion plasma(e-p-i) plasma with arbitrary degeneracy of electrons and 

positrons. The basic equations, describing the dynamics of IAWs in an unmagnetized plasmas with arbitrary 

degeneracy of electrons and positrons, are as follows: 

 

 

 

 

 

where 𝑝𝑖 = 𝑛𝑖𝑘𝐵𝑇𝑖 and 𝜑 is the electrostatic potential, 𝑛𝑗  represents particle densities (j = e for electron, j = i 

for ion and j = p for positron), mi is the ion mass. The equation of state 1 of electron and positron are 

obtained from the local Fermi-Dirac distribution function [7, 8] of an ideal Fermi gas as follows, 

 

where 𝑘𝐵 is the Boltzmann constant, 𝑇𝑗 is the temperature (j = e for electron and p for positron) and µ𝑗 is the 

chemical potential given by 

 

where 𝐿𝑖𝑣(−z) is the polylogarithm function with index 𝑣, which for 𝜈> 0 dened [9] by 

 

, Γ(𝑣) is the gamma function and 
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The equilibrium chemical potential µ𝑗0 is related to the equilibrium density 𝑛 𝑗0through 

 

 

Using Eq.(7), Eqs.(3) and(4) imply 

 

 

Using the following suitable normalizations 

 

 

The system reduces to the following set of normalized equations: 
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B. Dispersion Relation 

In order to obtain linear dispersion relation, we linearize the system of Eqs. (14)-(20) by considering the first 

order perturbations (with a subscripted 1) relative to the equilibrium as follows: 

 

Assuming the perturbed quantities are proportional to exp[i(kx − ωt)], the dispersion relation yield 

 

 

 

 

 

Figure 1: Plot of the dispersion relation relating the frequency ω to the wave number k for different values of 

σi = 0.001 (solid line), 0.002 (dashed line), 0.003 (dotted line) and 0.003 (dashed-dotted line). 

k 
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Figure 2: Plot of the dispersion relation relating the frequency ω to the wave number k for different values of 

p =0.6 (solid line), 0.7 (dashed line), 0.8 (dotted line) and 0.9 (dashed-dotted line). 

In Fig. 1 and Fig. 2, we have displayed the dispersion curves of ion-acoustic mode for various values of 𝜎𝑖 

and p. It is clear that the wave frequency 𝜔 increases when 𝑘 increases. 
 
C. Derivation and Solitonic solution of the KdV 

 
To investigate the propagation of IA waves in e-p-i plasmas, we employ the standard reductive perturbation 

technique to obtain the KdV. The independent variables are stretched as𝜁 = 𝜖
1

2(𝑥 − 𝑣0𝑡) ,𝜏 = 𝜖3/2𝑡and the 

dependent variables are expanded as: 

 
 

and 

 
where 𝜖 is a small parameter measuring the weakness of the dispersion and 𝑣0 is the phase velocity of the 

IAWs. 
 
Substituting the expressions from Eq. (22) in Eqs. (14) - (20)and collecting the terms in different powers of 

𝜖, we obtain in the lowest order of 𝜖 as 

 

 
where 

 

k 

ω 
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and   

 
 

which describes phase velocity of the IAWs. 

 

For the next order in 𝜖, we obtain 

 

 

 

 

 
where 

 

 
 

Eliminating the second order quantities from Eqs. (26) - (30), we obtain the KdV as 

 
where the non linearity coefficient A and the dispersion coefficient B are given by 

 

 
The effect of arbitrary degeneracy of electrons appears in both the non linear and dispersive coefficient in the 

KdV equation (31) but the effect of arbitrary degeneracy of positrons appears in the non linear coefficient. 

 

The equation (31) has a solitary wave solution for a moving frame with a speed 𝑢0 

 

http://www.ijcrt.org/


www.ijcrt.org                                                © 2023 IJCRT | Volume 11, Issue 9 September 2023 | ISSN: 2320-2882 

IJCRT2309190 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org b579 
 

where 𝑢0 is the speed of the soliton and 𝜙𝑚 =
3𝑢0

𝐴
 is the amplitude and 𝑤 = √

4𝐵0  

𝑢0
  is the width of the soliton. 

So, the IA solitary structures are hump-type or dip-type according as A/B> 0 or < 0 or 

 

Now, if𝑣0  > 𝜈𝑒𝜎𝑖 then 𝐴/𝐵 > 0 for 𝑝 < 1,
𝛼1

𝛼2
< (

𝜈𝑝

𝜈𝑖𝜎𝑖

)
2

and 𝐴/𝐵 < 0 for > 1,
𝛼1

 𝛼2
> (

𝜈𝑝

𝜈𝑖𝜎𝑖

)
2

. Thus, the 

condition (33) mainly depends on the parameters 𝛼1, 𝛼2, 𝜈𝑝, 𝜈𝑒, 𝜎𝑝and p. 

 

 

D. Numerical results and discussions 

 

In this section, we will study numerically the effects of p, 𝜎𝑖 and 𝜎𝑝 on the profiles of the solitary waves, 

given by Eq. (31). Eq. (31) describes both hump (or bright)-type and dip (or dark)-type solitary wave.  Fig. 3 

shows two different types of solitary waves with increasing p. When the value of p increases from 0.88 to 

0.99, amplitude of the hump-type solitary wave decreases rapidly and when the value of p crosses the point p 

= 0.99, the hump-type solution changes into a dip-type solution and the amplitude of the dip-type solitary 

wave deceases. Thus, the transformation from hump-type to dip-type solitary wave takes place at higher 

value of p > 1. 

 

Fig. 4 shows that the effects caused by ion and electron temperatures on the hump-type solution given by 

(31). As the value of 𝜎𝑖increases from 0.5 to 0.7, the amplitude of the soliton increases. On the other hand, 

Fig. 5 shows that amplitude of the hump-type KdV solitary wave increases as 𝜎𝑝increases from 0.4 to 0.9. 

 

Fig. 6 and Fig. 7 show the plot of the solution (31) against 𝜉 and 𝜏 for different values of the parameter p = 

0.8, p = 1.01. Notice that the soliton appears for p = 0.8 which corresponds to the bright soliton and other is 

the dark soliton for p = 1.01. 

 

 

E. Conclusion 

The non-linear ion-acoustic (IA) waves in an electron-positron-ion plasma (e-p-i) plasma with arbitrary 

degeneracy of electrons and positrons have been investigated. Starting from a set of fluid equations for 

classical ions and Fermi Dirac distribution for electrons and positrons 

 
 

 

Figure 3: Plot of solitary wave profiles for different values of p. 
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Figure 4: Plot of solitary wave profiles for different values of σi. 

 

 

 
 

Figure 5: Plot of solitary wave profiles for different values of σp. 
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Figure 6: (Color online) The solitary wave solution for Eq.(31) with parameters σp = 0.62, σi = 0.58, δ = 10, 

µp0 = 0.035: The bright soliton appears at p = 0.8. 

 
 

Figure 7: (Color online) The solitary wave solution for Eq.(31) with parameters σp = 0.62, σi = 0.58, δ = 10, 

µp0 = 0.035: The dark soliton appears at p = 1.01 

 

a linear dispersion relation for IA waves is derived. The non linear theory of IA waves is studied with the 

help of KdV equation. Different domains in parameter space for the existence of IA solitary waved obtained. 

The results should be useful for understanding of ion-acoustic solitary waves propagation in electron-

positron-ion plasma with arbitrary degeneracy electron and positron. 
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