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Abstract:  Dynamic memory management is vital in embedded systems as it allows efficient allocation 

and deallocation of memory blocks, optimizing resource utilization. It provides adaptability to changing 

runtime requirements, enabling embedded systems to handle varying data sizes and structures 

effectively. Furthermore, dynamic memory management plays a crucial role in memory optimization, 

minimizing fragmentation and maximizing memory usage for improved system performance. This 

paper investigates the potential of smart and programmable memory management methods to enhance 

performance and efficiency in MMU-less embedded systems, addressing the challenge of limited space 

and the increasing use of IoT. The current approach has achieved an improvement in allocation speed, 

around 3-4 times faster, with a slight trade-off in deallocation speed. Additionally, the outcome includes 

achieving 0 fragmented memory. Additionally, the paper provides detailed algorithms for implementing 

memory allocation, deallocation, and defragmentation processes directly within the application software 

that is already in use. These algorithms offer practical and feasible solutions for managing memory 

efficiently without requiring significant changes to the existing software infrastructure. 

 

Index Terms - Internet of Things, Memory Management Units, Dynamic Memory Allocation 

Schemes, Embedded systems. 

I. INTRODUCTION 

Embedded systems are specialized computer systems designed to perform specific tasks or functions 

within larger systems. They are typically integrated into various devices and appliances, ranging from 

household appliances like washing machines and smart thermostats to complex industrial machinery 

and automotive systems [1]. What sets embedded systems apart is their dedicated functionality, real-

time operation, and often limited resources such as processing power [2], memory, and energy. These 

systems are optimized for efficiency and reliability, often requiring real-time responses to external 

events or inputs. Embedded systems [3] are designed to operate seamlessly, often running autonomously 

without the need for user intervention, and are essential components in modern technology, contributing 

to the automation, control, and intelligence of countless devices and industries. 

The development of embedded systems involves a combination of hardware and software design. The 

hardware components are typically microcontrollers [4] or specialized chips that provide the necessary 

processing power and interfaces to interact with external devices or sensors. The software running on 

these systems is specifically tailored to the embedded application, with a focus on efficiency, real-time 

performance, and reliability [5]. Embedded software is often written in low-level programming 

languages like C or assembly language to maximize control over hardware resources. Additionally, 
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embedded systems often have strict constraints in terms of power consumption, size, and cost, requiring 

designers to carefully optimize both the hardware and software to meet these constraints [6]. The field 

of embedded systems continues to evolve rapidly, driven by advancements in technology, 

miniaturization, connectivity, and the demand for smart and interconnected devices in various industries 

[7]. 

 
Figure 1: architecture of embedded systems 

 

IoT extends the realm of the internet beyond traditional computing devices to include everyday objects, 

creating a vast ecosystem of smart devices [8] that communicate and interact with each other. By 

connecting these devices, IoT enables the seamless exchange of data and information, leading to 

improved efficiency, automation, and convenience in various domains, including smart homes [9], 

healthcare, agriculture, transportation, and industrial applications. IoT holds great potential to transform 

industries and enhance our lives by enabling real-time monitoring, remote control [10], predictive 

analytics, and intelligent decision-making based on the vast amounts of data generated by 

interconnected devices. However, it also presents challenges such as data privacy, security, and 

interoperability that need to be addressed to fully harness its benefits and ensure the responsible and 

secure deployment of IoT solutions. 

 

1.1 Memory allocation Systems 

 

Memory management systems are essential components of computer operating systems that are 

responsible for managing the allocation, deallocation, and utilization of a computer's memory resources 

[11]. These systems ensure efficient memory usage and play a crucial role in optimizing system 

performance. 

In a memory management system, the available memory is divided into smaller units or blocks, which 

are allocated to different processes or applications as needed [12]. The system keeps track of which 

memory blocks are in use and which are available, ensuring that processes are provided with the 

necessary memory resources to execute their tasks. When a process no longer requires a particular 

memory block, the memory management system deallocates that block [13], making it available for 

future allocation. This process of allocation and deallocation is carefully managed to prevent memory 

leaks and ensure that memory resources are utilized effectively. 

Additionally, memory management systems implement memory protection mechanisms to prevent 

unauthorized access or modification of memory regions. They enforce access controls to ensure that 

processes can only access memory areas that they are authorized to access, contributing to the security 

and integrity of the system. Memory management systems also handle memory fragmentation [14], 

where free memory becomes scattered in small fragments. Techniques such as compaction or memory 

block reorganization may be employed to consolidate free memory and reduce fragmentation, 

improving memory utilization [15]. Overall, memory management systems are vital for efficient 

memory allocation, protection, and optimization, enabling computer systems to efficiently run multiple 

processes and applications simultaneously. 
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II. LITERATURE REVIEW 

 

For heterogeneous embedded systems, authors suggested the Q-MMU in this paper by Wittig et al [16]: 

a fully reconfigurable, shared, low-latency memory management unit. Comparing the introduced 

passive conflict detection to current work, the critical route is reduced, improving system performance 

overall. Two new dynamic memory management strategies for embedded systems are proposed by Zhou 

et al [17] to address the requirements of embedded real-time applications. The algorithm in this work 

distinguishes between the use of large memory and the use of tiny memory. This paper presents a novel 

idea and its implementation, focusing on how to swiftly realise memory allocation, release, and recovery 

as well as how to improve memory utilization. 

Shen et al [7] introduced PicoXOM, a quick and innovative XOM system for ARMv7-M and ARMv8-

M devices that makes use of the MPU and DWT unit of ARM. On the BEEBS and CoreMark-Pro 

benchmark suites as well as five real-world applications, PicoXOM experiences an average 

performance overhead of 0.33% and an average code size overhead of 5.89%.  

Ma et al [8] contend that segmented stacks, a theory that was looked into and later rejected for systems 

with virtual memory, can address both issues for embedded software.  

Venkataraman et al [9] provided Coordinated Data Management (CDM), a compile-time system that 

detects shared/private variables automatically and moves them to appropriate on-chip or off-chip 

memory with replication (if necessary), taking NoC contention into account. Walls et al [10] proposed 

RECFISH, a framework for delivering CFI guarantees on ARM Cortex-R devices running basic real-

time operating systems. We offer strategies for safeguarding processes, runtime structures, and 

compiled ARM binaries with CFI protection. We empirically assess RECFISH's effects on real-time 

systems' performance. 

 

III. MATERIALS AND METHODS 

 

The Memory Management Scheme employed in this study utilizes two primary approaches to achieve 

improved memory handling. These approaches form the foundation of the scheme and are instrumental 

in enhancing the overall management and utilization of memory resources. 

 

• Advanced Two-Level Segregated Fit Memory Allocation Scheme (E-TLSS)  

• Dynamic Memory Block Movement for Efficient Free Memory Slot Creation 

Considering that the smallest available memory block in this technique is 16 bytes, including metadata 

for block allocation, it is essential to note that embedded systems face severe space constraints. 

Therefore, the ability to add a significant amount of additional memory to the system is limited. 

Consequently, it becomes crucial to promptly release memory and avoid holding onto it for prolonged 

periods.  

• Memory Allocation 

• Deallocate memory 

3.1 Smart Memory Management 

 

Smart memory management is crucial in embedded systems where resources, including memory, are 

often limited. To optimize memory usage, several strategies can be employed. Firstly, developers should 

conduct memory profiling to understand the memory requirements of their software. By identifying 

memory-intensive functions and data structures, they can focus on optimizing those areas. Additionally, 

minimizing the memory footprint is essential. This involves using efficient algorithms and data 

structures that require less memory, avoiding unnecessary memory allocations and deallocations, and 

favouring static memory allocation over dynamic allocation whenever possible. Techniques like 

memory pooling, which pre-allocates a fixed block of memory and assigns and recycles memory blocks 

from that pool, can be employed to reduce fragmentation and overhead. Furthermore, optimizing stack 

usage, utilizing non-volatile memory for infrequently modified data, optimizing memory access 
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patterns, and implementing memory leak detection mechanisms contribute to efficient memory 

management in embedded systems. 

 

 

The memory organization in this approach involves two types of blocks: Pointer Block and Data Block. 

Multiple pointers are used to create complex data structure. A buffer is kept between Pointer Block and 

Data Block to accommodate additional pointers. If the buffer becomes full, the subsequent Data Block 

is utilized. Each allocated block consists of two parts: metadata, which contains a header, and the 

payload, which holds the actual data. In the SaMM approach, the metadata section is enhanced with 

additional information, such as the end location and size of the last data package.  

 
Figure 2: system memory and diverse fragmentation level 

 

 

 

 

3.2 Allocation Process Algorithm 

 

The process utilized in this approach is straightforward yet highly effective. It leverages the margin 

space to allocate payloads efficiently, either in the front or the back, depending on the availability of 

sufficient margin space. However, if there is insufficient free space in fragmented blocks, the margin, 

or the free memory, the memory allocation process concludes unsuccessfully and returns a null value. 

 
Figure 3: memory allocation as per SaMM 
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3.3 Algorithm for Deallocation  

 

A separate defragmentation process, running concurrently with allocation cycles, can then handle the 

grouped fragmented cells. This distinct handling of deallocation and defragmentation contributes to 

multitasking capabilities in real-time operating systems, enabling efficient memory management in 

multitasking applications. 

 
Figure 4: deallocation of memory through smart memory management 

 

3.4 Defragmentation Process Algorithm 

 

 
Figure 5: defragmentation of memory through smart memory management 

 

IV.  CONCLUSION 

 

In recent years, the increasing usage of IoT systems has sparked numerous discussions about addressing 

the challenge in allocation of memory for embedded systems. The industry has been actively seeking 

stable execution of embedded system, as previous memory allocation schemes often led to 

fragmentation and unstable operations. This paper presents a solution that effectively eliminates 

fragmentation by consolidating fragmented blocks into a single location, enabling a streamlined 

defragmentation process. While currently most suitable for small-scale operations, there are 

opportunities to expand this solution to a wider range of devices, making it a cost-effective and universal 

smart memory allocation scheme for embedded systems in the future. 
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