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Abstract:  As the different techniques such as Artificial Intelligence, Internet of Things, Blockchain 

revolutionized among today’s generation, there is also an equally revolutionized technology which is Cloud 

Computing that is been used by millions of users for saving data, transferring data, and many more. As 

everything is getting advancing, there is also an important factor that every user’s or say customers that 

are concerned with i.e., security. In data centers of massively scalable, the cloud services and data are 

residing and from everywhere it can be accessed. The increase of cloud customers has sadly been 

accompanied by an increase in malicious activity in the cloud. Almost every day more and greater 

vulnerabilities are discovered and published in a new security advisory. For different purposes Cloud 

surfing is done by millions of users; so that, they want highly persistent and safe services. So, in this paper 

we propose an effective enhanced security-based cloud computing using Cryptography and also Deep 

Learning (DL) approach was, Dense Belief Network is used as classifier layer for classifying various 

intrude data and then finally passed to Advance Encryption Standard before it is being launched to the 

cloud or ensuring data confidentiality and security. We also evaluated our proposed model (AES-RK-

DBN) concerning other models such as LSTM, DenseNet, Resnet, VGG, CNN underperformance 

measures such as Accuracy, Specificity, Detection Rate, Sensitivity, and mostly Security in which our 

model gives higher satisfaction in terms of accuracy and security. 

 

Index Terms - Cloud Computing, Deep Learning, Deep Belief Network, Encryption, Internet of Things, 

RK-AES Algorithm 

I. INTRODUCTION 

Recently the cloud computing, cluster computing, and grid computing are the computing paradigms on 

which computing to services transformation are delivered and customaries such as typical utilities 

(electricity, water, and fuel) depend on, IT (information technology) services can attract and transform by 

the Cloud computing as a utility. Operation costs, as well as the capital, outlays, are reduced by this 

innovative idea. In the IT sector, the fastest developing field is cloud computing because of this potential 

capacity. By the use of the service provider's hardware and software facility over the internet, application 

as service delivery is provided by the Cloud computing in which it is defined, which can be either known 
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as Platform as a Service (PAS), Software as a Service (SaaS) or Infrastructure as a service (IaaS) [1]. The 

cloud is formed by the software and hardware part which is normally known as a public cloud whereas per 

the use manner in pay the services are offered, under the utility computing it comes. In which full access 

to the business/organization to which the facility is availed is referred to as the private cloud while only a 

limited access to the general public. The facility of utility computing and SaaS's together is the Cloud 

computing, where either the people can be providers or users of the facility of former aforesaid hence 

excluded the data centers (medium and small).  Rather than targeting the individual computers for a vast 

group, the computing world transformation is towards the development of software as services [2]. 

For availing the services, the service providers charge the customers were over a network the services of 

cloud computing are accessed which offers business applications capacities. All the IT functionalities are 

delivered by the technology of Cloud computing and the computing's upfront costs are reduced 

dramatically to the companies which may give the cutting-edge services [3]. Around the globe for cloud 

computing the data centers have been launched especially by the providers like Microsoft, International 

Business Management (IBM), Salesforce, Google, and Amazon as a part of reliability, Total Quality 

Management (TQM), and redundancy [2]. The Advanced Research Project Agency Network (ARPANET) 

implementation was the vision of the 21st century, which is considered as utility computing’s major 

milestone towards the aim of success, which became popular as internet and World Wide Web (WWW) 

[4]. To the user requirements with real-time response, the convergence of business agility as well as IT 

efficiency is combined in Cloud computing [3]. To cloud computing in counterpart, grid computing and 

cluster computing are widely explored other computing paradigms. From the grid's perspective of electrical 

power with inspirations sharing resources between resources of geographically distributed is enabled in 

Grid computing. As computing resources of a single integrated group of computers work in the networks 

of interconnected and parallel which is involved in Cluster computing. 

Inside cloud computing for offering security assurance, formed a non-profit organization known as Cloud 

Security Alliance, the use of best practices to promote. In the cloud the companies and individuals more 

and more information is stored, issues are commencing to develop about simply how protected an 

environment it is. During cloud engineering, the cloud service providers (CSP) face challenges, security 

issues, and requirements which are discussed in this paper, and also several options to mitigate them. The 

market can thrive and evolve because some form of standardization is needed for it (e.g. Open 

Virtualization Format (OVF), Information Technology Infrastructure Library -ITIL). No matter which 

dealer offers cloud services, with each other to communicate and interoperate, clouds should be allowed 

by the Standards [3]. In virtual machines to be run, for the distribution and packaging of software, 

extensible, efficient, portable, secure, open, platform-independent and as vendor OVF standard is highly 

recommended by it. A very difficult task that makes effective data utilization is before outsourcing to 

encrypt the sensitive data for data privacy protection. We have to think about some of the addressed issues 

and their remedy in the cloud for retaining security. No matter which seller offers cloud services, with 

every other to communicate and interoperate the clouds should be allowed by some agreements and 

standards. We can keep our information safely because the technique of encryption is introduced. 

Concern among big cooperate companies about handling their operations through another firm and 

bankruptcy of cloud providers especially in a shrinking economy. Followed by reliability and performance 

among the IT executives, security is also a serious concern [16]. The cloud services acceptability is reduced 

because of the Lack of standards mainly International Organizations for Standards are still missing. 

Throughout the European Union (EU) the client's interest is safeguarded by implementing standards and 

being checked, where the most common example is the EuroCloud launch. The structure of cloud 

computing is demonstrated in fig 1. 
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Figure. 1: basic architecture of cloud computing model 

 

 

 

 

 

 

Organization of paper: As we went through an introductory part in Section 1, the remaining sections are 

as follows: Section 2 depicts related works that is been so far done by researchers, section 3 brings 

methodologies of the proposed model AES-RK-DBN, Section 4 gives the simulation results of the 

proposed model and finally the paper concludes with section 5. Reference is given in the end part. 

 

 

II. Related Works 

With the advancement in cloud computing, the training dataset, [42] of the deep learning model, privacy-

preserving model [7] and sharing file's flexible access control [55], security robustness [54], authentication 

of protocols [53], [41], data mining [30], cloud storage [38]–[40], [37] and cloud architecture [36] are 

which the security confronting problems in the cloud, considering these there has been numerous existing 

works. In the cloud, the schemes of privacy-preserving cryptographic's existing works are based totally on 

secure multi-party computations. (a) training without the help of the cloud server and (b) training on the 

cloud server are the two different domains where the cryptographic algorithms are based on.  

For example, based on back-propagation known as BPNN in which the algorithm of privacy-preserving of 

a two-party distributed is introduced by Chen et al. [43]. While between two parties over the arbitrarily 

portioned data, a similar BPNN is introduced by Bansal et al. [44]. Computational operations of secure 

two-party are supported by them using the ElGamal scheme. Without the leakage of sensitive information 

about any data providers, the training of neural networks is enabled by these algorithms. To preserve 

intermediate results and data privacy, the scheme of fully homomorphic encryption is applied by them. 

The data vertically partitioned are conducted in the algorithms they proposed, which means every data 

provider has a feature vector subset. Although, for multiple parties, there is a lack of solutions to conduct 

deep learning of collaborative datasets arbitrarily partitioned with each. By the use of cloud computing 

resources, to this problem, a practical solution is suggested by Yuan et al. [45]. To the overhead of 

expensive communication, the multi-party scenario to which the algorithms of application of [43]– [45] 

may lead.  

CryptoNet is introduced by Bos et al. [46] which is a model of novel privacy-preserving, to make sure that 

the datasets stay private which allows the data of homomorphically encrypted to be outsourced by the data 

provider. A model of feed forwarding pretrained is the CryptoNet, by data providers to the cloud, the 

outsourced encrypted data on which it is applied. CryptoNet is a pre-trained feedback model used by data 

providers on encrypted data abstracted to the cloud. It uses the completely homomorphic encryption 

technique [47] in order to assess a deep neural network of two coevolutionary layers and two fully 

connected layers. The ongoing effort to protect data privacy resulted to the suggestion from the CryptoNet 
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[10] that the deep neural network can receive these services on completely homomorphic encrypted data 

without exposure of sensitive data to either the supplier of the cloud service or other data providers. Based 

on the secret-sharing model of Shamir with the encryption of leveled homomorphic, the convolutional 

neural network's combination is CryptoDL.  

By the use of the method of stochastic gradient descent also known as SecureML for the training of privacy-

preserving neural networks efficient and new protocols are also introduced by Li et al. [18]. Among the 

servers of two non-colluding, the private data of the providers are distributed on which in the model of 

two-server this algorithm falls. By the use of the computations of secured two-party, on the collaborative 

data, performs the training of models of different deep neural networks. On the shared decimal numbers, 

secure arithmetic computations are also supported by the SecureML. Table 1 shows the comparative review 

of the existing models. 

  

Table 1: the comparative review of the existing models. 

Authors Methods Accuracy (%) 

Chen et al. [43] 

 

Bansal et al. [44] 

 

Bos et al. [46] 

 

Li et al. [18] 

BPNN 

 

BPNN 

 

CryptoNet 

 

SecureML 

82 

 

88.25 

 

92 

 

92.25 

  

III. METHODOLOGY 

In academia and industry, an excellent deal of interest is created by cloud computing. In cloud computing 

one of the most famous problems is the security of data. Hence, in this article, we proposed a suitable 

method for data storage and intrusion detection. Security of text documents in the cloud environment is 

mainly focused on in this article.  In the suggested part, carried out three major operations, are Encrypting 

data storage, Data preprocessing, and Intrusion Detection. By the use of a proposed algorithm, the process 

of Encryption data storage and intrusion detection's overall structure is illustrated. RK-AES algorithm is 

used for filtering purposes. Figure 2 shows the block diagram of AES-RK-DBN. 
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Figure. 2: block diagram of AES-RK-DBN 

 

 

3.1 Dataset Collection 

 

The Datasets used are 

1) KDDcup 1999 Dataset: For the network model of intrusion detection as a benchmark the KDDcup 1999 

dataset [16] is broadly utilized.  In the dataset 41 features are contained in every record and either it is 

labeled as an attack of a specific type or normal. The attacks of 22 types are contained in the training 

dataset, while additionally 17 types are contained in the testing dataset. 

2) NSL-KDD Dataset: In both the testing and training dataset of the KDDCup 1999 dataset a big amount 

of redundant records is contained to resolve this inherent problem in [17] the NSL-KDD Dataset was 

introduced.  41 features are there in every traffic sample.  In the dataset, Probe, U2R, R2L, and DoS attacks 

are the four categories in which attacks are classified. 24 types of attack are included in the training dataset, 

while 38 types of attack are contained a testing dataset. 

3) UNSW-NB15 Dataset: Namely Worms, Shellcode, Reconnaissance, Generic, Exploits, DoS, 

Backdoors, Analysis, and Fuzzers are the 9 families of attacks this dataset has. To generate features of a 

total of 49, developed 12 algorithms and utilized the tools of network monitoring like Bro-IDS and Argus. 

From the attacks of different types, 82,331 records are in the testing dataset and 175,340 records are in the 

training dataset. 

 

3.2Deep Learning Model 

Explained, in the cloud system, how the cyberattacks are detected by the learning model and for intrusion 

detection the deep learning model is introduced by us in this section. Figure 3 shows the architecture of the 

Deep Learning model. 
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Figure.3: deep learning model 

 

The phases of the Deep Learning Model are given below: 

 

     3.2.1Dimension Reduction and Feature Analysis  

 

Features Analysis: In the model of deep learning first step is the feature analysis. Extract the features and 

analyze the features are the purpose of this step. Malicious packets of different kinds may additionally have 

special features, from the regular ones which are different, Whether or not a packet is malicious can be 

determined by fetching and examining the packet's abnormal attributes. e.g. to discover DoS attacks [13] 

important features are IP packet entropy, source bytes, and percentage of packets with errors. 

Dimension Reduction: With various features, many attributes are contained in data packets. E.g. 41 

features are contained in every record in the NSL-KDD dataset [17] and KDDcup 1999 dataset [16]. 

Although, for intrusion detection, all 41 features are not beneficial. Some of the features are redundant and 

irrelevant, resulting in a performance degrading and process of long detection. Hence, the dataset's most 

necessary information is maintained by deciding features, which is vital to reducing the complexity of 

computation and for the increased learning process accuracy. 

Principal Component Analysis (PCA) is an efficient method, to emphasize variation in machine learning 

which is utilized and, in a dataset, strong patterns are determined. Minimize the dataset's dimensionality is 

the core concept of PCA of which containing interrelated variables of a big amount, while in the dataset 

[14], the presented variation is preserved as much as possible. So that, for considered datasets to decrease 

dimensions, the PCA is adopted in this article. 

Mathematically, to an r-dimensional space, from an n-dimensional space, a dataset is mapped by the PCA, 

where r ≤ n, the projection's residual sum of squares (RSS) to reduce. The projected dataset's [14] 

covariance matrix's maximization is equal to this. Two important properties were the new domain dataset 

has i.e., according to their information's importance ordered the dimensions and anymore, no correlation, 

the various dimensions of the data have. With n various variables and m observations, we can define X as 

an (m × n) matrix. Then, the C which is a covariance matrix is given as: 
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  C =
1

𝑛−1
X⊤X (1) 

C can be diagonalized as follows [15], Since C is a symmetric matrix:  

 𝐶 = 𝑉𝐿𝑉⊤      (2) 

Where eigenvectors matrix is V, and L = 𝑑𝑖𝑎𝑔(𝜆1 … 𝜆𝑝) 

In decreasing order, it is an eigenvalues diagonal matrix. To perform PCA, if the singular value 

decomposition (SVD) is used. The decomposition as follows [15] is obtained: 

  𝑋 = 𝑈𝛴𝑉⊤ (3) 

Where orthonormal matrices are V and U, meaning that 𝑈𝑇𝑈 = 𝑈𝑈𝑇 = 𝐼 and 𝑉𝑇𝑉 = 𝑉𝑉𝑇 = 𝐼 and  𝛴 =
 𝑑𝑖𝑎𝑔(𝑠1 … 𝑠𝑛) is a singular value 𝑠𝑖. diagonal matrix. Then the following results are derived:  

 𝐶 =
1

𝑛−1
𝑋⊤𝑋 =

1

𝑛−1
(𝑉𝛴𝑈⊤)(𝑈𝛴𝑉⊤) (4) 

=
1

𝑛 − 1
𝑉𝛴2𝑉⊤ 

has principal directions that singular vector V is (4) implies and to the eigenvalue 𝜆𝑖, singular value 𝑠𝑖 is 

related, to covariance matrix C via  𝜆1  = 𝑠𝑖
2/(𝑛 –  1). Thus, the principal components (PCs) can define as 

follows [15]: 

  𝑃 = 𝑋𝑉 = 𝑈𝛴𝑉𝑇𝑉 = 𝑈𝛴 (5) 

where the PCs are the matrix P’s columns and the matrix V is known as loading matrix, for each PC the 

variable's coefficients linear combination is contained.  While preserving the important dimensions of the 

data, to r-dimensional, from n-dimensional that the dataset needs to project. In different words, the smallest 

valuer has to find such that the following circumstance holds:  

 
∑ 𝜆𝑖

⊤
𝑖=1  

∑ 𝜆𝑗
⊤
𝑗=1  

≥ 𝛼                             (6) 

To r-dimensional after reducing the input data dimension, needs to be reserve the α which is the percentage 

of information. We can have a look at that the PCs are chosen by PCA i.e., important features, the variance 

α is maximized by that. 

 

      3.2.2. Learning Process 

As demonstrated in Fig. 2 some hidden, input, and output layers are the three layers included in the process 

of learning. In the input layer, input data will be utilized for the refined features. Whether or not the packet 

is malicious or normal is determined after the learning process. As shown in Figure. 2, SoftMax regression 

steps, pre-learning, and deep learning are the three main steps involved in the learning process. 

a. Pre-learning Process: To transform actual values Gaussian Binary Restricted Boltzmann Machine 

(GRBM) is used in this step, i.e., input layer's input data, into binary codes, and then in the hidden layers 

which will be utilized. j hidden units and i visible units were GRBM has. In advance, it is pre-defined the 

number of hidden units and after reducing the dimension, as the number of features, defines the number of 

visible units (i.e., the no. of neurons). The GRBM's energy function is described as: 

 𝐸(𝑣, ℎ) = ∑
(𝑣𝑖−𝑎𝑖)2

2𝜎𝑖
2

𝐼
𝑖=1   − ∑ ∑   𝑤𝑖𝑗ℎ𝑗

𝑣𝑖

𝜎𝑖

𝐽
𝑖=1

𝐼
𝑖=1 − ∑ 𝑏𝑗ℎ𝑗

𝐽
𝑖=1                                                    

(7)  

Where hidden vector is hand visible vector is v. To visible and hidden units, 𝑎𝑖 and 𝑏𝑗are biases 

respectively. 

Between the hidden and visible units, the connecting weight is the 𝑤𝑖𝑗, and with Gaussian visible unit 𝑣𝑖, 

associated is the standard deviation 𝜎𝑖. Through the energy function, to each possible pair of a hidden and 

a visible vector, a probability is assigned by the network. Defused the probability as follows: 

𝑝(𝑣, ℎ) =
𝑒−𝐸(𝑣,ℎ)

𝛴𝑣,ℎ𝑒−𝐸(𝑣,ℎ)
           (8)  

We can derive, from (8), to a visible vector v, the network assigned a probability that is as follows:  

 𝑝(𝑣) =
𝛴ℎ𝑒−𝐸(𝑣,ℎ)

𝛴𝑣,ℎ𝑒−𝐸(𝑣,ℎ)                           

(9) 

In the training data's log probability for performing the stochastic steepest descent the learning update rule 

can derive from the probability p(v) as below:  

 
𝜕𝑙𝑜𝑔 𝑝(𝑣)

𝜕𝑤𝑁𝑦
= ⟨

1

𝜎𝑖
𝑣𝑖ℎ𝑗⟩𝑑𝑎𝑡𝑎 − ⟨

1

𝜎𝑖
𝑣𝑖ℎ𝑗⟩𝑚𝑜𝑑𝑒𝑙                        

(10) 
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  ∆𝜔𝑖,𝑗 = 𝑐 (⟨
1

𝜎𝑖
𝑣𝑖ℎ𝑗⟩𝑑𝑎𝑡𝑎 − ⟨

1

𝜎𝑖
𝑣𝑖ℎ𝑗⟩𝑚𝑜𝑑𝑒𝑙)  

Where the learning rate is the c and by the subscript a distribution specified under which the expectation 

is denoted using a (.) that follows [22]. Getting a ⟨𝑣𝑖ℎ𝑗⟩𝑚𝑜𝑑𝑒𝑙 the unbiased sample is difficult because in a 

GRBM, between the visible units and the hidden units there is no connection. Hence, to tackle this problem 

can apply the sampling strategies. Normally, at the visible units any random state we can start, and 

alternately Gibbs sampling can perform. Using equation (11), parallelly updating all the hidden units is 

involved in the alternating Gibbs sampling of every iteration followed by equation (12), parallelly updating 

all visible units. 

 𝑝(ℎ𝑗 = 1 ∣ v) = sig 𝑚 (𝑏𝑗 + ∑  𝑖 𝑤𝑖𝑗
𝑣𝑖

𝜎𝑖
)                                          

(11) 

𝑝(𝑣𝑖 ∣ h) = 𝒩(𝑣𝑖 ∣ 𝑎𝑖 + ∑  𝑗 ℎ𝑗𝑤𝑖𝑗, 𝜎𝑖
2)                                                      (12) 

Where the sigmoid function is the 𝑠𝑖𝑔𝑚(𝑥)  =  1/(1 +  𝑒𝑥𝑝(−𝑥)) and a Gaussian probability dainty 

function is denoted by 𝑁(−|𝜇, 𝜎𝑖
2) with standard deviation 𝜎 and mean 𝜇. 

 

a. Deep Leaning Step: To adjust the neural network weights, in sequence a series of learning processes is 

performed which is included in this step. Between the two successive layers, via Restricted Boltzmann 

Machine (RBM) in the hidden layers pertain every learning process, particularly a Markov random field 

type is an RBM. It has an architecture of two-layer in which the hidden binary stochastic units ℎ ∈ {0,1}𝐹, 

the visible binary stochastic units 𝑣 ∈ {0,1}𝐷 are connected. Here, the numbers of hidden and visible units 

are F and D respectively. Then, by [22] can calculate the energy of state {v, h}:  

𝐸(v, h) = −∑
𝐷

 ∑  𝐹
𝑖=1 𝑤𝑖𝑗𝑣𝑖ℎ𝑗 − ∑  𝐷

𝑖= 𝑎𝑖𝑣𝑖 − ∑  𝐹
𝑗=1 𝑏𝑗ℎ𝑗                                                                                                      (13) 

Similarly, where parameters𝑤𝑖𝑗,  𝑎𝑖 and 𝑏𝑗 are defined as in (7). 

One is the single variable’s conditional probability (e.g., 𝑝(ℎ𝑗 = 1 ∣ 𝑣)) with the sigmoid activation 

function as a neuron’s firing rate it can be interpreted as follows [22]:  

𝑝(ℎ𝑗 = 1 ∣ v) = sigm (∑  𝐷
𝑖=1 𝑤𝑖𝑗𝑣𝑖 + 𝑏𝑗)                                                          

(14) 

𝑝(𝑣𝑖 = 1 ∣ h) = sigm (∑  𝐹
𝑖=1 𝑤𝑖𝑗ℎ𝑗 + 𝑎𝑖)                                             

(15) 

For the weights of the RBM the learning update rule can be derived similar to the pre-learning step, as 

follows:                     

∆𝜔𝑖,𝑗 = 𝑐(⟨𝑣𝑖ℎ𝑗⟩𝑑𝑎𝑡𝑎 − ⟨𝑣𝑖ℎ𝑗⟩𝑚𝑜𝑑𝑒𝑙)                                                            

(16) 

where c as the learning rate 

b. Softmax Regression Step: For the packet classification, as the softmax regression’s input (at the output 

layer), the last hidden layer's output will be used i.e., x. Into the classes of M= (K + 1) classifies the packet. 

Attacks of all types are denoted by K. Mathematically, class i is an output prediction of Y's probability. is 

decided by.  

𝑝(𝑌 = 𝑖 ∣ x, W, b) = softmax𝑖  (Wx + b) =
𝑒𝑊,x+ℎ2

∑  𝑗 𝑒
𝑊,x+𝑏𝑗

                                                                    (17) 

Where a bias vector is b and between the output layer and the last hidden layer W is a weight matrix. Then, 

the class is the model's prediction 𝑦𝑝𝑑 whose probability is maximal, specifically:  

𝑦𝑝𝑑 =𝑎𝑟𝑔 𝑎𝑟𝑔𝑚𝑎𝑥𝑖[𝑝(𝑌 = 𝑖|𝑥, 𝑊, 𝑏)], ∀𝑖 ∈ {1,2, … , 𝑀}                                            (18) 

 

3.2.2 Online Threat Detection and Offline Deep Training  

Phases of fine-tuning and pre-training are the two phases contained in deep training. 

1) Pre-training: For training, from the Internet, only the unlabeled data which is easy and cheap to collect 

is required in this phase. By the use of a group of simple sub-models, to study a complicated model an 

effective way is introduced by the authors in [18] which are sequentially learned. To have various data 

representations in the sequence each sub-model is allowed by the learning algorithm of greedy layer-wise. 

To generate output vectors, on its input vectors a non-linear transformation is performed by the sub-model. 

In the sequence as the next sub-model's input that will be utilized. For every layer [18], [19], [20] as the 

building blocks with RBMs, can be applied for each layer's principle of unsupervised training in greedy 
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layer-wise. With the gradient [21] approximation by the use of CD using Gibbs sampling execute our 

training process. 

2) Fine-tuning: For fine-tuning a set of labeled data available is used. At a time for one-layer sensible set 

of weights, we have after the phase of pre-training. So that for better discrimination the model can be fine-

tuned by the use of bottom-up back-propagation. 

With the trained weights a model of deep learning will acquire after the completion of offline deep training. 

In an online fashion to detect the malicious packets, the module of attack detection will be implemented in 

this model of learning.  

 

      3.3 RK-AES Model 

Once the Deep Learning model is classified data into malicious or non-malicious, the malicious data is 

blocked. The non-malicious data is passed to RK-AES Model for encryption. 

 

3.3.1 AES Algorithm 

 

In 2001 the National Institute of Standards and Technology (NIST) published the Advanced Encryption 

Standard (AES) [26]. For the both decryption and encryption process, a single key is utilized by the AES, 

which is a symmetric block cipher. 128 bits sequences were contained in every output and input of the 

AES algorithm. 128, 256, or 192 bits were contained in the key utilized by this algorithm. On which in 8-

bit bytes the AES operates. By the use of the following polynomial representation, as an infinite field 

element, interpreted these bytes: 

𝑓(𝑥) = 𝑏𝑛−1𝑥𝑛−1 + 𝑏𝑛−2𝑥𝑛−2 + ⋯ + 𝑏1𝑥 + 𝑏0 = ∑  𝑛−1
𝑖=0 𝑏1𝑥𝑖                                       (19) 

the value of 0 or 1 where each bi is having. 

As depicted in Figure 1, in a size of 4 × 4 state matrix, arranged the AES 128-bit input block. By the use 

of 𝑏𝑖,𝑗variable represented the matrix elements where j ≤ 3, 0 ≤ i and the number of row and column is 

denoted as i, j, respectively. For AES rounds are permitted based on bits size in keys variables. The concept 

of 256-bit key size is utilized in our experimentation and hence, 14 is the number of rounds utilized, by the 

use Nr rounds is represented. To every round to supply keys in AES, also utilized the algorithm of key 

scheduling. By the transforms of various rounds, process the matrix of the input state. Via the cipher's 

various steps, as it passes and evolve the state matrix, and the ciphertext is produced finally. The following 

steps are followed by every round in AES. 

SubBytes: In the AES, nonlinear step is T. To the state matrix bytes, the applied S-box is utilized by it. By 

their multiplicative inverse replaces every bite of the state matrixes, accompanied using a fine-mapping as 

follows: 

𝑏𝑖
′ = 𝑏𝑖 ⊕ 𝑏(𝑖+4)𝑚𝑜𝑑8 ⊕ 𝑏(𝑖+5)𝑚𝑜𝑑8 ⊕ 𝑏(𝑖+6)𝑚𝑜𝑑8 ⊕ 𝑏(𝑖+7)𝑚𝑜𝑑8 ⊕ 𝑐𝑖, 𝑓𝑜𝑟 0 ≤ 𝑖 < 8                                       (20) 

Where the ith bit of the byte is 𝑏𝑖 and the byte c’s ith bit is 𝑐𝑖 with the value 01100011 or 63. So that, by the 

relation y = A.x-1 + B, to the S-box's output y, related is the input byte x, where constant matrices [27] are 

A and B. 

Sift Rows: Through a byte position of a certain number, the state matrix's last three rows are rotated.  It is 

carried out as follows:  

𝑠𝑟,𝑐
′ = 𝑠(𝑟,(𝑐+𝑡(𝑟+𝑁𝑏))𝑚𝑜𝑑𝑁𝑏)𝑓𝑜𝑟 0 < 𝑟 < 4𝑎𝑛𝑑0 < 𝑐 < 𝑁𝑏                                                         (21) 

   

In the state matrix, the number of words is the Nb (in the state matrix, as a word, each column is 

considered). 128 bits are the input size as always Nb = 4 in AES and in size 4 x 4 of state matrix it arranged. 

As s in the state matrix every cell is represented with the index of column c and row r. 

Mix columns: Column-by-column basis the state matrix operated this transformation, over GF (28), as 

polynomials of four-term, every column is considered and with a fixed polynomial of x and a modulo x4+1 

is multiplied, given by  

                    𝑎(𝑥) = {03}𝑥3 + {01}𝑥2 + {01}𝑥1 + {02}                                                

(22) 

With the state matrix’s columns, the multiplication process is given by  

𝑠′(𝑥) = 𝑎(𝑥) ⊗ 𝑠(𝑥) 

Where multiplication modulo of polynomials is 𝑎(𝑥) and in the state matrix is s(x). 
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AddRoundKey: By an XOR operation of a simple bitwise, to the state added around the key in this process. 

From the key schedule, the size of Nb words is every round key is having. To fulfill the below 

circumstance, to the state matrix columns those Nb words are added:  

[𝑠0,𝑐
′ , 𝑠1,𝑐

′ , 𝑠2,𝑐
′ , 𝑠3,𝑐

′ ] = [𝑠0,𝑐, 𝑠1,𝑐, 𝑠2,𝑐, 𝑠3,𝑐] ⊕ [𝑤round ×𝑁𝑏+𝑐], for 0 ≤ 𝑐 < 𝑁𝑏                                                  (23) 

where bitwise XOR is the ⊕ and the round number at the which round key is added is round and 0 ≤ round 

< Nr. Excluding the last round, the AES for each of the rounds performs all these steps.  

The AES except the last round performs all these steps for each of the rounds. Not perform the Mix Column 

step in the last round. Figure 4 shows the process of round function for an AES of 14-round. 

 
Figure.4: steps of round function in the AES of 14-round  

 

In the stages of round function, one of the necessary parts is round keys adding, using a routine of key 

expansion generate these keys. A total of 𝑁𝑏(𝑁𝑟 +  1) words are generated by the key expansion: an Nb 

word of the initial set is required by the algorithm, and the key data's Nb words are required by every Nr 

rounds. A 4-byte words linear array is contained in the resulting key schedule, denoted by [wi], 0 ≤ Nb≤ 

(Nr + 1). As input, these 4-byte words are taken by the Sub Word () function and then for every word, the 

S-box is applied. For a circular permutation to perform using another function Rotword (). In the below 

equation with xi-1 powers of x the values denoted as [ xi-1 , {00}, {00}, {00}] are contained in the round 

constant array Rcon[i]:  

      Rcon[𝑖] = 𝑥(𝑖−4)/4𝑚𝑜𝑑(𝑥8 + 𝑥4 + 𝑥3 + 𝑥 + 1), 𝑤ℎ𝑒𝑟𝑒𝑖 𝑖𝑠 𝑡ℎ𝑒 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑟𝑜𝑢𝑛𝑑          (24) 

Then for 192- and 128- bit keys there is a slight difference for a 256-bit key (Nk = 8) in the routine of key 

expansion. If i-4 is a multiple of Nk and Nk = 8, then before the XOR to w[i-1] apply the Sub Word (). A 

key's number of 32-bit words is Nk. 

 

3.3.2 RK-AES 

The AES algorithm's main problem in the expansion of key is that every word 𝑤𝑖 is related to each other’s. 

If traceable is any word, cryptanalysis linear methods or differential method by which we can find the 

overall key. To the algorithm, the confusion characteristics are provided as depicted in Figure 5, though 

the shifting function, S-boxes, and XOR operation, to the original key space can get back easily by the 

process of reverse engineering.  To gain the key space partially, the words differences are revealed by the 

key space’s biased inputs. With Symmetric Random Function Generator (SRFG) [7], the AES's module of 

key expansion is modified in AES to resolve this problem. Irrespective of the input string in the output 

string the sense of the number of 0’s and 1’s in which the symmetrically balanced output is produced by 

SRFG. A combined function output is its which consists of (XOR, OR, AND, and NOT) universal GATEs. 

for the generator of the proposed combined function, expression Te is provided as 

𝑓𝑐 =⊗ 𝑓𝑖
𝐿                 (25) 

Where i = 1, 2, 4, AND, XOR, OR, and NOT are the four universal GATES: the expression length is 

denoted by L (in the combined function 𝑓𝑐 the number of terms); and the random combination is denoted 

by ⊗. L = 5 is used in our experiments. In the generator of such combined function the randomness is 

emphasized, in terms of variables of N input ' further expressed the above equation randomness in the 

selection, as proven in (2).  

http://www.ijcrt.org/


www.ijcrt.org                                                  © 2023 IJCRT | Volume 11, Issue 9 September 2023 | ISSN: 2320-2882 

IJCRT2309114 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org a946 
 

𝑓𝑐(𝑉1, 𝑉2, … , 𝑉𝑁) =⊗ 𝑓𝑖
𝐿[(𝑉1, 𝑉2, … , 𝑉𝑁)]                                           (26) 

The above equation is rewritten as below, for our experimentation, 

𝑓𝑐(𝑉1, 𝑉2) =⊗ 𝑓𝑖
5[𝑟𝑎𝑛𝑑(𝑉1, 𝑉2)]                 (27) 

With the feature of some randomness, the key expansion module is to be enabled in AES is the main 

objective of SRFG adding. Even though the partial key is in hand deducing the words of keys is prevented 

with the help of this. Figure 4 shows the module of modified key expansion. In yellow color highlighted 

the changes. In three parts the SRFG's randomness has been utilized: initially, in the g function, secondly, 

from key spaces the generation recursive word, and thirdly however most prominently, the addition of 

SRFG and RC from 𝑤0 to 𝑤7 for generating the words. As w, word every column in the key space is treated 

as per fig 6(a). in the very first step the eight worth 𝑤0, 𝑤1, 𝑤2, 𝑤3, 𝑤4, 𝑤5, 𝑤6,𝑤7 we shall have, as 256 

bits is the size of the key. Via a function g, 𝑤7, is going which is the 8th word. 

As in Figure 6, (b) just before the function's output SRFG is also utilizing by this function. Using a series 

of SRFGs processing, other words are generated by the use of the output of g. In AES for the 14 rounds 

until we get the necessary number of words repeat the same process. For the process of decryption, the 

generated words have been saved and to get back to the plaintext, with the ciphertext, reversely used them.  

For decryption rather than storing the keys, we shall work on the direct transmission of them in future. 

 
Figure.5:  for AES of 14-round key expansion 

 
               Figure. 6 (a): generation of word key             

Figure. 6 (b): for AES of 14 round proposed key expansion  
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3.3.3 Feature Analysis of RK-AES 

AES-14 round's the module of key generation is emphasized, from the overall key byte’s deduction, can 

be removed the key bytes effect of biased inputs. From the module of key expansion out of the words 

generated a differential or linear equation can infer by the cryptanalysis process then the keys are deducing. 

To have the whole key in hand is not necessary always for the process of cryptanalysis. As we can see 

from the literature study, establishing such relations or deducing keys from subkeys is becoming faster and 

more complicated as cryptanalysis technology advance. Immunity, criterion, propagation, resiliency, 

balancedness, and nonlinearity are some parameters for RK-AES, for our proposed module of key 

expansion we have identified. 

Every word 𝑤𝑖 in the keyspace is consists of 2 bats (4 bytes ) in our experimentation which is considered 

as a word vector of 32 -bit. Let 𝑆2 be the set of all symmetric random combined functions on two variables 

of all the functions from 𝐹2
2 into 𝐹2 where 𝐹2

2 = (𝑤1, 𝑤2) ∣ 𝑤𝑖 ∈ 𝐹2 ⋅ 𝐹2 is the finite field of two elements 

0,1 and ⊕ is any operation of the field 𝐹2. 

As a polynomial, expressed any combined function 𝑓𝑐 ∈ 𝐵2 of five terms, which is function’s Algebraic 

Normal Form (ANF), termed as and provided as 

𝑓𝑐(𝑤1, 𝑤2) =⊕ 𝜆𝑢(∏ 𝑟𝑎𝑛𝑑 (𝑤𝑖)
𝑢𝑖2

𝑖=1   )𝑠𝜆𝑢 ∈ 𝐹2, 𝑢 ∈ 𝐹2
2 𝑎𝑛𝑑 𝐿 ∈ 𝑍                                                  (28) 

𝜆𝑤 =⊕ 𝑓𝑐(𝑣),   𝑤 ≤ 𝑢, ∀𝑤𝑖 = 𝑤𝑖0
, 𝑤𝑖,……𝑖2

                                      (29) 

Where, (𝑤ℎℎ
, 𝑤𝑘4

… . 𝑤𝑖0
) ≤ (𝑢1, 𝑢2 … , 𝑢32)𝑖𝑓𝑉𝑖, 𝑗, 𝑤𝑖, ≤ 𝑢𝑖𝑎𝑛𝑑𝑗 = 1,2, … ,32                                     

(30) 

On the input variables (number of i’s in the variable) weight, the output of 𝑓𝑐 depends on. As a result, 𝑓𝑒 

corresponds toa function 𝑔𝑐: {0, .1, … ,32} → 𝐹2 such that ∀𝑥 ∈ 𝐹2
2, 𝑓𝑒(𝑥) = 𝑔𝑘(𝜔𝑡(𝑥)). As simplified 

value vector of 𝑓𝑐 the sequence 𝑔𝜃(𝑓𝑡) = (𝑔𝑡(0), 𝑔𝜖(1) … … 𝑔𝑒(32)) for word vector of 32 -bit is 

considered. To establish the relationship between the arithmetic normal form and simplified value vector, 

(ii) can be rewritten as shown in (13). 

𝑓𝑐(𝑤1, 𝑤2)  = 𝑑𝑓(𝑗) ∈ (∏ 𝑟𝑎𝑛𝑑 (𝑤𝑖)
−𝑗2

𝑖=1   )
2

 = 𝑒𝜆𝑓(𝑗)𝑥𝑗𝑁                                                   (31) 

With 2 variables, where 𝜆𝑓(𝑗), 𝑢 ∈ 𝐹2
2, and 𝐿 ∈ 𝑍, 𝑗 = {1,2}, 𝑥𝑗𝑁 is the elementary polynomial of degree 𝑗. 

By 32 -bit vector represents the arithmetic normal form of 𝑓𝜖‘s coefficients, 𝜆(𝑓𝑐) =
{𝜆𝑓(0), 𝜆𝑓(1), … , 𝜆𝑓 , (32)} called the ANF of 𝑓𝑐’s a simplified vector. 

Nonlinearity: To prevent the various types of linear or related or even correlation attacks, in cryptographic 

algorithms the cryptographic functions shows an important design characteristic known as Nonlinearity. 

On the bits of the word vectors 𝑤𝑖 this feature is depending on, and is considered as affine transformations 

of the function generated from the SRFG used. Between two affine transformations by the hamming 

distance, the nonlinearity is calculated, two words are 𝑤𝑗 and w 𝑤𝑖of 32 bits each. 

𝑁1(𝑤𝑖𝑘, 𝑤𝑗𝑘) = ∑  𝑤𝑖𝑘

𝑛
𝑘=1 ≠ 𝑤ℎ, 𝑤ℎ𝑒𝑟𝑒𝑛 = 32                                   (32) 

As subkeys, 4 words (128 bits) are used in AES in each of the rounds. Between the subkeys of two, the 

nonlinearity used for any two rounds 𝑟𝑖, 𝑟𝑗 can be calculated as 

𝑁1(𝑟𝑖, 𝑟𝑗) = ∑ 𝑟𝑖𝑎
𝑛
𝑖=1   ≠ 𝑟𝑗𝑘∗  𝑤ℎ𝑒𝑟𝑒 𝑛 = 128                                                 (33) 

Balancedness: If the following condition is followed by our key expansion of a proposed function 𝑓𝑒’s 

simplified value vector 𝑔 then exists the balanced property:   

∀𝑖 = (1,2)𝑔𝑐(𝑡) = 𝑔𝑘(2 − 𝑖) ⊕= 1                      (34) 

where⊕ is sum over 𝐹2 
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To the symmetric functions correspondingly, the feature of trivial balancedness is also provided by the 

above equation. So that, the condition 𝐷1𝑓𝑐 = 1 is verified by 𝑓𝑐. For the even values of 𝑛 (here for rounds, 

𝑛 = 128 and for words, 𝑛 = 32), do not exist the functions having 𝐷1𝑓𝑐 = 1 because for any word vector 

w such that 𝜔𝑡(𝑤) = 𝑛/2 (where  𝜔𝑡 (𝑤) is the word vector’s weight as the number of 1s in it is defined), 

the 𝐷1𝑓𝑐 can be calculated as 

𝐷1𝑓𝑐 = 𝑓𝑐(𝑤) = 𝑓𝑖(𝑤 + 1) = 𝑔 (
𝑛

2
) ≡ 𝑔𝑡 (

𝑛

2
) = 0                                   (35) 

Resiliency: To the correlation attack [28] the correlation between the key expansion function output and 

its input variables small subset may leads cryptanalysis [29] of differential linearity. Hence, achieving the 

property of high resiliency becomes necessary for the function of key expansion. When remaining (n-m) 

bits are altered and any m input variables are fixed, if it remains balanced, then m -resilient is the N 

variable's function 𝑓𝑐, each of having n bits. if m is higher then, more resilient is the function. To some 

subspaces, to the 𝑓𝑐 's restrictions weights, the resilient property is related. 𝑉𝑓𝑐 ∈ 𝐵2and any affine any 

subspace 𝛿 𝐶 𝐹2
2, the restriction of 𝑓𝑐 to 𝛿 is the function given as 

𝑓𝑠: 𝑠 ⟶ 𝐹2𝑥 → 𝑓𝑐(𝑥), ∀𝑥 ∈ 𝛿                                 (36) 

wherewith a 𝑑𝑖𝑚(𝛿) variables function can be determined the 𝑓𝑠. By the k canonical bads vectors spanned 

the subspace δ and δ‾ is its supplementary subspace. By at δ where 𝑎 ∈ 𝑆, the restrictions of 𝑓𝑐 to 휀 all its 

costs and ε are given. Being 𝑓𝜖 balanced and symmetric, δ is represented as 𝛿 = (𝑠1, 𝑠2 … , 𝑠𝑘)and 𝑓𝑎𝑡𝑠   

becomes balanced and symmetric toa. Moreover, for all 𝑠 ∈ 𝛿, we can write the following: 

𝑓ats (𝑠) = 𝑓(𝑎 + 𝑠) = 𝑔𝜀(𝑤𝑡(𝑎) + wt (𝑠))                               (37)   

    

when𝑎 is fixed, upon the weight of s which depends. From 𝑓𝑐 can be deduced these, the simplified ANF 

vector and simplified value vector as given below.   

𝑔𝑙𝑘+𝑡
(𝑖) = 𝑔𝑘(𝑖 + 𝑤𝑡(𝑎)), ∀𝑖, 0 ≤ 𝑖 ≤ 𝑘𝜆𝑡𝑓𝑒1

(𝑖) =∗ 𝜆𝑓(𝑖 + 𝑗)                             (38) 

𝜆𝑡𝑓𝑒1
(𝑖) =∗ 𝜆𝑓(𝑖 + 𝑗) 

∀𝑖 , 0 ≤ 𝑡 ≤ 𝑘and𝑗 ≤ wt (𝑎) 

Propagation Criterion: The cryptographic prompts of function derivatives determine the propagation 

criterion. For a cryptographic function's efficiency. To all its derivatives, its properties need to be 

propagated by the function. When the fixed Hamming weight of n/2 [7] they have a linearly equivalency 

in the key expansions of all derivatives. Sashes the propagation criterion of order m and degree k, from our 

previous work [7] n variables are applied in our key expansion proposed approach and by keeping m input 

bits constant, from the outputs obtain any affine function. 

The propagation criterion of degree 𝑘 is satisfied by Communication and Security Networks. For 

experimentation Considering every round, the following has done. Let 𝑓𝜖 ∈ 𝐵2 and let 𝑟𝑖 ⋅ 𝑟𝑗 ∈ 𝐹2
2, ∀𝑖, 𝑗 =

1,2, … ,14  

Such that 𝑡 (𝑟𝑖) = 𝑤𝑡 (𝑟𝑗) = 𝑛/2. Then, 𝐷𝑟𝑖
𝑓𝑐 and 𝐷𝑟𝑖

𝑓𝑐 are linearly equivalent. 

This signifies, with a linear permutation 𝜇 of 𝐹2
2, 𝐷𝑟,𝑓𝑐 = 𝐷𝑟,𝑓𝑐 ⋅ 𝜇 if we change the input variables, where 

the composite function is 𝑜. On the variable the permutation 𝜇 exists in a way so that that 𝑟𝑗 = 𝜇(𝑟𝑖). Since 

balanced and symmetric is 𝑓𝑑, we can have 

𝐷𝑟𝑗
𝑓𝑒(𝜇(𝑎)) = 𝐷𝑛𝑓𝑐(𝑎),  𝑤ℎ𝑒𝑟𝑒 𝑎 ∈ 𝛿‾                                    (39) 

and 𝑒𝑘 = 𝑤𝑛−𝑘+1 + ⋯ + 𝑤𝑛. Then for any 𝑧 = 𝑎 + 𝑟𝑗, with 𝑎 ∈ 𝛿‾. then we can have the following: 

𝑤𝑡 (𝑧)  = 𝜔𝑡(𝑎) + 𝑤𝑡(𝑟𝑗)𝜔𝑡(𝑧 + 𝜖𝑘)  = 𝑤𝑡(𝑎) + 𝑤𝑡(𝑟𝑗 + 𝜖𝑘)  = 𝑤𝑡(𝑎) + 𝑘 − 𝜔𝑡(𝑟𝑗)                              

(40)                                                                                                                              

Thus, ∀𝑎 ∈ 𝑉. 
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𝐷𝑒𝑓𝑐(𝑎 + 𝑦) = 𝑓𝑐(𝑎 + 𝑏) 𝑤 𝑓𝑐(𝑎 + 𝜖𝑘 + 𝑟𝑗) = 𝑤𝑡 (𝑎) + 𝑤𝑡 (𝑟𝑗 + 𝜖𝑘) = 𝑤𝑡(𝑎) + 𝑘 −  𝑢𝑡 (𝑟𝑗) =

𝑔𝑒 (𝑤𝑡(𝑎) + 𝑤(𝑟𝑗)) ≡ (𝜔𝑡(𝑎) + 𝑘 − 𝑤(𝑟𝑗))                                                               (41) 

The symmetric property is followed by 𝑔𝜀 which is signified by the equation (28). With the propagation 

features, also propagate our key expansion of proposed output’s partial derivatives. 

Immunity: With the 32 bits (on bit size has been done no modification) variables (words) the module of 

proposed key expansion is performed. In concern algebraic immunity and correlation immunity are two 

types of immunity and as a binary vector of 32 -bit, among the two input variables 𝑤𝑗is considered for 

correlation immunity, the correlation immune is the output if 

𝑃𝑟𝑜𝑏 (𝑓𝑐 = 𝑤𝑖) =
1

2
, 1 ≤ 𝑖 ≤ 32                                      (42) 

 

All the bits must be equal to the probability distribution and for that the output words 𝑤𝑒 has the following 

property: 

|m[𝑀0(𝑤∞(𝑤𝑎)𝑟) − 𝑀1(𝑤∞(𝑤𝑒)𝑟)]| = m[𝑚] →0                                                   (43) 

where[𝑀0(𝑤𝑒, (𝑤𝑒)𝑟)]  is the reverse of the matching of output words from the key expansion process with 

respect to value 0, and [𝑀1(𝑤𝑒+(𝑤𝑒)′)]  is the reverse of the matching of output words from the key 

expansion process with respect to value 1. Following the aforementioned property, an intriguing aspect of 

our proposed key expansion module has been recognized, and the following proposition has been given. 

Proposition 1. In AES-256, if [𝑀0(𝑤𝑏2
(𝑤0)𝑟)] = 𝑚0and [𝑀1(𝑤𝑏, (𝑤𝑒)𝑟)] = 𝑚1, then 𝑁𝑙(𝑤𝑒 , (𝑤𝑏)𝑟) =

𝑚0 + 𝑚1.  

To the annihilator of a function [30], algebraic immunity is related. The following can consider for our 

proposed key expansion to evaluate this property. 

Given, 𝑓𝜀 ∈ 𝐵2, as the function 𝑓𝑐′𝑠 annihilator define any function of the set 𝐴(𝑓𝑒) = {𝑔 ∈ 𝐵2 ∣ 𝑔𝑓 = 0}. 

All non-zero annihilators of 𝑓(𝑐) + 1or 𝑓(𝑐)’s minimum degree is 𝐴𝐼(𝑓5) which is used to denote the 

algebraic immunity of 𝑓𝑠. The 𝐴𝐼(𝑓𝑒)′𝑠 value is given as 

𝐴𝐼(𝑓𝑐) =  𝑚[𝑑𝑒𝑔 (𝑔) ∣ 𝑔 ≠ 0, 𝑔 ∈ 𝐴(𝑓𝑎) ∪ 𝐴(𝑓𝑐 + 1)                                      (44) 

As to generate the output words we have used SRFG, always 𝑛/2 is the minimum degree. So that, always 

𝑛/2 is the output’s algebraic immunity from its, which is optimal always. 

3.3.4 Security Analysis of RK-AES 

 

By the use of SRF, in AES-256 the modification of proposed key expansion overall features is analyzed in 

the above section. On our key expansion module of modified AES, the security analysis is performed in 

this section to justify the features. Fault analysis attacks and related attacks are the two attacks we have 

considered. 

Related Key Attack Analysis: To deduce the original key, among the keys differential relations or linear 

relations are used in Related key attacks.  

For input, nonzero word difference be annz and for the input difference nz, S-box’s output difference isan0. 

With these differences to execute the attack, one of 214 − 1 values can be the difference 0, because of the 

operation of XOR’s symmetry utilized in the algorithm of generic AES-256 and including the whitening 

of keys one of 215 − 1 differences can be nz difference. Also, higher is the key to deducing probability, 

when in a bounded value region these differences are. This difference is increased by the feature of 

nonlinearity in our proposed modified AES and hence, also drastically increases the key space of searching. 

The below formula increased the searching space complexity in key space for a word of 32-bit: 

For key space search’s complexity = 232.2Nl 

In the AES’s proposed key expansion, the value of nonlinearity where Nl and Nl = 20.7 is the average 

value. Therefore, on AES greater than the complexities of key searching of differential attacks, this 
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complexity becomes 252.7. In differential attacks our proposed algorithm is preventive which is shown by 

this. 

Moreover, as 𝐾𝑢1, 𝐾𝑢2, 𝐾𝑢3, 𝐾𝑢4 are the unknown keys but four related keys used by the attacker. To 

recover 𝐾𝑢1 is the attacker’s objective. To establish the attack the required relation is 

𝐾𝑢2 = 𝐾𝑤𝑡 ⊕ 𝛥𝐾∗    (45) 

𝐾𝑢3 = 𝐾𝑤 ⊕△ 𝐾′    (46) 

𝐾𝑢4 = 𝐾𝑢𝑡 ⊕△ 𝐾∗ ⊕△ 𝐾′   (47) 

For 1 to 7 rounds, to the  𝐷∘ which is a first related-key differential uses the difference of cipher key △ 𝐾∗ 

and for 8 to 14 rounds, for the second related-key differential 𝐷† uses the cipher key difference △ 𝐾′. 

Assuming that information regarding △ 𝐾′  and △ 𝐾∗ only the attacker has. To recover any 32 -bit words 

(any word out of the 60 words) the back-tracing probability is calculated as 

𝑃(𝑤𝑖) =
1

(2𝑛.𝑖.𝑃𝐿
𝐿.2𝑉)

                                    (48) 

For our modified proposed key expansion of AFS-256, 𝑛 = 32 is the number of bits in each word, 𝑖 = 60 

is including the whitening keywords, the total number of words, 𝐿 = 5 is the number of expression length 

totally, and 𝑉 = 2 is for each operation, the total number variables utilized. By the use of the values, the 

probability becomes as below 

𝑃(𝑤𝑖) =
1

(232×60×𝑃1
0×22)

=
1

23×225
                                    (49) 

By the use of our proposed key expansion approach, to recover an AFS-256’s single word, too less is the 

probability which is shown by the above result. 

Instead of using a simple XOR operation, by the use of SRFG generate the words which are shown in 

figure 4. So that, using SRFG for our proposed solution of AFS, (44), (45), and (46) will not be feasible. 

It means the related attack resistance is the solution proposed. Moreover, in the key deducing △ 𝐾′ and 

△ 𝐾∗ are a factor. However, as high nonlinearity is provided by our proposed solution, to recover the key 

space words, △ 𝐾′ and △ 𝐾∗ are not suitable. From our experimentation’s observation, a proposition is 

inferred as follows. 

 Proposition 2. For the first related-key differential 𝐷∘ the difference of cipher key △ 𝐾∗ is used and the 

cipher key difference △ 𝐾′ is used for the second related-key differential are considered 𝐷1, to the non-

linearity inversely proportional is the nonlinearity. 

𝐷0 + 𝛥𝐾∗ ∝
1

𝑁𝑙
𝑎𝑛𝑑 𝐷1 +△ 𝐾′ ∝

1

𝑁𝐼
 ∴ 𝐷∘. 𝐷3 +△ 𝐾∗.△ 𝐾′ ∝

1

𝑁𝐹
                     

(50) 

Fault Injection Analysis: In the bytes of key only the fault injection is considered in this part. For the 

original key byte of any random, in the key matrix injected the faulty key byte is assumed. From all 1 bit’s 

bytes or all 0 bits, the byte's biased input inferred the faulty input. The relationship among words of round 

or even word byte is revealed by the use of such based inputs and faulty in the original AES. Hence, as in 

the literature review, less complexity reduced the key recovery space in the original AES. For AES-256 

the following proposition we can have by recollecting (12). 

Proposition 3. With expression terms and variables of two, using SRFG for AES-256, with any two random 

faulty bytes the key recovery complexity is calculated as 

Prob (𝐹𝐼) =
1

∑⊕𝜆𝑢(Π𝑖−1
2 rand (𝑤𝑖)𝜇)

′
𝐶2

∞
                                 (51) 

For faulty key byte of any random, balanced, and nonlinear is always the layered SRFGs output. Therefore, 

to other bytes, the fault is not further propagated as the linear equations and/or the differences became 
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invalid according to Proposition 2. Hence, even in the fault injection bytes preventive is our proposed key 

expansion.  Algorithm 1 shows the RK-AES Algorithm. 

Algorithm 1.     RK-AES Algorithm 

Step 1: for input, nonzero word difference be annz and for the input difference nz the S-box’s 

output difference be an o. 

 

Step 2: In the keyspace for a word of 32-bit, with the following formula the searching space 

complexity increases: 

             Complexity for key space search = 232.2Nl 

 

Step 3: To establish the attack relation required is set as 

Ku2=Kwt⊕ΔK*        Ku3=Kw⊕△K'              Ku4=Kut⊕△K*⊕△K'             

 

Step 4: If round (1 to 7) { 

 for the first related-key differential D the difference of cipher key used is the K*  

} 

Else if round (8 to 14) { 

K' is the cipher key difference used for the second related-key differential D 

} 

 

Step 5: calculate the back-tracing probability  

P(wi) = 
𝟏

(𝟐𝒏ⅈ⋅𝑷𝑳
𝑳)

𝒗 

 

IV. PERFORMANCE ANALYSIS 

This model is implemented over python programming language in which the system specification used for 

building are Windows 10 OS, 10th Gen Intel Core i7, Nvidia RTX 3080 Max-Q GPU. Here we evaluated 

our proposed model (AES-RK-DBN) with other models such as LSTM, DenseNet, Resnet, VGG, CNN 

underperformance measures like Accuracy, specificity, sensitivity, detection rate, Recall, F-score, False 

Positive Rate (FPR), True Positive Rate (TPR), Security, encryption time, memory utilization, throughput 

encryption time. Table 2 depicts the comparative analysis of various models with our proposed model under 

3 datasets. Figure 7 (a, b, c) depict the graphical representation of the various model concerning our model 

underperformance measure like sensitivity, specificity, accuracy over KDD-cup, NSL-KDD, UNSW-NB15 

dataset.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2: comparison analysis 

Models Dataset Sensitivity (%) Specificity (%) Accuracy (%) 

http://www.ijcrt.org/


www.ijcrt.org                                                  © 2023 IJCRT | Volume 11, Issue 9 September 2023 | ISSN: 2320-2882 

IJCRT2309114 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org a952 
 

VGG 

LSTM 

DenseNet 

CNN 

AES-RK-DBN 

 

 

KDD-Cup 1999 

[62] 

88 

87.3 

89.6 

90.67 

91.2 

78 

84 

88 

81 

89 

85.9 

87.4 

90.3 

93.1 

94.4 

VGG 

LSTM 

DenseNet 

CNN 

AES-RK-DBN 

 

 

NSL-KDD 

[54] 

83.9 

79.5 

83 

85 

84 

82 

85 

88.9 

80.3 

85 

80 

86.2 

82.8 

87 

95 

VGG 

LSTM 

DenseNet 

CNN 

AES-RK-DBN 

 

 

UNSW-NB15 

[49] 

83.6 

82.9 

86.6 

87.8 

88.4 

81 

84.5 

86.3 

83.9 

88.3 

82.9 

86.5 

84.5 

89.7 

94 

 

 
 

Figure. 7: (a, b, c) model vs sensitivity, specificity, accuracy over KDD-CUP dataset Vs NSL-KDD 

dataset Vs UNSW-NB15 dataset 

Table 3. depicts the average accuracy, specificity, and sensitivity of various models for predicting the 

normal/ malicious data. Figure 8 depicts the graphical representation of average performance measures of 

all models with our proposed model (AES-RK-DBN) in which our model shows better accuracy 94.1% 

when compared to other models.  

 

                                                       Table 3: average performance measures [49] 

Models Sensitivity Specificity Accuracy 

VGG 

LSTM 

DenseNet 

CNN 

AES-RK-DBN 

83.6 

82.9 

86.6 

87.8 

88.4 

81 

84.5 

86.3 

83.9 

88.3 

82.9 

86.5 

84.5 

89.7 

94 

 

 
Figure.8: models vs average (sensitivity, specificity, accuracy) 

 

 

 

Table 4. depict the performance analysis of various models under detection rate, recall, f-score. Figure 9 

depicts the graphical representation of recall and f-score measures of various model’s vs our models. Figure 
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10 depicts the detection rate of various models in which our model has a good detection rate of 0.94 when 

compared to other models due to the RBM stack layers. 

                                                   

 

Table 4: recall and f-score of various models [39] 

Models 

 

Recall (%) F-score (%) 

VGG 

LSTM 

DenseNet 

CNN 

AES-RK-DBN 

83 

85.2 

87.3 

89 

92 

84.8 

88 

87.1 

80 

86 

 

  

Figure.9: models’ vs recall, f-score                                                Figure.10: models’ vs detection rate 

 

Table 5 depicts the TPR and FPR of various models and depicting how much they classify normal and 

malicious data. Figure 11 shows a graphical representation of various models concerning our model in 

which our proposed model classifies normal at 0.96 rates and Figure 12 shows a graphical representation 

of various models concerning our model in which our proposed model classifies malicious as 0.8 rates 

when compared to other models. 

                                               

Table.5: TPR and FPR of various models [27] [34] 

Models Classification TPR (%) FPR (%) 

VGG 

LSTM 

DenseNet 

CNN 

AES-RK-DBN 

 

 

Normal Data 

0.72 

0.82 

0.69 

0.8 

0.96 

0.6 

0.68 

0.73 

0.79 

0.86 

VGG 

LSTM 

DenseNet 

CNN 

AES-RK-DBN 

 

 

Malicious Data 

0.8 

0.78 

0.83 

0.79 

0.8 

0.62 

0.72 

0.79 

0.83 

0.81 
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Figure.11: TPR and FPR of normal data                 Figure.12: TPR and FPR of malicious data 

 

Table 6 depicts the security, encryption time, memory utilization, throughput encryption time of various 

models based on encryption in which our model outperforms better than any other model. Figure 13 depicts 

the graphical representation of various models under encryption time, throughput encryption time. Figure 

14 depict the graphical representation of various model under memory utilization measure. Figure 15 

depicts the graphical representation of various models under security in which our model with help of AES, 

has high-level security compared to other models. Figure 16 depicts the comparative analysis of our 

proposed model with state-of-art models. 

 

Table 6: performance analysis based on encryption [22] [24] 

Models Encryption 

Time (s) 

Memory 

utilization 

(%) 

Throughput 

Encryption 

Time (s) 

Security (%) 

VGG 

LSTM 

DenseNet 

CNN 

AES-RK-DBN 

0.78 

0.6 

0.5 

0.7 

0.4 

91 

93 

95 

90 

89 

0.5 

0.7 

0.5 

0.8 

0.9 

70 

80 

75 

85 

95 

 

  
Figure 13: models vs encryption time and 

throughput encryption time 

Figure 14: models vs memory utilization 

 
 

Figure 15: models’ vs security Figure 16: the comparative analysis proposed 

model with state-of-art models 

 

 

V.  CONCLUSION 

In allusion to the shortcomings of traditional local computing technology, cloud computing is an emerging 

technology that is used by millions of people for various purposes. The security of cloud data from 

malicious threats is an important task that can be effectively achieved by our proposed AES-RK-DBN 

Model. The proposed model is the combination of the Deep Learning Model by DBN and an Encryption 

Model by the RK-AES Algorithm.  This makes this a more secure and accurate cloud computing model. 

The proposed model is further compared with the existing models such as LSTM, DenseNet, and VGG 

under various measures in which our model gives a much secure level, 94.1 % of accuracy in detecting 

threats, 0.95 detection rate, and greater encryption time.  
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