IJCRT.ORG

INTERNATIONAL JOURNAL OF CREATIVE RESEARCH THOUGHTS (IJCRT)

An International Open Access, Peer-reviewed, Refereed Journal

Adjacency Energy Of Cover Pebbling Graphs

C. Muthulakshmi Department of Mathematics Sri Paramakalyani College Alwarkurichi Tamil nadu and A.Arul Steffi, Research Scholar, Department of Mathematics, St. Xavier's College, Palayamkottai.

Abstract:

Given a distribution of pebbles onto the vertices of a connected graph G, a pebbling move is defined as the removal of two pebbles from some vertex v_i and the placement of one of those pebbles on an adjacent vertex v_j . After a sequence of pebbling moves, if we place a pebble on every vertex of the graph, then the graph is said to be **Cover Pebbled**. In this paper, we compute the energy for cover pebbling graphs. Also the lower bounds and upper bounds of energy levels of various graphs were found through cover pebbling concepts.

Keywords: cover pebbling, energy, lower bound, upper bound, adjacency matrix .

AMSCN(2010):05C12,05C25,05C38,05C76

1. Introduction

Graph pebbling was first introduced by Lagarias and Saks in order to find a more intuitive proof for the following number theoretic result of Lemke and Kleitman.

For any given integers $a_1, a_2,...,a_n$ there is a nonempty subset $X \subseteq \{1,2,...,n\}$ Such that $n \sum_{i \in X} a_i and \sum_{i \in X} \gcd(a_i, n) \le n$. Chung[1] successfully used this tool to prove the result and established other

results concerning pebbling numbers.

By a graph, we mean a finite undirected graph without loops or multiple edges. Let G be a graph with n vertices and m edges. Let $\lambda_1, \lambda_2, ..., \lambda_n$ be the Eigen values of the adjacency matrix of G. The spectrum of the graph G ,consisting of the numbers $\lambda_1, \lambda_2, ..., \lambda_n$ is the spectrum of its adjacency matrix.

The energy of the graph G is defined as $E(G) = \sum_{i=1}^{n} |\lambda_i|$

The Adjacency matrix A(G) is defined as $A(G) = a_{ij} = \begin{cases} 1 & \text{if } i \text{ and } j \text{ are adjacent} \\ o & otherwise \end{cases}$

2. Preliminaries

2.1 Pebbling graph[4]

In a simple graph, consisting of two vertices a pebbling move can be defined as the removal of two pebbles from the first vertex and placing one pebble on an adjacent vertex is called a pebbling graph.

JCRI

2.2 Cover pebbling graph[2]

In a simple graph, consisting of two vertices, place a pebble on every vertex of the graph using sequence of pebbling moves is called a cover pebbling graph.

2.3. Adjacency matrix of cover pebbling graph

Adjacency matrix of cover pebbling graph G is the n x n matrix $A_{cp}(G) = (a_{ij})$ where $a_{ij} = \begin{cases} 1 & \text{if } v_i v_j \in E(G) \text{ and a pebbling move occurs between } v_i \text{ and } v_j \\ o & otherwise \end{cases}$

2.4 Notation

Consider $v_i(r,s) \xrightarrow{x} v_i(x)$

In $v_i(r,s)$, r denotes the number of pebbles initially at vertex v_i (i.e., before pebbling move) and s denotes the number of pebbles at vertex v_i after the pebbling move .Arrow mark \rightarrow indicates that pebbling move is from v_i to v_j and x (above the arrow mark) indicates that x number of pebbling move occurs between v_i and v_j and $v_j(x)$ denotes the number of pebbles is x at vertex v_j after pebbling move.

2.5. Energy Graph[3]

Energy graph E(G) is the total of singular values of the eigen values of the adjacency matrix $A_{cp}(G)$

and it is expressed as
$$E(G) = \sum_{i=1}^{n} |\lambda_i|$$

2.4 Bounds

$$E(G) \le \sqrt{2n \sum_{i=1}^{n} |\lambda_i|^2}$$
$$E(G) \ge \sqrt{\sum_{i=1}^{n} |\lambda_i|^2 + n(n-1)(\det A)^{2/n}}$$

3. Energy Cover Pebbling Graphs 3.1 Bull graph

The cover pebbling bull graph with five vertices v_1, v_2, v_3, v_4 and v_5 is shown in Figure 3.1

$$v_1$$
 19 1 v_2 3 v_4

Figure 3.1 cover pebbling Bull graph

Pebbling moves are as follows:

 $v_1(19,1) \xrightarrow{9} v_2(9)$ (a pebble is retained at v_1)

$$v_2(9,3) \xrightarrow{3} v_4(3)$$

 $v_2(3,1) \xrightarrow{1} v_3(1)$ (a pebble is retained at each of v_2 and v_3)

 $v_4(3,1) \xrightarrow{1} v_5(1)$ (a pebble is retained at each of v₄ and v₅)

Adjacency matrix of cover pebbling Bull graph G is

 $A_{cp}(G) = \begin{pmatrix} 0 & 9 & 0 & 0 & 0 \\ 9 & 0 & 1 & 3 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \end{pmatrix}$ The Eigen values are

$$\begin{split} \lambda_1 &= -0.94874, \lambda_2 = 0.94874, \lambda_3 = -9.5446, \\ \lambda_4 &= 9.5446 \, \text{and} \, \lambda_5 = 0 \end{split}$$

Its energy
$$E(G) = \sum_{i=1}^{5} |\lambda_i| = 20.98668$$

Determinant of $A_{cp}(G) = 0$

Also
$$\sum_{i=1}^{5} \lambda i^{2} = 183.999$$

Lower bound of energy =13.565 Upper bound of energy = 42.895

3.2 Banner Graph

The Cover pebbling Banner graph with five vertices v_1 , v_2 , v_3 , v_4 and v_5 is shown in **Figure 3**.2

Upper bound of energy = 19.999

JCR

3.3 Caterpillar Graph:

The cover pebbling caterpillar graph with nine vertices v_1 , v_2 , v_3 , v_4 , v_5 , v_6 , v_7 , v_8 and v_9 is shown in **Figure 3.3**

Figure 3.3 cover pebbling caterpillar graph

Pebbling moves are as follows:

 $v_1(63,1) \xrightarrow{31} v_2(31)$ (a pebble is at v_1) $v_2(31,29) \xrightarrow{1} v_3(1)$ (a pebble is at v₃) $v_2(29,27) \xrightarrow{1} v_4(1)$ (a pebble is at v_4) $v_2(27,1) \xrightarrow{13} v_5(13)$ (a pebble is at v_2) $v_5(13,11) \xrightarrow{1} v_6(1)$ (a pebble is at v_6) $v_5(11,1) \xrightarrow{5} v_7(5)$ (a pebble is at v_5) $v_7(5,3) \xrightarrow{1} v_8(1)$ (a pebble is at v₈) $v_{7}(3,1) \xrightarrow{1} v_{9}(1)$ (a pebble is at each of v_7 and v_9) The Adjacency matrix of cover pebbling caterpillar graph G is 31 0 0 0 0 0 0 0 0 1 1 13 0 0 0 0 31 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 $A_{cp}(G) = \begin{bmatrix} 0 & 13 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 5 & 0 & 0 \end{bmatrix}$ 0 0 0 0 1 0 0 0 0 0 0 0 5 0 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 The Eigen values are $\lambda_1 = 0, \lambda_2 = 0$, $\lambda_3 = -33.704, \lambda_4 = -4.895, \lambda_5 = -0.266$ $\lambda_6 = 0.266, \lambda_7 = 4.895, \lambda_8 = 33.704$ Energy E(G)=77.73 Determinant of $A_{cp}(G)=0$ $\sum \lambda_i^2$ = 2319.983

Lower bound = 48.166Upper bound = 204.3519

3.4 Firecracker graph

The cover pebbling Firecracker graph with four vertices v_1 , v_2 , v_3 and v_4 is shown in Figure 3.4

Figure 3.4 cover pebbling firecracker graph

Pebbling moves are as follows:

 $v_1(15,1) \xrightarrow{7} v_2(7)$ (a pebble is at v_1)

 $v_2(7,1) \xrightarrow{3} v_3(3)$ (a pebble is at v_2)

 $v_3(3,1) \xrightarrow{1} v_4(1)$ (a pebble is at each of v_3 and v_4)

Adjacency matrix $A_{cp}(G)$ of cover pebbling firecracker graph G is given by

$$A_{cp}(G) = \begin{pmatrix} 0 & 7 & 0 & 0 \\ 7 & 0 & 3 & 0 \\ 0 & 3 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

The Eigen values are $\lambda_1 = -0.91789$, $\lambda_2 = 0.91789$, $\lambda_3 = -7.626104$, $\lambda_4 = 7.626104$

Energy E(G)=17.088

Determinant of $A_{cp}(G)=49$

$$\sum_{i=1}^{4} \lambda_i^2 = 118$$

Lower bound = 14.213, Upper bound = 30.7246

3.5 Sunlet graph

The Sunlet graph with six vertices v_1, v_2, v_3, v_5 , and v_6 is shown in **Figure 3.5**

Figure 3.5 Cover Pebbling Sunlet Graph

 $v_1(27,1) \xrightarrow{13} v_2(13)$ (a pebble is at v_1) $v_2(13,7) \xrightarrow{3} v_3(3)$ $v_2(7,1) \xrightarrow{3} v_5(3)$ (a pebble is at v_2) $v_3(3,1) \xrightarrow{1} v_4(1)$ (a pebble is at each of v_3 and v_4) $v_5(3,1) \xrightarrow{1} v_6(1)$ (a pebble is at each of v_5 and v_6) Its Adjacency matrix for cover pebbling sunlet graph G is $13 \ 0 \ 0 \ 0 \ 0$ 0 $A_{cp}(G) = \begin{vmatrix} 13 & 0 & 3 & 0 & 3 & 0 \\ 0 & 3 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 0 \end{vmatrix}$ The Eigen values are $\lambda_1 = 1, \lambda_2 = -1$, $\lambda_3 = 0.95135, \lambda_4 = -0.95135, \lambda_5 = -13.677$, and $\lambda_6 = 13.677$ Energy E(G) = 31.25670 Determinant of $A_{cp}(G) = -169$ $\sum \lambda_i^2 = 376.1206$ Lower bound =14.465Upper bound = 67.182

3.6 Gear graph

The cover pebbling Gear graph with nine vertices $v_1, v_2, v_3, v_4, v_5, v_6, v_7, v_8$ and v_9 is shown in **Figure 3.6** $7 \cdot v_2$ 3 $7 \cdot v_2$ 32

Figure 3.6 Cover Pebbling Gear Graph

 $v_1(35,21) \xrightarrow{7} v_9(7)$ $v_1(21,7) \xrightarrow{7} v_2(7)$ $v_1(7,1) \xrightarrow{3} v_4(3)$ (a pebble is retained v_1) $v_9(7,1) \xrightarrow{3} v_8(3)$ (a pebble is retained at v₉) $v_2(7,1) \xrightarrow{3} v_3(3)$ (a pebble is at v_2) $v_4(3,1) \xrightarrow{1} v_6(1)$ (a pebble is at each of v_4 and v_6) $v_8(3,1) \xrightarrow{1} v_7(1)$ (a pebble is at each of v_8 and v_7) $v_3(3,1) \xrightarrow{1} v_5(1)$ (a pebble is at each of v_3 and v_5) Adjacency matrix for cover pebbling Gear graph G is

	$\left(0 \right)$	7	0	3	0	0	0	0	7)	
	7	0	3	0	0	0	0	0	0	
	0	3	0	0	1	0	0	0	0	
	3	0	0	0	0	1	0	0	0	
$A_{cp}(G)$	= 0	0	1	0	0	0	0	0	0	
	0	0	0	1	0	0	0	0	0	
	0	0	0	0	0	0	0	1	0	
	0	0	0	0	0	0	1	0	3	
	(7	0	0	0	0	0	0	3	0)	

The Eigen values are $\lambda_1 = 0$; $\lambda_2 = 3.162$, $\lambda_3 = -3.162$, $\lambda_4 = -10.744$, $\lambda_5 = -1.471$, $\lambda_6 = -\frac{0.626}{2}, \lambda_7 = 0.626, \lambda_8 = 1.471 \text{ and } \lambda_9 = 10.744,$ JCR

Energy $E(G) = \sum_{i=1}^{9} |\lambda_i| = 32.0066$ Determinant of Acp(G)=0 $\sum_{i=1}^{2} \lambda_i^2 = 255.976$ Lower bound = 15.999Upper bound = 67.879

3.7 Paw Graph

The cover pebbling paw graph with four vertices v_1, v_2, v_3 and v_4 is shown in Figure 3.7

Figure 3.7 Cover Pebbling Paw Graph

 $v_1(11,1) \xrightarrow{5} v_2(5)$ (a pebble is at v_1) $v_2(5,3) \xrightarrow{1} v_3(1)$ (a pebble is at v_3) $v_2(3,1) \xrightarrow{1} v_4(1)$ (a pebble is at each of v_2 and v_4)

Adjacency matrix for cover pebbling paw graph G is

$$A_{cp}(G) = \begin{pmatrix} 0 & 5 & 0 & 0 \\ 5 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}$$

The Eigen value are $\lambda_1 = 0, \lambda_2 = 0, \lambda_3 = 3\sqrt{3}, \lambda_4 = -3\sqrt{3}$

Energy =
$$\sum_{i=1}^{4} |\lambda_i| = 6\sqrt{3} = 10.392$$

Determinant of A_{cp}(G)=0

$$\sum_{i=1}^{4} \lambda_i^2 = 54$$

Lower bound = 7.348, Upper bound = 20.78

3.8 Pan graph

The cover pebbling Pan graph with five vertices v_1, v_2, v_3, v_4 and v_5 is shown in Figure 3.8

Figure 3.8 Cover Pebbling Pan Graph

Pebbling moves are as follows:

 $v_1(19,1) \xrightarrow{9} v_2(9)$ (a pebble is retained at v_1) $v_2(9,7) \xrightarrow{1} v_5(1)$ (a pebble is at v_5) $v_2(7,1) \xrightarrow{3} v_3(3)$ (a pebble is at v_2) $v_3(3,1) \xrightarrow{1} v_4(1)$ (a pebble is at each of v_3 and v_4) Adjacency matrix of Cover Pebbling Pan graph G is

 $A_{cp}(G) = \begin{pmatrix} 0 & 9 & 0 & 0 & 0 \\ 9 & 0 & 3 & 0 & 1 \\ 0 & 3 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \end{pmatrix}$

The Eigen values are $\lambda_1 = 0, \lambda_2 = 0.9492, \lambda_3 = -0.9492, \lambda_4 = 9.545$ and $\lambda_5 = -9.545$ Energy $E(G) = \sum_{i=1}^{5} |\lambda_i| = 20.9884$ Determinant of A_{cp}(G)=0 $\sum_{i=1}^{5} \lambda_i^2 = 184.015$

Lower bound = 13.56Upper bound = 42.896

3.9 Comb graph

The cover pebbling comb graph with ten vertices $v_1, v_2, v_3, v_4, v_5, v_6, v_7, v_8, v_9$ and v_{10} is shown in **Figure 3.9**

$$v_0(3,1) \xrightarrow{1} v_{10}(1)$$
 (a pebble at each of v₉ and v₁₀)

JCRI

Adjacency matrix of cover pebbling comb graph G is

$A_{cp}(G) =$	(0	1	45	0	0	0	0	0	0	0)	
	1	0	0	0	0	0	0	0	0	0	
	45	0	0	1	21	0	0	0	0	0	
	0	0	1	0	0	0	0	0	0	0	
	0	0	21	0	0	1	9	0	0	0	
	0	0	0	0	1	0	0	0	0	0	
	0	0	0	0	9	0	0	1	3	0	
	0	0	0	0	0	0	1	0	0	0	
	0	0	0	0	0	0	3	0	0	1	
	(0	1	0	0	0	0	0	0	0	0)	

The Eigen values are $\lambda_1 = 1, \lambda_2 = -1, \lambda_3 = 0.114, \lambda_4 = -0.114, \lambda_5 = 8.778, \lambda_6 = -8.778$ $\lambda_7 = 0.020, \lambda_8 = -0.020, \lambda_9 = 49.829, \lambda_{10} = -49.829$

Energy $E(G) = \sum_{i=1}^{10} |\lambda_i| = 119.482$ Determinant of $A_{cp}(G) = 0$ $\sum_{i=1}^{10} \lambda_i^2 = 5121.9926$ Lower bound = 71.568, Upper bound = 320.062

3.10 Centipede graph

The cover pebbling centipede graph with six vertices v_1, v_2, v_3, v_4, v_5 and v_6 is shown in **Figure 3.10**.

Figure 3.10 Cover Pebbling Centipede Graph

Pebbling moves are as follows:

 $v_1(39,1) \xrightarrow{19} v_2(19)$ (a pebble remains at v_1)

 $v_2(19,1) \xrightarrow{9} v_3(9)$ (a pebble remains at v_2)

 $v_3(9,7) \xrightarrow{1} v_4(1)$ (a pebble remains at v₄)

 $v_3(7,1) \xrightarrow{3} v_5(3)$ (a pebble remains at v₃)

 $v_5(3,1) \xrightarrow{1} v_6(1)$ (a pebble at each of v_5 and v_6)

Adjacency matrix of cover pebbling centipede graph G is

$A_{cp}(G) =$	(0	19	0	0	0	0)
	19	0	9	0	0	0
	0	9	0	1	3	0
	0	0	1	0	0	0
	0	0	3	0	0	1
	0	0	0	0	1	0)

JCR

The Eigen values are

 $\lambda_1 = -21.068 \ \lambda_2 = -3.007, \lambda_3 = 0.300, \lambda_4 = -0.300, \lambda_5 = 3.007, \lambda_6 = 21.068$ Energy $E(G) = \sum_{i=1}^{6} |\lambda_i| = 48.75$ Determinant of A_{cp}(G)=-361 $\sum_{i=1}^{6} \lambda_i^2 = 905.9852$ Lower bound =26.31, Upper bound =104.268

3.11 Ladder Graph

The cover pebbling ladder Graph with eight vertices $v_1, v_2, v_3, v_4, v_5, v_6, v_7$ and v_8 is Shown in **Figure 3.11**

Figure 3.11 Cover Pebbling Ladder Graph Pebbling moves are as follows:

 $v_1(45, 15) \xrightarrow{15} v_2(15)$ $v_1(15, 1) \xrightarrow{7} v_3(7) \quad \text{(a pebble remains at } v_1\text{)}$ $v_2(15, 1) \xrightarrow{7} v_4(7) \quad \text{(a pebble at } v_2\text{)}$

 $v_3(7,1) \xrightarrow{3} v_5(3)$ (a pebble at v_3)

 $v_4(7,1) \xrightarrow{3} v_6(3)$ (a pebble at v₄)

 $v_5(3,1) \xrightarrow{1} v_7(1)$ (a pebble at each of v_5 and v_7)

 $v_6(3,1) \xrightarrow{1} v_8(1)$ (a pebble at each of v_6 and v_8)

Adjacency matrix of cover pebbling ladder graph G is

	$\left(0 \right)$	15	1	0	0	0	0	0)	
$A_{cp}(G) =$	15	0	0	7	0	0	0	0	
	7	0	0	0	3	0	0	0	
	0	7	0	0	0	3	0	0	
	0	0	3	0	0	0	1	0	
	0	0	0	3	0	0	0	1	
	0	0	0	0	1	0	0	0	
	0	0	0	0	0	1	0	0)	

The Eigen values are $\lambda_1 = -17.829, \lambda_2 = -2.038, \lambda_3 = 0.295, \lambda_4 = 4.571, \lambda_5 = -4.571, \lambda_6 = -0.295, \lambda_7 = 2.038, \lambda_8 = 17.829$ Energy E(G)= $\sum_{i=1}^{8} |\lambda_i| = 49.466$ Determinant of A_{cp}(G)=2401 $\sum_{i=1}^{8} \lambda_i^2 = 686.014$ Lower bound = 32.83, Upper bound = 104.268

3.12 Banana Tree Graph

The cover pebbling Banana tree Graph with nine vertices $v_1, v_2, v_3, v_4, v_5, v_6, v_7, v_8$, and v_9 is shown in **Figure 3.12**.

JCR

Lower bound =24.32, Upper bound =103.221

3.13 Butterfly graph

The cover pebbling butterfly graph with five vertices v₁,v₂,v₃,v₄ and v₅ is shown in **Figure 3.13**

Figure 3.13 Cover Pebbling Butterfly Graph

Pebbling moves are as follows:

 $v_{1}(13,11) \xrightarrow{1} v_{2}(1) \quad \text{(one pebble is at } v_{2})$ $v_{1}(11,1) \xrightarrow{5} v_{3}(5) \quad \text{(one pebble is at } v_{1})$ $v_{3}(5,3) \xrightarrow{1} v_{4}(1) \quad \text{(one pebble is at } v_{4})$ $v_{3}(3,1) \xrightarrow{1} v_{5}(1) \quad \text{(one pebble is at each of } v_{3} \text{ and } v_{5})$

Adjacency matrix of cover pebbling butterfly graph G is

 $A_{cp}(G) = \begin{pmatrix} 0 & 1 & 5 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 5 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \end{pmatrix}$

The Eigen values are

 $\lambda_1 = 0$, $\lambda_2 = 0.2683$, $\lambda_3 = -0.2683$, $\lambda_4 = 5.285$, and $\lambda_5 = -5.285$,

Energy E(G) = 11.1066Determinant of $A_{cp}(G) = 0$

$$\sum_{i=1}^{5} \lambda_i^2 = 56.006$$

Lower bound =7.48, Upper bound =23.666

3.14 Sun graph

The cover pebbling sun graph with six vertices v_1, v_2, v_3, v_4, v_5 and v_6 is shown in Figure 3.14

Figure 3.14 Cover Pebbling Sun Graph

$v_1(17,7) \xrightarrow{5} v_3(5)$	
$v_1(7,1) \xrightarrow{3} v_2(3)$	(a pebble is at v_1)
$v_3(5,3) \xrightarrow{1} v_5(1)$	(a pebble is at v ₅)
$v_3(3,1) \xrightarrow{1} v_6(1)$	(a pebble is at each of v_3 and v_6)
$v_2(3,1) \rightarrow v_4(1)$	(a pebble is at each of v_2 and v_4)

Adjacency matrix of cover pebbling sun graph G is

 $A_{cp}(G) = \begin{pmatrix} 0 & 3 & 5 & 0 & 0 & 0 \\ 3 & 0 & 0 & 1 & 0 & 0 \\ 5 & 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \end{pmatrix}$ The Eigen values are $\lambda_1 = 0, \lambda_2 = 0, \lambda_3 = 3.1432, \lambda_4 = -3.1432, \lambda_5 = 5.208, \lambda_6 = -5.208$ Energy $E(G) = \sum_{i=1}^{6} |\lambda_i| = 16.7024$

Determinant of $A_{cp}(G)=0$

 $\sum_{i=1}^{6} \lambda_i^2 = 74.004$

Lower bound = 8.60Upper bound = 29.800

3.15 Helm graph

The cover pebbling Helm graph G with nine vertices $v_1, v_2, v_3, v_4, v_5, v_6, v_7, v_8$ and v_9 is shown in **Figure** $55 v_1$ $27 v_2$

3.15

Pebbling moves are as follows:

$$v_1(55,1) \xrightarrow{27} v_2(27)$$
 (a pebble is retained at v_1)
 $v_2(27,13) \xrightarrow{7} v_4(7)$
 $v_2(13,7) \xrightarrow{3} v_3(3)$

$v_2(7,1) \xrightarrow{3} v_5(3)$	(a pebble is retained at v ₂)
$v_4(7,1) \xrightarrow{3} v_8(3)$	(a pebble is retained at v ₄)
$v_3(3,1) \xrightarrow{1} v_7(1)$	(a pebble is retained at each of v_3 and v_7)
$v_5(3,1) \xrightarrow{1} v_6(1)$	(a pebble is retained at each of v_5 and v_6)
$v_8(3,1) \xrightarrow{1} v_9(1)$	(a pebble is retained at each of v_8 and v_9)

Adjacency matrix of cover pebbling helm graph G is

	(0	27	0	0	0	0	0	0	0)	
	27	0	3	7	3	0	0	0	0	
	0	3	0	0	0	0	1	0	0	
	0	7	0	0	0	0	0	3	0	
$A_{cp}(G) =$	0	0	0	3	0	1	0	0	0	
	0	0	0	0	1	0	0	0	0	
	0	0	1	0	0	0	0	0	0	
	0	0	0	3	0	0	0	0	1	
	0	0	0	0	0	0	0	1	0)	

The Eigen values of G are

 $\lambda_1 = 0, \lambda_2 = 1, \lambda_3 = -1, \lambda_4 = -28.023, \lambda_5 = -2.950, \lambda_6 = -0.989, \lambda_7 = 0.999, \lambda_8 = -2.859, \lambda_9 = 28.104$ Energy E(G)=65.924 Determinant of Acp(G)=0 $\sum \lambda_i^2 = 1595.974$ JCR Lower Bound = $\sqrt{\sum_{i=1}^{n} |\lambda i|^2 + n(n-1)(\det A)^{2/n}}$ = 39.949

Upper Bound = $\sqrt{2n\sum_{i=1}^{n} |\lambda_i|^2} = 169.492$

4. Conclusion.

We have found the energy of cover pebbling graphs and their bounds. Also we have concluded that

$$\sqrt{\sum_{i=1}^{n} \lambda_i^2 + n(n-1) |A|^{\frac{2}{n}}} \leq \mathsf{E}(\mathsf{G}) \leq \sqrt{2n \sum_{i=1}^{n} |\lambda_i|^2}$$

That is lower bound \leq Energy \leq Upper bound

Open Problem. Find different types of energy in covering cover pebbling graph and also to find the relation between them.

5 References

- Chung F.1989 pebbling in hypercubes, SIAM J Discrete Math. 2(4) pp.461-472
- [2] Glenn Hurlbert, 1999, A Survey of graph pebbling, Proc of the thirtieth South eastern International conference on combinatorics, Graph theory and Computing (Boca Raton, FL Vol.139) p 41-64.
- [3] Gutman. I ,1978, The Energy of a graph, Ber. Math. Stat.Sekt. Forschungsz Graz 103, p 1-22.
- [4] Sakunthala Srinivasan and Vimala Shanmugavel 2021, J.Phys:conf Ser 1850,012089.

