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Abstract:  Many processes and phenomena in chemistry, and generally in sciences, can be described by 

first-order differential equations. These equations are the most important and most repeatedly used to 

illustrate natural laws. Even though the math is the same in all cases, the student may not always easily 

understand the similarities because the relevant equations appear in different topics and contain different 

quantities and units. This text was written to present a unified view on various examples; all of them can be 

mathematically described by first-order differential equations. The following example is discussed like time 

constants of sensors. 

  

 

Index Terms - Differential equations , Time constants of sensor 

 

 

THE TIME CONSTANT OF A SENSOR 

 

   Sensors measure a physical or chemical quantity and transduce it to an output signal which is read, 

monitored  or stored. Possible physical quantities are temperature, pressure, radiative flux, magnetic field 

strength, etc. Chemical quantities are mainly concentrations and activities of molecules, atoms and ions. The 

recorded signals 

 are usually voltages or currents. The most typical feature of a signal is that the results are one dimensional, 

e.g. the output signal is a single quantity, i.e. one measures only  that signal and not a dependence of that 

signal on another given quantity. Most devices for chemical analysis produce two-dimensional read-outs, 

e.g. optical spectra in which the absorbance is displayed as a function of wavelength (E = 𝑓(𝜆),  

voltammograms in which currents are displayed as function of electrode potential or X-ray diffractograms, 

in which the intensity of diffracted rays is displayed as function of diffraction angle, etc. In modern 

Instrumentation, one has even expanded the 
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dimensionality to three, when, as an example, optical spectra (E= 𝑓(𝜆)) (or mass spectra, i.e. ion intensities 

versus the mass-to-charge ratio of ions) are displayed as a function of elution time of a chromatogram. 

Figure 1 gives a comparison of the common dimensionalities of 

analytical measurements.  

Since any measurement needs time, there is nothing like an instantaneous establishment of a 

signal. This is easy to see when using a sensor, e.g. a pH electrode: There is 

always a certain time period in which the reading changes until we finally have the impression that a 

constant end value is reached. The same is true also for two- or three dimensional 

measurements, but we cannot easily detect it because the variation of the measured signal (e.g. the 

absorbance) anyway changes as a function of the varied quantities (e.g. the wavelength) and thus with time. 

Normally, the wavelength is changed with the so-called scan  rate 
𝑑𝜆

𝑑𝑡
 (rate of recording the spectrum), and 

generally (see Fig.2), the quantity x is varied with a scan rate 
𝑑𝑥

𝑑𝑡
 (which may be also zero). Whether we 

measure at each wavelength really the end value of the absorbance can be only seen if we decrease the rate 

at which the wavelength is changed (in the extreme even keeping the wavelength constant). Referring to 

Fig. 2, this means in general terms, that a variation of the scan rate 
𝑑𝑥

𝑑𝑡
 may give a reproducible 

and identical response only below a certain limiting rate (
𝑑𝑥

𝑑𝑡
)𝑙𝑖𝑚𝑖𝑡. If that rate is exceeded, the signal cannot 

establish its true value and the spectra are distorted (the signal lags behind) (cf. Fig. 2). 

 

Figure 2 shows impressively that it is important to know the rate at which the signal is established 

for a given x value. In case of a sensor, i.e. a one-dimensional device where no parameters like x or y are 

changed, the time change of the signal can be studied following a concentration step. The introduction of the 

sensor into a solution can be regarded as a concentration step. Figure 3 depicts two different kinds of 

response of a sensor on a concentration step.  Figure 3 depicts two basic types of time responses of sensors. 

The different sensor behaviours shown in B and C can be modelled with the help of different differential 

equations. Whereas the response curve shown in B can be modelled with a first-order differential equation; 

the curve shown in C needs higher-order differential equations. At this point, it is necessary to note that it is 

impossible to realize a concentration step with infinite rate of concentration rise, as shown in Fig. 3a. This 

means, when the temporal response properties of a sensor are studied, this concentration rise has to be much 
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quicker than the response of the sensor. Further, also the response shown in Fig. 3b is to some extend an 

idealization, and in reality there may be always a sluggish response at the start, but it may be on such short 

time scale that it escapes our recognition.  

 

 
 

The response curve shown in fig.3b can be modeled as follows 

𝑆 =  𝑆𝑚𝑎𝑥 − 𝑤(𝑡)           (1) 

 

𝑤 is a time dependent quantity for which we write the first order differential equation 

𝑝1
𝑑𝑤

𝑑𝑡
+ 𝑝2𝑤(𝑡) =  0                                                                                                   (2) 

 

Integrating, we get 

∫
𝑑𝑤

𝑤(𝑡)

𝑤

𝑤0
= −

𝑝2

𝑝1
∫ 𝑑𝑡

𝑡

0
                                                                                                    (3) 

𝑙𝑛
𝑤(𝑡)

𝑤
= −

𝑝2

𝑝1
𝑡                                                                                                             (4) 

𝑤(𝑡)

𝑤0
=  𝑒

−
𝑝2
𝑝1

𝑡
                                                                                                                  (5) 

𝑤(𝑡) =  𝑤𝑒
−

𝑝2
𝑝1

𝑡
           (6) 

 

So eqn.(1) follows that  

 

𝑆 =  𝑆𝑚𝑎𝑥 − 𝑤𝑒
−

𝑝2
𝑝1

𝑡
            (7) 

 Obviously , 𝑤0 should be equal to 𝑆𝑚𝑎𝑥        

 

 So eqn.(7) becomes 𝑆 =  𝑆𝑚𝑎𝑥 − 𝑆𝑚𝑎𝑥𝑒
−

𝑝2
𝑝1

𝑡
=  𝑆𝑚𝑎𝑥(1 − 𝑒

−
𝑝2
𝑝1

𝑡
)                            (8) 

Since the term (1 − 𝑒
−

𝑝2
𝑝1

𝑡
) should not have a unit, it follows that the ratio 

𝑝2

𝑝1
 must be a reciprocal time and 

we may write eqn.(8)  using the definition 
𝑝1

𝑝2
=   𝜏 i.e 

𝑝2

𝑝1
=

1

𝜏
 

 

𝑆 =  𝑆𝑚𝑎𝑥(1 − 𝑒−
1

𝜏)             
            (9) 

The quantity 𝜏 is called the time constant of the sensor. 

 

At 𝑡 =  𝜏  the signal has the value  

 

𝑆 =  𝑆𝑚𝑎𝑥(1 − 𝑒−1) ≈ 0.6325 
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In other words , after elapse of 𝜏, the signal has reached 63.2% of its final value. 

 

Conclusion: 

In this paper,  we discussed the importance of first order differential equations in many areas such as 

physics, chemistry and engineering.It should be mentioned that there are many other processes in science, 

which are based on first-order differential equations, e.g.the time constant of sensor  
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