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ABSTRACT: First Gourava index is defined as 𝐺𝑂1(𝐺) =∑ [𝑑𝑢 + 𝑑𝑣 + 𝑑𝑢𝑑𝑣]𝑢𝑣∈𝐸(𝐺) ,where 𝑑𝑢  is degree of vertex u. In this 

paper first Gourava index, second Gourava index, product connectivity Gourava index, sum connectivity Gourava index, first 

hyper Gourava index and second hyper Gourava index of tensor product, corona product and cartesian product of graphs are 

studied.  
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I.INTRODUCTION 

Let G = (V,E) be a graph with order |V(G)| = n and size |E(G)| = m. The degree of a vertex is denoted by du and 

defined as the number of vertices adjacent to u∈V(G). The edge connecting the vertices u and v is denoted by uv. All 

graphs considered here are finite, undirected and simple. In the field of graph theory, the graph operations produce 

new graph from initial ones. Binary operations create a graph from two initial graphs G1(V1,E1) and G2(V2,E2) such as 

graph union, graph intersection, graph join and graph products etc. Different versions of degree-based topological 

indices of molecular graphs are studied in [1-2]. Zagreb indices are widely studied in the literature for example [3-4]. 

There are several molecular graphs that can be realised as a product of graphs, for example nanotorus as Cn□Cm, 

nanotubes as Pn□Cm, grid as Pn□Pm [5]. R.P.Kumar et al. derived some topological indices of mesh, grid, torus and 

cylinder in [6]. W.Gao et al. studied multiple ABC index and multiple GA index of square grid [7].In [8] topological 

indices of grid are computed. Topological indices of graph product are studied in many papers [9-15]. Topological 

indices of graph operations are obtained in [16-18]. Figure for cartesian product of P4 and P6 is taken from [19] to 

study topological indices of family of Gourava index. Cartesian product of a cycle Cn with a path Pm is P(n,m) 

generalized prism graph with |V|=mn and |E|=n(2m-1)[20-21].Weiner index and Hosaya polynomial of tubes and 

tori was studied by M.V.Diudea in 2005 [22]. Tensor product of two graphs G1 and G2 is the graph denoted by 
G1⊗G2, with vertex set V(G1⊗G2) = V(G1)xV(G2),and any two of its vertices (u1,v1) and (u2,v2) are adjacent 

whenever u1 is adjacent to u2 in G1 and v1 is adjacent to v2 in G2 [23-24].The corona product of two graphs G and H is 

defined as the graph obtained by taking one copy of G and |V(G)| copies of H and joining the i-th vertex of G to every 
vertex in the i-th copy of H. The corona product is denoted by G⊙H [25-28]. Cartesian product of two graphs 

G1=(V1,E1) and G2(V2,E2) denoted by G1xG2 or G1□G2containing vertex set V1xV2 where (u1,u2) is adjacent with 
(v1,v2) iff where[u1=u2 and v1,v2∈ E2]or [v1= v2 and u1u2∈E1 [29].  Gourava indices are degree-based indices 

defined in [30-35] as:  

1) First Gourava index =𝐺𝑂1(𝐺)= ∑ [𝑑𝑢 + 𝑑𝑣 + 𝑑𝑢𝑑𝑣]𝑢𝑣∈𝐸(𝐺) . 

2) Second Gourava index =𝐺𝑂2(𝐺)= ∑ [(𝑑𝑢 + 𝑑𝑣)𝑑𝑢𝑑𝑣]𝑢𝑣∈𝐸(𝐺) . 

3) Product connectivity Gourava index =𝑃𝐺𝑂(𝐺)= ∑
1

√(𝑑𝑢+𝑑𝑣}𝑑𝑢𝑑𝑣
𝑢𝑣∈𝐸(𝐺) . 

4) Sum connectivity Gourava index =𝑆𝐺𝑂(𝐺)= ∑
1

√(𝑑𝑢+𝑑𝑣}+𝑑𝑢𝑑𝑣
𝑢𝑣∈𝐸(𝐺) . 

5) First hyper Gourava index =𝐻𝐺𝑂1(𝐺)= ∑ [𝑑𝑢 + 𝑑𝑣 + 𝑑𝑢𝑑𝑣]2
𝑢𝑣∈𝐸(𝐺) . 

6) Second hyper Gourava index =𝐻𝐺𝑂2(𝐺)= ∑ [(𝑑𝑢 + 𝑑𝑣)(𝑑𝑢𝑑𝑣)]2
𝑢𝑣∈𝐸(𝐺) . 

All the symbols and notations used in this paper are standard and mainly taken from books of graph theory [36-38]. In 

this paper first Gourava index, second Gourava index, product connectivity Gourava index, sum connectivity Gourava 

index, first hyper Gourava index and second hyper Gourava index of tensor product, corona product and cartesian 

product of graphs are studied.  
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II.MATERIALS AND METHODS 
A molecular graph is a simple graph related to the structure of a chemical compound. A molecular graph is 

constructed by representing each atom of a molecule by vertex and bonds between atoms by edges. In tensor product 

of two graphs we have, the vertex set |V(G)|= n2 and edge set |E(G)|= 2(n-1)2 for G=P4 ⨂P4.The corona product of 

two complete is denoted by Kn⨀Km.The tensor product between P4 and P4, corona product between K4 and K3 and 

cartesian product of P4 and P4 are shown in figure 1,2 and 3 respectively. The edge partition represented for different 

product graph are in given table (1-3). 

III.RESULTS AND DISCUSSION 

Let G be a graph with n vertices and m edges. Different versions of Gourava index of product graphs are computed for 

path graphs and complete graphs. The edge partition of product graphs is considered for degree of end vertices. By 

graph operation a new graph is obtained. For these graphs the degree of end vertices is decided by observation and 

used in the computation of Gourava indices. 

 

Tensor product  

Theorem 1.1: Let P4 and P4 be two path graphs.  

Then first Gourava index of tensor product P4 ⨂P4 is 𝐺𝑂1(𝐺)= 68+112(n-3) +48(n-3)2. 
Proof. Partition the edge set E(𝐺) in four sets E1, E2, E3 and E4 as |E14|= 4, |E22|= 4, |E24|= 8(n-3) and |E44|= 2(n-
3)2 and using table (1). 
Therefore 𝐺𝑂1(𝐺)= ∑ [𝑑𝑢 + 𝑑𝑣 + 𝑑𝑢𝑑𝑣]𝑢𝑣∈𝐸(𝐺)   

=∑ [1 + 4 + 1 ∗ 4]14∈𝐸1
+∑ [2 + 2 + 2 ∗ 2]22∈𝐸2

+∑ [2 + 4 + 2 ∗ 4]24∈𝐸3
+ ∑ [4 + 4 + 4 ∗ 4]44∈𝐸4

 
 
= 9 ∗ 4 + 8 ∗ 4 + 14 ∗ 8(𝑛 − 3) + 48(𝑛 − 3)2 
  
= 68 + 112(n − 3) + 48(n − 3)2. 
Theorem 1.2: Let P4 and P4 be two path graphs.  

Then second Gourava index of tensor product P4⨂P4 is 𝐺𝑂2(𝐺)= 144+384(n-3) +256(n-3)2. 

Proof. Partition the edge set E(𝐺) in four sets E1, E2, E3 and E4 as |E14|= 4, |E22|= 4, |E24|= 8(n-3) and |E44|= 2(n-
3)2 and using table (1). 
Therefore 𝐺𝑂2(𝐺)= ∑ [(𝑑𝑢 + 𝑑𝑣)𝑑𝑢𝑑𝑣]𝑢𝑣∈𝐸(𝐺)   

=∑ [(1 + 4)1 ∗ 4]14∈𝐸1
+∑ [(2 + 2)2 ∗ 2]22∈𝐸2

+∑ [(2 + 4)2 ∗ 4]24∈𝐸3
+ ∑ [(4 + 4)4 ∗ 4]44∈𝐸4

 
 
= 20 ∗ 4 + 16 ∗ 4 + 48 ∗ 8(𝑛 − 3) + 128 ∗ 2(𝑛 − 3)2 
  
= 144 + 384(n − 3) + 256(n − 3)2. 
Theorem 1.3: Let P4 and P4 be two path graphs.  

Then product connectivity Gourava index of tensor product P4 ⨂P4 is 𝑃𝐺𝑂(𝐺)= 1.8944 +
8(𝑛−3)

√48
+

2(𝑛−3)2

√128
. 

Proof. Partition the edge set E(𝐺) in four sets E1, E2, E3 and E4 as |E14|= 4, |E22|= 4, |E24|= 8(n-3) and |E44|= 2(n-

3)2 and using table (1). 

Therefore 𝑃𝐺𝑂(𝐺)= ∑
1

√(𝑑𝑢+𝑑𝑣}𝑑𝑢𝑑𝑣
𝑢𝑣∈𝐸(𝐺)   

=∑ [
1

√[(1+4)1∗4]
]14∈𝐸1
+∑ [

1

√[(2+2)2∗2]
]22∈𝐸2
+∑ [

1

√[(2+4)2∗4]
]24∈𝐸3

+ ∑ [(
1

√[(4+4)4∗4]
]44∈𝐸4
 

 

= 
4

√[5∗4]
+

4

√[4∗4]
+

8(𝑛−3)

√[6∗8]
+

2(𝑛−3)2

√[(1+4)1∗4]
 

  

=1.8944 +
8(𝑛−3)

√48
+

2(𝑛−3)2

√128
. 
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Theorem 1.4: Sum connectivity Gourava index of tensor product P4⨂P4 =𝑆𝐺𝑂(𝐺) = 4.1614 +
16(𝑛−3)

√14
+

8(𝑛−3)2

√24
. 

Theorem 1.5: First hyper Gourava index of tensor product P4⨂P4 = 𝐻𝐺𝑂1(𝐺)= 580 + 1568(n − 3) + 1152(n −
3)2. 
 

Theorem 1.6: Second hyper Gourava index of tensor product P4 ⨂P4 = 𝐻𝐺𝑂2(𝐺)= 2624 + 18432(n − 3) +
32768(n − 3)2. 
Corona product  

Theorem 2.1: Let Kn and Km be two complete graphs with order n and m.  

Then first Gourava index of corona product (Kn⨀Km) is 𝐺𝑂1(𝐺)=  m(2 + m) 𝑛 𝑚𝐶2  + nm(𝑚2 + 𝑛𝑚 + 𝑚 + 𝑛 −
1) + [2(𝑛 + 𝑚 − 1) + (𝑛 + 𝑚 − 1)2] 𝑛𝐶2. 
Proof. By using table (2), the edges for the corona product of complete graphs of order n and m on degree are 

(m,m),(m,n+m-1) and (n+m-1,n+m-1). 

 

Therefore 𝐺𝑂1(𝐺)= ∑ [𝑑𝑢 + 𝑑𝑣 + 𝑑𝑢𝑑𝑣]𝑢𝑣∈𝐸(𝐺)   

= ∑ [𝑚 + 𝑚 + 𝑚 ∗ 𝑚]𝑚𝑚∈𝐸1
+ ∑ [𝑚 + 𝑛 + 𝑚 − 1 + 𝑚(𝑛 + 𝑚 − 1)]𝑚(𝑛+𝑚−1)∈𝐸2

+ ∑ [2(𝑛 + 𝑚 −(𝑛+𝑚−1)(𝑛+𝑚−1)∈𝐸3

1) + (𝑛 + 𝑚 − 1)2] 
  
= m(2 + m) 𝑛 𝑚𝐶2  + nm(𝑚2 + 𝑛𝑚 + 𝑚 + 𝑛 − 1) + [2(𝑛 + 𝑚 − 1) + (𝑛 + 𝑚 − 1)2] 𝑛𝐶2. 
 

Theorem 2.2: Let Kn and Km be two complete graphs with order n and m.  

Then second Gourava index of corona product (Kn⨀Km) is 

 𝐺𝑂2(𝐺)= (2𝑚3) 𝑛 𝑚𝐶2  + (2𝑚 + 𝑛 − 1)(𝑚2 + 𝑛𝑚 − 𝑚)𝑛𝑚 + 2(𝑛 + 𝑚 − 1)3 (𝑛𝐶2) . 
Proof. By using table (2), the edges for the corona product of complete graphs of order n and m on degree are 

(m,m),(m,n+m-1) and (n+m-1,n+m-1). 
 

Therefore 𝐺𝑂2(𝐺)= ∑ [(𝑑𝑢 + 𝑑𝑣)𝑑𝑢𝑑𝑣]𝑢𝑣∈𝐸(𝐺)   

= ∑ [(𝑚 + 𝑚)𝑚2]𝑚𝑚∈𝐸1
+ ∑ [(𝑚 + 𝑛 + 𝑚 − 1)𝑚(𝑛 + 𝑚 − 1)]𝑚(𝑛+𝑚−1)∈𝐸2

+ ∑ [2(𝑛 + 𝑚 −(𝑛+𝑚−1)(𝑛+𝑚−1)∈𝐸3

1)(𝑛 + 𝑚 − 1)2] 
  
= (2𝑚3) 𝑛 𝑚𝐶2  + (2𝑚 + 𝑛 − 1)(𝑚2 + 𝑛𝑚 − 𝑚)𝑛𝑚 + 2(𝑛 + 𝑚 − 1)3 (𝑛𝐶2) . 
Theorem 2.3: Let Kn and Km be two complete graphs with order n and m.  

Then product connectivity Gourava index of corona product (Kn⨀Km) is 

 𝑃𝐺𝑂(𝐺)=  
1

√2𝑚3
 𝑛 𝑚𝐶2  +

𝑛𝑚

√(2𝑚+𝑛−1)(𝑚2+𝑛𝑚−𝑚)
+

1

√2(𝑛+𝑚−1)3
 ( 𝑛𝐶2).  

Proof. By using table (2), the edges for the corona product of complete graphs of order n and m on degree are 

(m,m),(m,n+m-1) and (n+m-1,n+m-1). 

 

Therefore 𝑃𝐺𝑂(𝐺)= ∑
1

√(𝑑𝑢+𝑑𝑣}𝑑𝑢𝑑𝑣
𝑢𝑣∈𝐸(𝐺)  

=∑
1

√(𝑚+𝑚)𝑚2𝑚𝑚∈𝐸1
+∑

1

√(𝑚+𝑛+𝑚−1)𝑚(𝑛+𝑚−1)𝑚(𝑛+𝑚−1)∈𝐸2
+∑

1

√2(𝑛+𝑚−1)(𝑛+𝑚−1)2(𝑛+𝑚−1)(𝑛+𝑚−1)∈𝐸3
 

  

= 
1

√2𝑚3
 𝑛 𝑚𝐶2  +

𝑛𝑚

√(2𝑚+𝑛−1)(𝑚2+𝑛𝑚−𝑚)
+

1

√2(𝑛+𝑚−1)3
 ( 𝑛𝐶2).  

Theorem 2.4: Sum connectivity Gourava index of corona product (Kn ⨀ Km) is 
1

√2𝑚+𝑚2
 𝑛 𝑚𝐶2  +

𝑛𝑚

√(2𝑚+𝑛+𝑚−1)+(𝑚2+𝑛𝑚−𝑚)
+

1

√2(𝑛+𝑚−1)+(𝑛+𝑚−1)2
 ( 𝑛𝐶2) .  

Theorem 2.5: First hyper Gourava index of corona product (Kn⨀Km) is  (2𝑚 + 𝑚2)2 𝑛 𝑚𝐶2 + [(2m + n − 1) +
(𝑚2 + nm − m)]2nm + [2(n + m − 1) + (n + m − 1)2]2 ( 𝑛𝐶2). 
Theorem 2.6: Second hyper Gourava index of corona product (Kn⨀Km) is  2𝑚3 𝑛 𝑚𝐶2 + [(2m + n − 1)(𝑚2 +
nm − m)]2nm + [2(n + m − 1)3]2 ( 𝑛𝐶2). 
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Cartesian product  

Theorem 3.1: Let P4 and P4 be two path graphs.  

Then first Gourava index of cartesian product P4□P4 is 𝐺𝑂1(𝐺)= 88 + 15(2m + 2n − 12) + 19(2m + 2n − 8n) +
24(2nm − 5m − 5n + 12). 
Proof. Partition the edge set E(𝐺) in four sets E1, E2, E3 and E4 as |E23|= 8, |E33|=2m+2n-12, |E34|= 2m+2n-8 and 
|E44|= 2mn-5m-5n+12, table (3). 
Therefore 𝐺𝑂1(𝐺)= ∑ [𝑑𝑢 + 𝑑𝑣 + 𝑑𝑢𝑑𝑣]𝑢𝑣∈𝐸(𝐺)   

=∑ [2 + 3 + 2 ∗ 3]23∈𝐸1
+∑ [3 + 3 + 3 ∗ 3] +33∈𝐸2

∑ [3 + 4 + 3 ∗ 4]34∈𝐸3
+ ∑ [4 + 4 + 4 ∗ 4]44∈𝐸4

 
  
= 88 + 15(2m + 2n − 12) + 19(2m + 2n − 8n) + 24(2nm − 5m − 5n + 12). 
Theorem 3.2: Let P4 and P4 be two path graphs.  

Then second Gourava index of cartesian product P4□P4 is 𝐺𝑂2(𝐺)= 240 + 54(2m + 2n − 12) + 84(2m + 2n −

8) + 128(2nm − 5m − 5n + 12). 

Proof. Partition the edge set E(𝐺) in four sets E1, E2, E3 and E4 as |E23|= 8, |E33|=2m+2n-12, |E34|= 2m+2n-8 and 
|E44|= 2mn-5m-5n+12, table (3). 
Therefore 𝐺𝑂2(𝐺)= ∑ [(𝑑𝑢 + 𝑑𝑣)𝑑𝑢𝑑𝑣]𝑢𝑣∈𝐸(𝐺)   

=∑ [(2 + 3)2 ∗ 3]23∈𝐸1
+ ∑ [(3 + 3)3 ∗ 3]33∈𝐸2

+∑ [(3 + 4)3 ∗ 4]34∈𝐸3
+ ∑ [(4 + 4)4 ∗ 4]44∈𝐸4

 
  
= 240 + 54(2m + 2n − 12) + 84(2m + 2n − 8) + 128(2nm − 5m − 5n + 12). 
Theorem 3.3: Let P4 and P4 be two path graphs.  

Then product connectivity Gourava index of cartesian product P4□P4 is 𝑃𝐺𝑂(𝐺)=  1.46 +
2𝑚+2𝑛−12

√54
+

2𝑚+2𝑛−8

√84
+

2𝑛𝑚−5𝑚−5𝑛+12

√128
. 

Proof. Partition the edge set E(𝐺) in four sets E1, E2, E3 and E4 as |E23|= 8, |E33|=2m+2n-12, |E34|= 2m+2n-8 and 
|E44|= 2mn-5m-5n+12, table (3). 

Therefore 𝑃𝐺𝑂(𝐺)= ∑
1

√(𝑑𝑢+𝑑𝑣}𝑑𝑢𝑑𝑣
𝑢𝑣∈𝐸(𝐺)   

=∑ [
1

√[(2+3)2∗3]
]23∈𝐸1

+ ∑ [
1

√[(3+3)3∗3]
]33∈𝐸2
+∑ [

1

√[(3+4)3∗4]
]34∈𝐸3

+ ∑ [(
1

√[(4+4)4∗4]
]44∈𝐸4
 

 

= 1.46 +
2𝑚+2𝑛−12

√54
+

2𝑚+2𝑛−8

√84
+

2𝑛𝑚−5𝑚−5𝑛+12

√128
. 

  

Theorem 3.4: Sum connectivity Gourava index of cartesian product P4□P4 =𝑆𝐺𝑂(𝐺) = 2.421 +
(2𝑚+2𝑛−12)

√15
+

(2𝑚+2𝑛−8)

√19
+

(2𝑛𝑚−5𝑚−5𝑛+12)

√24
. 

Theorem 3.5: First hyper Gourava index of cartesian product P4□P4 =𝐻𝐺𝑂1(𝐺)= 968 + 225(2m + 2n − 12) +
361(2m + 2n − 8) + 16384(2𝑛𝑚 − 5𝑚 − 5𝑛 + 12). 
Theorem 3.6: Second hyper Gourava index of cartesian product P4□P4 =𝐻𝐺𝑂2(𝐺)= 7200 + 2916(2m + 2n −
12) + 7056(2m + 2n − 8) + 16384(2𝑛𝑚 − 5𝑚 − 5𝑛 + 12). 
 

 

du, dv 1,4 2,2 2,4 4,4 
Number of edges 4 4 8(n-3) 2(n-3)2 

Table 1. Edge partition of tensor product P4 ⨂P4. 
 
 

du, dv (m,m) (m, n+m-1) (n+m-1, n+m-1) 
Number of edges n mC2 nm nC2 

Table 2. Edge partition of corona product Kn⨀Km. 

 
𝑚2,3 𝑚3,3 𝑚3,4 𝑚4,4 

8 2(𝑛1+𝑛2 − 6) 2(𝑛1+𝑛2 − 4) 2𝑛1𝑛2 − 5𝑛1 − 5𝑛2 + 12 

Table 3. Edge partition of cartesian product 𝑃𝑛1□𝑃𝑛2. 
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Fig. 1. Tensor product of P4 and P4                          Fig.2. Corona product K4 and K3                      Fig.3. Cartesian product of P4 and P4. 

4. Conclusion 

Tensor product, corona product and cartesian product of different versions of Gourava index are obtained. If 

partition of edge set E(G) is known then the degree based topological indices and graph operations of any molecular 

graph can be computed.  
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