K₀,K₁,K₂,K₃ CONSTANTS EVALUATION OF MAGNETO-CRYSTALLINE ANIOSOTROPY ENERGY DENSITY EQUATION OF PURE IRON BASED ON TEXTURE FACTOR FOR IDEAL FIBRES

G.SUDHAKAR, PHD (MATERIAL ENGINEERING), SEST, HCU.
J.P.GAUTAM, PROFESSOR , SEST, HCU.

1. ABSTRACT:
Texture Factor, A* and Magnetic Crystalline Anisotropy Energy Density, E* K₀,K₁,K₂, K₃ Constants are important parameters for Pure Iron. While the former indicates volume density of crystals having preferred Orientation, latter indicates the easy and hard magnetization directions. Evaluation of these parameters for Pure Iron and Electrical Steel enables in reduction of core losses and improving the electrical energy efficiency in Transformers, Rotating Machines. In this research article, an attempt is made to compute Magneto-Crystalline Anisotropy Energy Density for pure iron based on Texture Factor for Ideal fibres.

Keywords: Texture Factor, Magnetic Crystalline Anisotropy Energy Density, Core losses

2. INTRODUCTION:
The Magneto Crystalline Anisotropy constants K₀,K₁,K₂, K₃ values determine the extent to which a material is easily magnetizable. Their value depends on Chemical Composition, Crystal Structure, Thermo-Mechanical Processing history of the given material. Texture factor constants K₀,K₁,K₂, K₃ values determines the preferred orientations of grains, the Overall Texture Factor is quantitative measurement of texture. The value signifies extent of presence of standard texture viz. Cube Texture(T.F = 22.5), Goss Texture(T.F = 35.6), Gamma Texture(T.F = 38.68) in the given material.
3. ESTIMATION OF MAGNETIC ANISOTROPY CONSTANTS K_0, K_1, K_2, K_3 CONSTANT EVALUATION OF FOR PURE IRON:

Magneto Crystalline Anisotropy Energy is generally expressed by an expansion into direction cosines $\alpha_1, \alpha_2, \alpha_3$ of the magnetization with respect to the crystal axes.

$$E^* = K_0 + K_1 (\Sigma \alpha_1^2 \alpha_2^2) + K_2 (\Pi \alpha_1^2) + K_3 (\Sigma \alpha_1^2 \alpha_2^2)^2 \quad [I];$$

<table>
<thead>
<tr>
<th>[uvw]</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>α_1</th>
<th>α_2</th>
<th>α_3</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>[100]</td>
<td>0</td>
<td>90</td>
<td>90</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>K_0</td>
</tr>
<tr>
<td>[110]</td>
<td>45</td>
<td>45</td>
<td>90</td>
<td>1/\sqrt{2}</td>
<td>1/\sqrt{2}</td>
<td>1/\sqrt{2}</td>
<td>$K_0 + K_1/4$</td>
</tr>
<tr>
<td>[111]</td>
<td>54.7</td>
<td>54.7</td>
<td>54.7</td>
<td>1/\sqrt{3}</td>
<td>1/\sqrt{3}</td>
<td>1/\sqrt{3}</td>
<td>$K_0 + K_1/3 + K_2/27$</td>
</tr>
</tbody>
</table>

From REF 1, we have $E^* = 0.355A^* + (0.163 - 0.013A^*)[wt\%Si] - 1.898$

FOR Pure Iron, we have

$$E^* = 0.355A^* - 1.898 \quad [Si\% = 0 for pure iron] \ldots \ldots [II]$$

FOR A^* for Θ fibre $<100>//ND$ is 22.5 $\Rightarrow E^* = 6.0895$

FOR A^* for fibre $<110>//ND$ is 35.6 $\Rightarrow E^* = 10.74$

FOR A^* for Υ fibre $<111>//ND$ is 38.68 $\Rightarrow E^* = 11.8334$

$$E^* = K_0 + K_1 (\Sigma \alpha_1^2 \alpha_2^2) + K_2 (\Pi \alpha_1^2) + K_3 (\Sigma \alpha_1^2 \alpha_2^2)^2 \quad [I];$$

FOR [100] directions, $\alpha_1 = 1, \alpha_2 = 0, \alpha_3 = 0 \Rightarrow E = K_0$

\Rightarrow FOR [100] directions, $E^* = 6.0895 \Rightarrow K_0 = 6.0895$

\Rightarrow

FOR [110] directions, $\alpha_1 = 1/\sqrt{2}, \alpha_2 = 1/\sqrt{2}, \alpha_3 = 0$

FOR [110] directions, $E^* = 10.74$

$\Rightarrow E^* = 6.0895 + K_1/4 + K_3/16$

$\Rightarrow 10.74 = 6.0895 + K_1/4 + K_3/16$

$\Rightarrow 4.6505 = K_1/4 + K_3/16$

$\Rightarrow 4K_1 + K_3 = 74.408 \ldots [II]$

$\Rightarrow K_3 = 74.408 - 4K_1$
FOR [111] directions, $\alpha_1 = 1/\sqrt{3}, \alpha_2 = 1/\sqrt{3}, \alpha_3 = 1/\sqrt{3}$

FOR [111] directions, $E^* = 11.8334$

$\Rightarrow 11.8334 = K_0 + K_1/3 + K_2/27 + K_3/9$

$\Rightarrow 11.8334 = 6.0895 + K_1/3 + K_2/27 + K_3/9$

$\Rightarrow 5.7439 * 27 = 9K_1 + K_2 + 3K_3$

$\Rightarrow 9K_1 + K_2 + 3K_3 = 155.0853 \ldots$ [III]

Substracting $3^* [II] - [III]$

$\Rightarrow 12 K_1 + 3 K_3 = 223.224$ (-)

$\Rightarrow 9K_1 + K_2 + 3K_3 = 155.0853$

$\text{3}K_1 - K_2 = 68.1387$

$\Rightarrow K_2 = 3K_1 - 68.1387; K_3 = 74.408 - 4K_1$

Substituting K_2, K_3 values in[III]

$\Rightarrow K_1 = 13.126; K_2 = -28.7605; K_3 = 21.904$

GENERLIZED EQUATION FOR $E^* = K_0 + K_1 (\sum \alpha_1^2 \alpha_2^2) + K_2 (\prod \alpha_1^2) + K_3 (\sum \alpha_1^2 \alpha_2^2)^2$ [I];

$\Rightarrow E^* = 6.0895 + 13.126(\sum \alpha_1^2 \alpha_2^2) -28.7605((\prod \alpha_1^2) + 21.904(\sum \alpha_1^2 \alpha_2^2)^2$ [IV]

$\Rightarrow \text{Above is the Standard Magnetic Crystalline Anisotropic Energy Equation for Pure Iron with four } K_0, K_1, K_2, K_3 \text{ Constants}$

<table>
<thead>
<tr>
<th>CRYSTALLOGRAPHIC DIRECTION</th>
<th>MAGNETO-CRYSTALLINE ANISOTROPY ENERGY DENSITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>[100] $\alpha_1 = 1, \alpha_2 = 0, \alpha_3 = 0$</td>
<td>$E^*_{[100]} = 6.0895$</td>
</tr>
<tr>
<td>[110] $\alpha_1 = 1/\sqrt{2}, \alpha_2 = 1/\sqrt{2}, \alpha_3 = 0$</td>
<td>$E^*_{[110]} = 10.74$</td>
</tr>
<tr>
<td>[111] $\alpha_1 = 1/\sqrt{3}, \alpha_2 = 1/\sqrt{3}, \alpha_3 = 1/\sqrt{3}$</td>
<td>$E^*_{[111]} = 11.8334$</td>
</tr>
</tbody>
</table>

DISCUSSION:

The <100>//ND fibre accounts for the lowest anisotropy energy since the flux lines, distributed homogenously in a plane of the rotating laminated sheet, have an easiest magnetization direction with the in-plane rotated cube texture components. On the contrary, the Y and the <011>//ND fibre orientations have relatively high anisotropy energy and as such, the occurrence of these components in pure iron is undesirable.
4. ESTIMATION OF TEXTURE K_0,K_1,K_2,K_3 CONSTANTS FOR PURE IRON

From [II], we have $E^* = 0.355A^* - 1.898$

GENERLIZED EQUATION FOR TEXTURE FACTOR A^*

$A^* = K_0 + K_1 (\Sigma \alpha^2_1 \alpha^2_2) + K_2 (\prod \alpha^2_1) + K_3 (\Sigma \alpha^2_1 \alpha^2_2)^2$ [I]

$$= 0.355A^* - 1.898 = 6.0895 + 13.126 (\Sigma \alpha^2_1 \alpha^2_2) - 28.7605 (\prod \alpha^2_1) + 21.904 (\Sigma \alpha^2_1 \alpha^2_2)^2$$

$$= 0.355A^* = 7.9875 + 13.126 (\Sigma \alpha^2_1 \alpha^2_2) - 28.7605 (\prod \alpha^2_1) + 21.904 (\Sigma \alpha^2_1 \alpha^2_2)^2$$

$\Rightarrow A^* = 22.5 + 36.9746 (\Sigma \alpha^2_1 \alpha^2_2) - 81.0154 (\prod \alpha^2_1) + 61.7014 (\Sigma \alpha^2_1 \alpha^2_2)^2$ [IV]

FOR [100] direction, $\alpha_1=1, \alpha_2=0, \alpha_3=0$, $A^* = 22.5 \Rightarrow A^* = 22.5$ for Θ fibre <100>//ND

FOR [110] direction, $\alpha_1=1/\sqrt{2}, \alpha_2=1/\sqrt{2}, \alpha_3=0$, $A^* = 22.5 + 52.4/4 = 35.6 \Rightarrow A^* = 35.6$ for fibre <110>//ND

FOR [111] direction, $\alpha_1=1/\sqrt{3}, \alpha_2=1/\sqrt{3}, \alpha_3=1/\sqrt{3}$, $A^* = 22.5 + 52.4/3 - 34.74/27 = 38.68 \Rightarrow A^* = 38.68$ for Υ fibre <111>//ND

5. CONCLUSIONS:

Magneto-Crystalline Anisotropy Energy Density value is least for [100] directions, and higher for [110] & [111] directions. Therefore [100] directions are easy directions of magnetization for pure iron and [111] hardest direction for magnetization of pure iron. [110] direction is harder direction for magnetization of pure iron. Texture Factor Equation results are consistent with the standard results and conforms to the value of ideal fibres.

REFERENCES:

1. Through process texture evolution and magnetic properties of high Si non-oriented electrical steels
 Jurij J. Sidor, Kim Verbeken, Edgar Gomes, Juergen Schneider ,Pablo Rodriguez Calvillo, Leo A.I. Kestens

2. Manufacturing of Pure Iron by Cold Rolling and Investigation for Application in Magnetic Flux Shielding
 Nitin Satpute,Prakash Dhoka, Pankaj Karande, Siddharth Jabade, Marek Iwaniec

3. Texture Control and Manufacturing in Non-Oriented Electrical Steel
 Leo Kestens1 and Sigrid Jacobs2

4. The Magnetocrystalline Anisotropy Constants of Iron and Iron-sil icon Alloys
 Björn Westerstrand1, Per Nordblad1 and Lars Nordborg1

5. Texture Evolution of Non-Oriented Electrical Steels during Thermomechanical Processing Mehdi Mehdi