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Abstract: Graph theory is a branch of Mathematics that deals with the study of graphs, which are 

mathematical structures used to model relationships between objects. It consists of set of vertices and a set 

of edges that connect pairs of vertices. Vertex coloring is a fundamental concept that assigns colors to the 

vertices of a graph such that no two adjacent receive the same color. The minimum number of colors 

required to color the vertices of a graph is known as the chromatic number of the graph. An upper bound on 

the chromatic number of a Graph is a value that is guaranteed to be greater than or equal to the chromatic 

number. In this paper some common upper bounds for the chromatic number is studied. 
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Introduction: Graph theory has come a long way from the days when it was considered as 

an off-shoot of topology.  It is well known that it has been independently discovered many a 

time, although the earliest record mention of the subject is found in the works of Euler.  

Since then graph theory has been expanding its branches quite enormously, obviously due to 

its well-defined and interesting applications in various fields.  A Graph can be used to 

represent almost any physical situation involving discrete objects and a relationship among 

them. 

Graph: A graph G is an ordered pair (V, E) where V is a finite non-empty set of vertices and 

E is a set of unordered pairs of distinct vertices of V.  V is called the vertex set of G i.e.,V(G) 

and E is called the Edge set of G i.e., E(G).   The Graph with p vertices and q edges is called 

a (p,q) graph.  p is called the order of G and q  the size of G. 

Graph Coloring: In its simplest form, it is a way of coloring the vertices of a graph such 

that no two adjacent vertices share the same color, called a vertex coloring. Similarly, an 

edge coloring assigns a color to each edge so that no two incident edges share the same 

color, and a face coloring of a planar graph assigns a color to each face or region so that no 

two faces that share a boundary share the same color. 
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Vertex coloring: When used without any qualification, a coloring of a graph  is always 

assumed to be a vertex coloring, namely an assignment of colors to the vertices of the graph.  

Again, when used without any qualification, a coloring is nearly always assumed to be 

proper, meaning no two vertices are assigned the same color. Here, "adjacent" means sharing 

the same. A coloring using at most k colors is called a (proper) k-coloring and is equivalent 

to the problem of partitioning the vertex set into k or fewer.  

Vertex coloring is the starting point of the subject, and other coloring problems can be 

transformed into a vertex version. The convention of using colors comes from graph 

drawings of graph colorings, where each node or edge is literally colored to indicate its 

mapping.  In computer representations it's more typical to use nonnegative integers, and in 

general any mapping from the graph objects into a finite set can be used. 

Chromatic number: 

The least number of colors needed to color the graph is called its chromatic number.   

It is denoted by the symbol 𝜒(G), where G is a graph.  For example the chromatic number of 

a  Kn of n vertices (a graph with an edge between every two vertices i.,e a  Complete graph 

with n vertices), is 𝜒(Kn) = n.  A graph that can be assigned a (proper) k-coloring is k-

colorable, and it is k-chromatic if its chromatic number is exactly k. 

Chromatic polynomial: 

The chromatic polynomial counts the number of ways a graph can be colored using no 

more than a given number of colors. 

Color Class: 

 A color class is a set of vertices of a graph which are having the same color when a 

coloring is done to a graph. 

Definition:  A   k – coloring of G  is a labeling f: V (G)      {1……k}.  The labels are colors 

; the vertices with color  i  are a color class.  A  k  coloring f is proper if  x      y implies f(x) 

 f(y).  A graph G  is  k – colorable if it has a proper k – coloring.  The chromatic number 𝜒(G) 

is the minimum  k  such that,  G   is   k – colorable if  𝜒(𝐺)= k , then  G is k – chromatic if  

𝜒(𝐺) = k  but  𝜒(H)  k  for every proper sub graph  H of G,  then G is color critical  or  k – 

critical. 

 

UPPER BOUNDS: 

An upper bound on the chromatic number of a Graph is a value that is guaranteed to 

be greater than or equal to the chromatic number. 

Most upper bounds on   𝜒 (G)  come from coloring algorithms. The bound  

𝜒 (G)   n (G)  where  n (G) is the order of G  uses nothing  about  the  structure of G.   We 

can  improve  the bound by coloring  vertices  successively  using the  “least available”  

color. 
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Algorithm: ( Greedy coloring ).  The greedy coloring with respect  to a vertex ordering  

v1,……………vn  of V (G) is obtained by coloring vertices in the order v1,……………vn , assigning to 

Vi the smallest-indexed color not already used its lower-indexed neighbors. 

Proposition: (Welsh – Powell) [1967] If a graph G has degree sequence  d1……… dn,  

then  𝜒(G)   1 + maxi  min { di ,  i-1}. 

Proof:  we apply greedy coloring with the vertices in nonincreasing order of degree. When 

we color the  i th vertex, at most min { di ……  i-1} of its neighbors already have colors,  so 

its color is at most 1+ min { di ,  i-1}.  Maximizing this over i  yields the upper bound.  

The greedy coloring algorithm  runs rapidly.   It is  “on – line”  in the sense that it 

produces a proper coloring even if it sees only one new vertex at each step and must color it 

with no option to change earlier colors. For a random vertex ordering in a random graph,  

greedy coloring almost always uses only about twice as many colors  as the minimum,  

although with a bad ordering it may use many colors on a tree. 

We began with greedy coloring to underscore the constructive aspect of upper bounds 

on chromatic number.  Other bounds follow from the properties of  k – critical graphs but 

don’t produce proper colorings: every  k – chromatic graph has a k – critical sub graph, but 

we have no good algorithm for finding one.  We derive the next bound using critical sub 

graphs; it can also be proved using greedy coloring. 

 

Proposition:  𝜒 (G)    (G) + 1  

Proof:  In a vertex ordering, each vertex has at most  (G) earlier neighbors, so the greedy 

coloring cannot be forced to use more than (G) + 1 colors. This proves constructively that 

𝜒 (G)    (G) + 1. The bound  𝜒 (G)    (G) + 1  results from every vertex ordering. By 

choosing the ordering carefully, we may obtain a better bound indeed, every graph G has a 

vertex ordering on which the greedy algorithm uses only  𝜒 (G) colors. 

 Lemma: If H is a k – critical graph, then   (H)  k – 1 

 Proof: suppose x is a vertex of H.  Because H is k – critical,  H – x is k – 1    colorable.  If  

dH(x)< k-1,  then the k-1 colors used on H – x  do not all appear on  N(x),  and we can assign 

a missing one to  x  to extend the coloring to H. This contradicts our hypothesis that H has 

no proper k -1- coloring.  Hence every vertex of  H  has degree at least   k -1. 

Proposition:  If G is an interval graph, then 𝜒(𝐺) = 𝜔(𝐺). 

Proof: Order the vertices according to the left endpoints of the intervals in an interval 

representation.  Apply greedy coloring, and suppose that  x  receives k, the maximum color 

assigned. Since x does not receive a smaller color, the left endpoint a of its interval belongs 

also to intervals that already have colors 1 through k-1. These intervals all share the point a, 

so we have a k-clique consisting of x and neighbors of x with colors 1 through k-1. Hence 

𝜔(𝐺) ≥ k ≥ 𝜒(𝐺).  Since 𝜒(𝐺) ≥ 𝜔(𝐺) always, this coloring is optimal. 

Theorem : Gallai-Roy-Vitaver Theorem 

If D is an orientation of G with longest path length 𝑙(𝐷), then 𝜒(𝐺) ≤ 1 + 𝑙(𝐷).   
Furthermore, equality holds for some orientation of G. 

Proof:  Let  D be  an orientation of G.  Let D’ be a maximal subdigraph of  D that contains 

no cycle (in the example below,  uv  is the only edge of  D not in D’), here D’ includes all 
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vertices of  G.  Color V(G) by letting  𝑓(𝑣)  be 1 plus the length of the longest path in D’ that 

ends at 𝑣. 

         Let  P be a path in D’, and let u be the first vertex of P. Every path in D’ ending at u has 

no other vertex on P, since D’ is acyclic. Therefore, each path ending at u (including the 

longest such path) can be lengthened along P. This implies that 𝑓 strictly increases along 

each path in D’. 

   The coloring 𝑓 uses colors 1 through 1+ 𝑙(D’) on V(D’) (which is also V(G)). We 

claim that 𝑓 is a proper coloring of G.  For each 𝑢𝑣 𝜖 𝐸(𝐷), there is a path in D’ between its 

endpoints (since uv is an edge of D’ or its addition to D’ creates a cycle). This implies 

that 𝑓(𝑢) ≠ 𝑓(𝑣), since f increases along paths of D’. 

   To prove the second statement,  we construct an orientation  D*  such that  

 𝑙 (D*) ≤  𝜒(𝐺) − 1.   Let 𝑓 be an optimal coloring of G. For each edge uv in G, orient it 

from u to v  in D* if and only if 𝑓(𝑢) < 𝑓(𝑣). Since 𝑓  is a proper coloring, this defines an 

orientation.  Since the labels used by 𝑓 increase along each path in D*, and there are only 

𝜒(𝐺) labels 𝑖𝑛 𝑓,  we have 𝑙 (D*) ≤  𝜒(𝐺) − 1. 

   

Fig(1) 

  

Uniquely colorable graphs: 

Let G be a labelled graph.  Any 𝜒(𝐺)-coloring of G induces a partition of the point set of G 

into 𝜒(𝐺) colour classes.  If 𝜒(𝐺) = n  and every n-coloring of G induces the same partition 

of  V,  then G is called uniquely n-colorable or simply uniquely  colorable .  The graph G of  

Fig(2) shown below is uniquely 3-colorable since every 3-coloring of G has the partition { 

u1} , { u2 , u4 } , { u3 , u5 }   while the pentagon is not uniquely 3-colorable; indeed, five 

different partitions of its point set are possible.  

 

Fig(2): A uniquely colorabe graph 
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We begin with a few elementary observations concerning uniquely colorable graphs.  First, 

in any n-coloring of a uniquely n-colorable graph G, every point v of  G  is adjacent with at 

least one point of every color different from that assigned to v ; for otherwise a different n-

coloring of G could be obtained by recoloring v. This further implies that  (G) ≥  n-1.  A 

necessary condition for a graph to be uniquely colorable was found by Cartwright and 

Harary[CH2]. 

Theorem (a): In the n-coloring of a uniquely n-colorable graph G,  the subgraph induced by 

the union of any two color classes is connected. 

Proof :  Consider an n-coloring of a uniquely n-colorable graph G, and suppose there exist 

two color classes of  G, say C1 and C2, such that the subgraph S of G induced by  C1  C2  is 

disconnected. Let S1 and S2 be two components of  S. From our earlier remarks, each of S1 

and S2 must contain points of  both C1 and C2.  An  n-coloring different from the given one 

can now be obtained if the color of the points in C1 ∩ S1 is interchanged with the color of the 

points in C2 ∩ S1. This implies that G is not uniquely n-colorable , which is contradiction.  

The converse of  Theorem(a) is not true, however.  This can be seen with the aid of the 3-

chromatic graph G of  Fig(3) shown below.  It has the property that in any 3-coloring , the 

subgraph induced by the union of any 2 color classes is connected, but G is not uniquely 3-

colorable.  

     

 

 

Fig(3): A counterexample to the converse of  Theorem(a) 

From Theorem(a), it now follows that every uniquely n-colorable graph, n ≥ 2, is connected.  

However, a stronger result can be given, due to Chartrand and Geller[CG1] , that G is neither 

complete nor  (n – 1)-connected so that there exists a set U of n – 2 points whose removal 

disconnects G.  Thus, there are at least two distinct colors, say c1 and c2, not assigned to any 

point of  U.  By Theorem(a), a point colored c1 is connected  to any point colored c2 by a 

path all of whole points are colored c1 or c2 .  Hence, the set of points of G colored c1 or c2 

lies within the same component of  G – U, say G1.  Another n-coloring of G can therefore be 

obtained by taking any point of G – U  which is not G1 and recoloring it either c1 or  c2.  This 

contradicts the hypothesis that G is uniquely n-colorable ; thus G is (n– 1)-connected. 

Since the union of any k color classes of a uniquely n-colorable graph, 

  2 ≤ 𝑘 ≤ 𝑛 , induces a uniquely k-colorable graph, we arrive at the following consequence. 

Corollary :  In any n-colouring of a uniquely n-colourable graph, the subgraph induced by 

the union of any k color classes,  2 ≤ 𝑘 ≤ 𝑛 , is (k – 1)-connected. 

       It is easy to give examples of  3-chromatic graphs containing no triangles; indeed, we 

have seen in our study  that for any n, there exists n-chromatic graphs with no triangles and 

hence no subgraphs  isomorphic to Kn.  In this connection, a stronger result was obtained by 

Harary,  Hedetniemi, and Robinson [HHR1]. 
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Theorem(b): For all n ≥ 3, there is a uniquely n-colorable graph which contains no 

subgraph  isomorphic to Kn. 

     For n=3, the graph G of  Fig(4)  given below illustrates the theorem. 

    

Fig(4): A uniquely 3-colorable graph having no triangles.  

    Naturally, a graph is uniquely 1-colorable if and only if it is 1-colorable, that is, totally 

disconnected.  It is also well known that a graph G is uniquely 2-colorable if and only if G is 

2-chromatic and connected.  As might be expected, the information concerning uniquely n-

colorable graphs, n ≥ 3, is very sparse.  In the case where the graphs are planar, however, 

more can be said, although in view of the Five Color Theorem, we need to consider only the 

values 3 ≤ 𝑛 ≤ 5.  The results in this area are due to Chartrand and Geller [CG1]. 
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