
www.ijcrt.org                                       © 2023 IJCRT | Volume 11, Issue 6 June 2023 | ISSN: 2320-2882 

IJCRT2306951 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org i1 
 

Neutrosophic Spherical Cubic Soft Set And Their 

Applications In Decision Making 
 

Shalini Tharanya J, Trinita Pricilla M 

Nirmala College for Women, Coimbatore, Tamilnadu. 

  

 

Abstract: We introduce the concept of Neutrosophic spherical cubic soft sets (NSCSSs) which can be 

considered as a generalization of Neutrosophic cubic soft sets. The notions of internal Neutrosophic spherical 

cubic soft sets (INSCSSs), external Neutrosophic spherical cubic soft sets (ENSCSSs), P-order, P-union, 

P-intersection, P-AND, P-OR and R-order, R-union, R-intersection, R-AND, R-OR have been defined for 

Neutrosophic spherical cubic soft sets (NSCSSs). We also investigate structural properties of these operations on 

Neutrosophic spherical cubic soft sets (NSCSSs). It has also been proved that Neutrosophic spherical cubic soft 

sets (NSCSESs) satisfy commutative, associative, De Morgan’s, distributive, idempotent and absorption laws. In 

last section, we provide the application of a Neutrosophic spherical cubic soft sets (NSCSSs) in multi-criteria 

decision making problem. We present a numerical examples of Neutrosophic spherical cubic soft set.  

  Keywords: Neutrosophic spherical Cubic soft sets, Neutrosophic spherical internal cubic soft sets, 

Neutrosophic spherical external cubic soft sets, interval valued spherical fuzzy sets 

 

1  Introduction 

 Fuzzy set is first introduced by Zadeh[31] to represent the degree of certainty of expert’s in different 

statements. Zadeh also proposed the concept of a linguistic variable with application in [32]. Then Peng et al.[18, 

17] presented an application in multi-criteria decision-making problems. After Zadeh, Turksen[26, 27, 28] extend 

fuzzy set to an interval valued fuzzy set. Interval value fuzzy sets have many applications in real life such as 

Sambuc[19], Kohout[9], Mukherjee and Sarkar[11, 12] also gave its applications in Medical, Turksen[26, 27] in 

interval valued logic. Molodstov pointed out that the important existing theories viz. probability theory, fuzzy set 

theory, intuitionistic fuzzy set theory, rough set theory etc, which can be considered as mathematical tools for 

dealing with uncertainties, have their own difficulties. He further pointed out that the reason for these difficulties 

is, possibly, the inadequacy of the parameterization tool of the theory. Molodtsov[14] has been given soft sets 

technique and its applications. In 2003, P. K .Maji, R. Biswas and A. R. Roy[13] studied the theory of soft sets 

initiated by Molodstov. 

In 2009, M. Irfan Ali et al.,[1] gave some new notions such as the restricted intersection, the restricted 

union, the restricted difference and the extended intersection of two soft sets along with a new notion of 

complement of a soft set. Sezgin and Atagun[20] studied on soft set operations. Pei and Miao[16] and Chen et al. 

improved the work of Maji. Soft set theory has been applied to decision making problems. Jun et al.[6, 7, 8] 

introduced cubic set which is basically the combination of fuzzy sets with interval valued fuzzy sets. In [14], 

Muhiuddin and Al-roqi[15] have introduced the concept of cubic soft sets with applications in 

BCI/BCK-algebras. 

Sezgin and Atagun[20] studied on soft set operations. Majumdar and Samanta, worked on soft 

mappings[28] were proposed and many related concepts were discussed too. Moreover, the theory of soft sets has 

gone through remarkably rapid strides with a wide-ranging applications especially in soft decision making and 

some other fields such as [11, 12, 13]. 
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Motivating from the realisms of physical life phenomenon, i.e., different sports (win/ tie/ defeat), votes 

like yes/ NA/ NO and making a decision. In 1999, Smrandache[22, 23, 24, 25, 25] presented a fresh idea of NSs 

and neutrosophic logic, which is the generality of an FS and IFS, NS is defined by (truth-membership, 

indeterminacy membership and falsity-membership degrees). This idea of NS creates the NS theory by providing 

the illustration to indeterminate. This theory is well throughout as the whole demonstration of nearly each model 

of all actual difficulties. Thus, vagueness is complicated in problematical questions we use FS whereas, 

commerce indeterminacy, we must have a neutrosophic theory. This theory has numerous applications in 

countless fields such as control theory, records, medicinal judgment difficulties and decision-making questions. 

Such types of models have been studied by several authors[2, 3, 4, 30]. 

Spherical fuzzy sets (SFS) were introduced by Kahraman and Gndogdu[10] as an extension of 

Pythagorean, neutrosophic and picture fuzzy sets. The idea behind SFS is to let decision makers to generalize 

other extensions of fuzzy sets by defining a membership function on a spherical surface and independently assign 

the parameters of that membership function with a larger domain. 

In this paper, we introduce neutrosophic spherical cubic soft set and define some new notions such as 

internal (external) neutrosophic spherical cubic soft sets.The notion of neutrosophic spherical cubic soft set 

generalizes the concept of neutrosophic cubic soft set. We also investigate some of the core properties of 

neutrosophic spherical cubic soft set. By using these new notions we then construct a decision making method 

called neutrosophic spherical cubic soft method. We finally present an application which shows that the methods 

can be successfully applied to many problems containing uncertainties. Finally we present an application of a 

neutrosophic spherical cubic soft set in decision making. 

 

Definition 1.1  Let 𝑈 be a finite universe set containing 𝑛 alternatives, 𝐸; a set of criteria and 𝑋; a set 

of experts (or decision makers). 

A pair (𝛽𝑠, 𝐸𝑠, 𝑋𝑠) is called a Neutrosophic spherical cubic soft set over 𝑈 if and only if 𝛽𝑠: 𝐸𝑠 × 𝑋𝑠 →
𝑁𝑆𝐶𝑃(𝑈) is a mapping into the set of all Neutrosophic spherical cubic sets in 𝑈. Neutrosophic spherical cubic 

soft set is defined as  

 (𝛽𝑠, 𝐸𝑠, 𝑋𝑠) = {𝛽𝑠(𝑒̆, 𝑥) = {〈𝑢, 𝐴𝑠(𝑒̆, 𝑥)(𝑢), 𝜆𝑠(𝑒̆, 𝑥)(𝑢)〉: 𝑢 ∈ 𝑈, 
 𝑒̆, 𝑥 ∈ 𝐸𝑠 × 𝑋𝑠}} 

 where 𝐴𝑠(𝑒̆,𝑥)(𝑢) is an interval valued Neutrosophic spherical set and 𝜆𝑠(𝑒̆, 𝑥)(𝑢) is a Neutrosophic spherical 

set.  

 

 

2  Interval valued Neutrosophic spherical set 

Let 𝑈 be a non-empty set. An interval valued Neutrosophic spherical set in 𝑈 is of the form,  

 𝐴𝑠(𝑒̆,𝑥) = {𝑋: [𝑇𝐴𝑠(𝑒̆,𝑥)
− , 𝑇𝐴𝑠(𝑒̆,𝑥)

+ ] 

 [𝐼𝐴𝑠(𝑒̆,𝑥)
− , 𝐼𝐴𝑠(𝑒̆,𝑥)

+ ] 

 [𝐹𝐴𝑠(𝑒̆,𝑥)
− , 𝐹𝐴𝑠(𝑒̆,𝑥)

+ ] /𝑥 ∈ 𝑈} 

 where 𝑇𝐴𝑠(𝑒̆,𝑥)
− (𝑥), 𝐼𝐴𝑠(𝑒̆,𝑥)

− (𝑥), 𝐹𝐴𝑠(𝑒̆,𝑥)
− (𝑥)/𝑥 ∈ 𝑈[0,1],  

 0 ≤ [𝑇𝐴𝑠(𝑒̆,𝑥)
− (𝑥)]

2

+ [𝐼𝐴𝑠(𝑒̆,𝑥)
− ]

2

+ [𝐹𝐴𝑠(𝑒̆,𝑥)
− ]

2

≤ √3 

and 𝑇𝐴𝑠(𝑒̆,𝑥)
+ (𝑥), 𝐼𝐴𝑠(𝑒̆,𝑥)

+ (𝑥), 𝐹𝐴𝑠(𝑒̆,𝑥)
+ (𝑥)/𝑥 ∈ 𝑈[0,1],  

 0 ≤ [𝑇𝐴𝑠(𝑒̆,𝑥)
+ (𝑥)]

2

+ [𝐼𝐴𝑠(𝑒̆,𝑥)
+ ]

2

+ [𝐹𝐴𝑠(𝑒̆,𝑥)
+ ]

2

≤ √3 

where  

 𝐼𝐴𝑠(𝑒̆,𝑥)
− (𝑥) = min ({1,1 − [𝑇𝐴𝑠(𝑒̆,𝑥)

− (𝑥)] − [𝐹𝐴𝑠(𝑒̆,𝑥)
− (𝑥)]}), 

 

 𝐼𝐴𝑠(𝑒̆,𝑥)
+ (𝑥) = max ({1,1 − [𝑇𝐴𝑠(𝑒̆,𝑥)

+ (𝑥)] − [𝐹𝐴𝑠(𝑒̆,𝑥)
+ (𝑥)]}). 

 

Example 2.1 Let U = {u1, u2, u3} be the set of countries, Es = {e1 = physiological natality, e2 = potential 
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mortality} be the set of factors affecting population, Xs = {x1, x2} be the set of experts. Let  

 𝐸𝑠 × 𝑋𝑠 = {(𝑒1, 𝑥1), (𝑒1, 𝑥2), (𝑒2, 𝑥1), (𝑒2, 𝑥2)}. 
Then the Neutrosophic spherical cubic soft set (𝛽𝑠, 𝐸𝑠, 𝑋𝑠) in 𝑈 is given by,  

 𝛽𝑠(𝑒1, 𝑥1) = {

𝑢1, ([0.3,0.4], [0.5,1.0], [0.2,0.4]), (0.3,0.4,0.5)

𝑢2, ([0.4,0.5], [0.3,1.0], [0.3,0.5]), (0.5,0.4,0.5)
𝑢3, ([0.1,0.3], [0.7,1.0], [0.2,0.4]), (0.7,0.7,0.3)

} 

 

 𝛽𝑠(𝑒2, 𝑥1) = {

𝑢1, ([0.4,0.1], [0.5,1.0], [0.1,0.3]), (0.7,0.7,0.5)
𝑢2, ([0.3,0.4], [0.6,1.0], [0.1,0.3]), (0.6,0.7,0.6)
𝑢3, ([0.6,0.9], [0.1,1.0], [0.1,0.2]), (0.8,0.8,0.4)

} 

 

 𝛽𝑠(𝑒1, 𝑥2) = {

𝑢1, ([0.3,0.5], [0.7,1.0], [0.0,0.2]), (0.7,0.5,0.6)
𝑢2, ([0.4,0.6], [0.4,1.0], [0.2,0.4]), (0.6,0.5,0.7)
𝑢3, ([0.4,0.5], [0.6,1.0], [0.0,0.5]), (0.8,0.6,0.6)

} 

 

 𝛽𝑠(𝑒2, 𝑥2) = {

𝑢1, ([0.1,0.4], [0.5,1.0], [0.4,0.6]), (0.5,0.4,0.5)
𝑢2, ([0.3,0.6], [0.5,1.0], [0.2,0.1]), (0.6,0.7,0.3)
𝑢3, ([0.3,0.5], [0.6,1.0], [0.1,0.4]), (0.5,0.4,0.6)

} 

 

 In this example, interval valued Neutrosophic spherical set indicates the experts opinion for future time 

period and Neutrosophic spherical set indicates the experts opinion for present time period under the different 

circumstances related to the given problem. 

 

Definition 2.2  A Neutrosophic spherical cubic soft set is said to be an internal Neutrosophic spherical cubic 

soft(INSCS) set if  

 𝐴𝑠(𝑒̆,𝑥)
− (𝑢) ≤ 𝜆𝑠(𝑒̆,𝑥)(𝑢) ≤ 𝐴𝑠(𝑒̆,𝑥)

+ (𝑢) 

for all (𝑒̆, 𝑥) ∈ 𝐸𝑠 × 𝑋𝑠 and for all 𝑢 ∈ 𝑈.  

 

Definition 2.3  A Neutrosophic spherical cubic soft set is said to be external Neutrosophic spherical cubic 

soft(ENSCS) set if  

 𝜆𝑠(𝑒̆,𝑥)(𝑢) ∈ 𝐴𝑠(𝑒̆,𝑥)
− (𝑢), 𝐴𝑠(𝑒̆,𝑥)

+ (𝑢) 

for all (𝑒̆, 𝑥) ∈ 𝐸𝑠 × 𝑋𝑠 and for all 𝑢 ∈ 𝑈.  

 

Definition 2.4  Let (βs, Es, Xs) be a Neutrosophic spherical cubic soft set over U. For any e1, e2 ∈ Es, x1, x2 ∈
Xs if  

 𝛽𝑠(𝑒1, 𝑥1) = {〈𝑢, 𝐴1𝑠(𝑒1,𝑥1)(𝑢), 𝜆1𝑠(𝑒1,𝑥1)(𝑢)〉: 𝑢 ∈ 𝑈} 

and  

 𝛽𝑠(𝑒2, 𝑥2) = {〈𝑢, 𝐴2𝑠(𝑒2,𝑥2)(𝑢), 𝜆2𝑠(𝑒2,𝑥2)(𝑢)〉: 𝑢 ∈ 𝑈} 

the 𝑃 −order(𝑅 −order) denoted by  

 𝛽𝑠(𝑒1, 𝑥1) ⊆𝑃𝑠 𝛽𝑠(𝑒2, 𝑥2) 

 

 𝛽𝑠(𝑒1, 𝑥1) ⊆𝑅𝑠 𝛽𝑠(𝑒2, 𝑥2) 

are defined as follows:   

    1.  𝐴1𝑠(𝑒1,𝑥1)(𝑢) ≤ 𝐴2𝑠(𝑒2,𝑥2)(𝑢), 𝐴1𝑠(𝑒1,𝑥1)(𝑢) ≤ 𝐴2𝑠(𝑒2,𝑥2)(𝑢) for all 𝑢 ∈ 𝑈  

    2.  𝜆1𝑠(𝑒1,𝑥1)(𝑢) ≤ 𝜆2𝑠(𝑒2,𝑥2)(𝑢), 𝜆1𝑠(𝑒1,𝑥1)(𝑢) ≥ 𝜆2𝑠(𝑒2,𝑥2)(𝑢) for all 𝑢 ∈ 𝑈  

  

Definition 2.5 A Neutrosophic spherical cubic soft set over U is said to be P −order(R −order) contained in 

another Neutrosophic spherical cubic soft set (β2s, E2s, X2s) over U denoted by  

 (𝛽1𝑠, 𝐸1𝑠, 𝑋1𝑠) ⊆𝑃𝑠 (𝛽2𝑠, 𝐸2𝑠, 𝑋2𝑠), 

 

 𝛽𝑠(𝑒1, 𝑥1) ⊆𝑅𝑠 𝛽𝑠(𝑒2, 𝑥2) 
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are defined as below:   

    1.  𝐸1𝑠 ⊆ 𝐸2𝑠, (𝐸1𝑠 ⊆ 𝐸2𝑠)  

    2.  𝑋1𝑠 ⊆ 𝑋2𝑠, (𝑋1𝑠 ⊆ 𝑋2𝑠)  

    3.  𝛽1𝑠(𝑒̆, 𝑥) ⊆𝑃𝑠 𝛽2𝑠(𝑒̆, 𝑥), 𝛽1𝑠(𝑒̆, 𝑥) ⊆𝑅𝑠 𝛽2𝑠(𝑒̆, 𝑥) for all 𝑒̆ ∈ 𝐸1𝑠, 𝑥 ∈ 𝑋1𝑠  

  

Definition 2.6 Two Neutrosophic spherical cubic soft sets (β1s, E1s, X1s) and (β2s, E2s, X2s) over U are equal, 

denoted by  

 (𝛽1𝑠, 𝐸1𝑠, 𝑋1𝑠) = (𝛽2𝑠, 𝐸2𝑠, 𝑋2𝑠) 
if 𝐸1𝑠 = 𝐸2𝑠, 𝑋1𝑠 = 𝑋2𝑠 and  

 𝛽1𝑠(𝑒̆, 𝑥) = 𝛽2𝑠(𝑒̆, 𝑥) 
for all 𝑒̆ ∈ 𝐸1𝑠 = 𝐸2𝑠, 𝑥 ∈ 𝑋1𝑠 = 𝑋2𝑠.  

 

Corollary 2.7 For any two Neutrosophic spherical cubic soft sets (β1s, E1s, X1s) and (β2s, E2s, X2s) over U. If  

 (𝛽1𝑠, 𝐸1𝑠, 𝑋1𝑠) ⊆𝑃𝑠 (𝛽2𝑠, 𝐸2𝑠, 𝑋2𝑠) 

and  

 (𝛽2𝑠, 𝐸2𝑠, 𝑋2𝑠) ⊆𝑃𝑠 (𝛽1𝑠, 𝐸1𝑠, 𝑋1𝑠) 

then  

 (𝛽1𝑠, 𝐸1𝑠, 𝑋1𝑠) = (𝛽2𝑠, 𝐸2𝑠, 𝑋2𝑠). 
Similar result holds for 𝑅 −order.  

 

Definition 2.8  The P −union of two Neutrosophic spherical cubic soft sets(NSCSS s) (β1s, E1s, X1s) and 

(β2s, E2s, X2s) over U is denoted by  

 (𝛽3𝑠, 𝐹𝑠, 𝑌𝑠) = (𝛽1𝑠, 𝐸1𝑠, 𝑋1𝑠) ∪𝑃𝑠 (𝛽2𝑠, 𝐸2𝑠, 𝑋2𝑠) 

where 𝐹 = 𝐸1𝑠 ∪ 𝐸2𝑠, 𝑌 = 𝑋1𝑠 ∪ 𝑋2𝑠 and for all 𝑓 ∈ 𝐹𝑠 and 𝑧 ∈ 𝑌𝑠 it is defined as  

𝛽3𝑠(𝑓, 𝑧) =

{
 
 

 
 
{〈𝑢, 𝐴1𝑠(𝑓,𝑧)(𝑢), 𝜆1𝑠(𝑓,𝑧)(𝑢)〉}  𝑖𝑓   (𝑓, 𝑧) ∈ (𝐸1𝑠 × 𝑋1𝑠)\(𝐸2𝑠 × 𝑋2𝑠)

{〈𝑢, 𝐴2𝑠(𝑓,𝑧)(𝑢), 𝜆2𝑠(𝑓,𝑧)(𝑢)〉}  𝑖𝑓   (𝑓, 𝑧) ∈ (𝐸2𝑠 × 𝑋2𝑠)\(𝐸1𝑠 × 𝑋1𝑠)

{〈𝑢, sup{𝐴1𝑠(𝑓,𝑧)(𝑢), 𝐴2𝑠(𝑓,𝑧)(𝑢)},

sup{𝜆1𝑠(𝑓,𝑧)(𝑢), 𝜆2𝑠(𝑓,𝑧)(𝑢)}〉}  𝑖𝑓   (𝑓, 𝑧) ∈ (𝐸1𝑠 ∩ 𝐸1𝑠) × (𝑋1𝑠 ∩ 𝑋2𝑠)}
 
 

 
 

 

whenever 𝛽1𝑠(𝑓,𝑧) = {〈𝑢, 𝐴1𝑠(𝑓,𝑧)(𝑢), 𝜆1𝑠(𝑓,𝑧)(𝑢)〉; 𝑢 ∈ 𝑈} 

and 𝛽2𝑠(𝑓,𝑧) = {〈𝑢, 𝐴2𝑠(𝑓,𝑧)(𝑢), 𝜆2𝑠(𝑓,𝑧)(𝑢)〉; 𝑢 ∈ 𝑈}  

 

Definition 2.9  The P −intersection of two Neutrosophic spherical cubic soft sets (β1s, E1s, X1s) and 

(β2s, E2s, X2s) over U is denoted by  

 (𝛽3𝑠, 𝐹𝑠, 𝑌𝑠) = (𝛽1𝑠, 𝐸1𝑠, 𝑋1𝑠) ∩𝑃𝑠 (𝛽2𝑠, 𝐸2𝑠, 𝑋2𝑠) 

where 𝐹𝑠 = 𝐸1𝑠 ∩ 𝐸2𝑠, 𝑌𝑠 = 𝑋1𝑠 ∩ 𝑋2𝑠 and for all 𝑓 ∈ 𝐹𝑠 and 𝑧 ∈ 𝑌𝑠. It is defined as  

 𝛽3𝑠(𝑓, 𝑧) = {〈𝑢, inf{𝐴1𝑠(𝑓,𝑧)(𝑢), 𝐴2𝑠(𝑓,𝑧)(𝑢)}, inf{𝜆1𝑠(𝑓,𝑧)(𝑢), 𝜆2𝑠(𝑓,𝑧)(𝑢)〉}. 

 

Definition 2.10  The R −union of two Neutrosophic spherical cubic soft sets (β1s, E1s, X1s) and (β2s, E2s, X2s) 
over U is denoted by  

 (𝛽3𝑠, 𝐹𝑠, 𝑌𝑠) = (𝛽1𝑠, 𝐸1𝑠, 𝑋1𝑠) ∪𝑅𝑠 (𝛽2𝑠, 𝐸2𝑠, 𝑋2𝑠) 

where 𝐹𝑠 = 𝐸1𝑠 ∪ 𝐸2𝑠, 𝑌𝑠 = 𝑋1𝑠 ∪ 𝑋2𝑠 and for all 𝑓 ∈ 𝐹𝑠 and 𝑧 ∈ 𝑌𝑠 it is defined as  

𝛽3𝑠(𝑓, 𝑧) =

{
 
 

 
 
{〈𝑢, 𝐴1𝑠(𝑓,𝑧)(𝑢), 𝜆1𝑠(𝑓,𝑧)(𝑢)〉}  𝑖𝑓   (𝑓, 𝑧) ∈ (𝐸1𝑠 × 𝑋1𝑠)\(𝐸2𝑠 × 𝑋2𝑠)

{〈𝑢, 𝐴2𝑠(𝑓,𝑧)(𝑢), 𝜆2𝑠(𝑓,𝑧)(𝑢)〉}  𝑖𝑓   (𝑓, 𝑧) ∈ (𝐸2𝑠 × 𝑋2𝑠)\(𝐸1𝑠 × 𝑋2𝑠)

{〈𝑢, sup{𝐴1𝑠(𝑓,𝑧)(𝑢), 𝐴2𝑠(𝑓,𝑧)(𝑢)},

inf{𝜆1𝑠(𝑓,𝑧)(𝑢), 𝜆2𝑠(𝑓,𝑧)(𝑢)}〉}  𝑖𝑓   (𝑓, 𝑧) ∈ (𝐸1𝑠 ∩ 𝐸2𝑠) × (𝑋2𝑠 ∩ 𝑋2𝑠)}
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Definition 2.11  The R −intersection of two Neutrosophic spherical cubic soft sets (β1s, E1s, X1s) and 

(β2s, E2s, X2s) over U is denoted by  

 (𝛽3𝑠, 𝐹𝑠, 𝑌𝑠) = (𝛽1𝑠, 𝐸1𝑠, 𝑋1𝑠) ∩𝑃𝑠 (𝛽2𝑠, 𝐸2𝑠, 𝑋2𝑠) 

where 𝐹𝑠 = 𝐸1𝑠 ∩ 𝐸2𝑠, 𝑌𝑠 = 𝑋1𝑠 ∩ 𝑋2𝑠 and for all 𝑓 ∈ 𝐹𝑠 and 𝑧 ∈ 𝑌𝑠 it is defined as  

 𝛽3𝑠(𝑓, 𝑧) = {〈𝑢, inf{𝐴1𝑠(𝑓,𝑧)(𝑢), 𝐴2𝑠(𝑓,𝑧)(𝑢)}, sup{𝜆1𝑠(𝑓,𝑧)(𝑢), 𝜆2𝑠(𝑓,𝑧)(𝑢)〉}. 

 

Definition 2.12  The complement of a NSCSS (βs, Es, Xs) is denoted and defined as  

 (𝛽𝑠, 𝐸𝑠, 𝑋𝑠)
𝑐 = (𝛽𝑠

𝑐, 𝐸𝑠
𝑐 , 𝑋𝑠

𝑐) 
where 𝛽𝑠

𝑐: 𝐸𝑠
𝑐 × 𝑋𝑠 → 𝑁𝑆𝐶𝑃(𝑈) is a mapping given as,  

 𝛽𝑠
𝑐(𝑒𝑐, 𝑥) = {〈𝑢, 𝐴𝑠(𝑒̆,𝑥)

𝑐 (𝑢), 𝜆𝑠(𝑒̆,𝑥)
𝑐 (𝑢)〉: 𝑢 ∈ 𝑈, (𝑒𝑐, 𝑥) ∈ 𝐸𝑐 × 𝑋} 

where  

 𝐴𝑠(𝑒̆,𝑥)
𝑐 (𝑢) = [1 − 𝐴𝑠(𝑒̆,𝑥)

+ (𝑢),1 − 𝐴𝑠(𝑒̆,𝑥)
− (𝑢)] 

and  

 𝜆𝑠(𝑒̆,𝑥)
𝑐 (𝑢) = 1 − 𝜆(𝑒̆,𝑥)(𝑢) 

whenever  

 𝛽(𝑒̆, 𝑥) = {〈𝑢, 𝐴(𝑒̆,𝑥)(𝑢), 𝜆(𝑒̆,𝑥)(𝑢)〉: 𝑢 ∈ 𝑈}. 

 

Theorem 2.13  For any NSCSSs, (β1s, E1s, X1s), (β2s, E2s, X2s), (β3s, E3s, X3s) and (β4s, E4s, X4s) over U the 

following properties hold:   

    1.   Idempotent (𝛽1𝑠, 𝐸1𝑠, 𝑋1𝑠) ∪𝑃𝑠 (𝛽1𝑠, 𝐸1𝑠, 𝑋1𝑠) = (𝛽1𝑠, 𝐸1𝑠, 𝑋1𝑠) ∩𝑃𝑠 (𝛽1𝑠, 𝐸1𝑠, 𝑋1𝑠)  

    2.   Commutative (𝛽1𝑠, 𝐸1𝑠, 𝑋1𝑠) ∪𝑃𝑠 (𝛽2𝑠, 𝐸2𝑠, 𝑋2𝑠) = (𝛽2𝑠, 𝐸2𝑠, 𝑋2𝑠) ∪𝑃𝑠 (𝛽1𝑠, 𝐸1𝑠, 𝑋1𝑠)  

    3.   Associative (𝛽1𝑠, 𝐸1𝑠, 𝑋1𝑠) ∪𝑃𝑠 (𝛽2𝑠, 𝐸2𝑠, 𝑋2𝑠) ∪𝑃𝑠 (𝛽3𝑠, 𝐸3𝑠, 𝑋3𝑠) =

(𝛽1𝑠, 𝐸1𝑠, 𝑋1𝑠) ∪𝑃𝑠 (𝛽2𝑠, 𝐸2𝑠, 𝑋2𝑠) ∪𝑃𝑠 (𝛽3𝑠, 𝐸3𝑠, 𝑋3𝑠)  

    4.   Distributive (𝛽1𝑠, 𝐸1𝑠, 𝑋1𝑠) ∪𝑃𝑠 (𝛽2𝑠, 𝐸2𝑠, 𝑋2𝑠) ∩𝑃𝑠 (𝛽3𝑠, 𝐸3𝑠, 𝑋3𝑠) =

(𝛽1𝑠, 𝐸1𝑠, 𝑋1𝑠) ∪𝑃𝑠 (𝛽2𝑠, 𝐸2𝑠, 𝑋2𝑠) ∩𝑃𝑠 (𝛽1𝑠, 𝐸1𝑠, 𝑋1𝑠) ∪𝑃𝑠 (𝛽3𝑠, 𝐸3𝑠, 𝑋3𝑠) 

(𝛽1𝑠, 𝐸1𝑠, 𝑋1𝑠) ∩𝑃𝑠 (𝛽2𝑠, 𝐸2𝑠, 𝑋2𝑠) ∪𝑃𝑠 (𝛽3𝑠, 𝐸3𝑠, 𝑋3𝑠) =

(𝛽1𝑠, 𝐸1𝑠, 𝑋1𝑠) ∩𝑃𝑠 (𝛽2𝑠, 𝐸2𝑠, 𝑋2𝑠) ∪𝑃𝑠 (𝛽1𝑠, 𝐸1𝑠, 𝑋1𝑠) ∩𝑃𝑠 (𝛽3𝑠, 𝐸3𝑠, 𝑋3𝑠)  

    5.   De Morgan’s laws (𝛽1𝑠, 𝐸1𝑠, 𝑋1𝑠) ∪𝑃𝑠 (𝛽2𝑠, 𝐸2𝑠, 𝑋2𝑠)
𝑐 = (𝛽1𝑠, 𝐸1𝑠, 𝑋1𝑠)

𝑐 ∩𝑃𝑠 (𝛽2𝑠, 𝐸2𝑠, 𝑋2𝑠)
𝑐 

(𝛽1𝑠, 𝐸1𝑠, 𝑋1𝑠) ∩𝑃𝑠 (𝛽2𝑠, 𝐸2𝑠, 𝑋2𝑠)
𝑐 = (𝛽1𝑠, 𝐸1𝑠, 𝑋1𝑠)

𝑐 ∪𝑃𝑠 (𝛽2𝑠, 𝐸2𝑠, 𝑋2𝑠)
𝑐  

    6.   Involution law ((𝛽1𝑠, 𝐸1𝑠, 𝑋1𝑠)
𝑐)𝑐 = (𝛽1𝑠, 𝐸1𝑠, 𝑋1𝑠)  

 Similar results hold for 𝑅 −order, 𝑅 −union and 𝑅 −intersection.  

  

Proof. These properties can be verified by using definitions 2.8,2.9,2.10,2.11 and 2.12.  

 

Proposition 2.14 For any two NSCSS (β1s, E1s, X1s) and (β2s, E2s, X2s) over U the following are equivalent   

    1.  (𝛽1𝑠, 𝐸1𝑠, 𝑋1𝑠) ⊆𝑃𝑠 (𝛽2𝑠, 𝐸2𝑠, 𝑋2𝑠)  

    2.  (𝛽1𝑠, 𝐸1𝑠, 𝑋1𝑠) ∩𝑃𝑠 (𝛽2𝑠, 𝐸2𝑠, 𝑋2𝑠) = (𝛽1𝑠, 𝐸1𝑠, 𝑋1𝑠)   

    3.  (𝛽1𝑠, 𝐸1𝑠, 𝑋1𝑠) ∪𝑃𝑠 (𝛽2𝑠, 𝐸2𝑠, 𝑋2𝑠) = (𝛽2𝑠, 𝐸2𝑠, 𝑋2𝑠)   

  

Proof. (2.14)⇒(2.14) 

By definition 2.9, we have  

 (𝛽1𝑠, 𝐸1𝑠, 𝑋1𝑠) ∩𝑃𝑠 (𝛽2𝑠, 𝐸2𝑠, 𝑋2𝑠) = (𝛽1𝑠 ∩𝑃𝑠 𝛽2𝑠, 𝐸1𝑠 ∩𝑃𝑠 𝐸2𝑠, 𝑋1𝑠 ∩𝑃𝑠 𝑋2𝑠) 

 = (𝛽1𝑠 ∩𝑃𝑠 𝛽2𝑠, 𝐸1𝑠, 𝑋1𝑠)   𝑎𝑠   𝐸1 ⊆ 𝐸2   𝑎𝑛𝑑   𝑋1 ⊆ 𝑋2 

 by hypothesis. 

Now for any (𝑒̆, 𝑥) ∈ (𝐸1𝑠 × 𝑋1𝑠), since  

 𝛽1𝑠(𝑒̆, 𝑥) ⊆𝑃𝑠 𝛽2𝑠(𝑒̆, 𝑥) 

definition 2.4 implies that  

 𝐴1𝑠(𝑒̆,𝑥)(𝑢) ≤ 𝐴2𝑠(𝑒̆,𝑥)(𝑢) 

and  
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 𝜆1𝑠(𝑒̆,𝑥)(𝑢) ≤ 𝜆2𝑠(𝑒̆,𝑥)(𝑢) 

for any 𝑢 ∈ 𝑈 where  

 𝛽1𝑠(𝑒̆, 𝑥) = {〈𝑢, 𝐴1𝑠(𝑒̆,𝑥)(𝑢), ë1𝑠(𝑒̆,𝑥)(𝑢)〉: 𝑢 ∈ 𝑈}. 

By definition 2.4, we have  

 𝐴1𝑠(𝑒̆,𝑥)
− (𝑢) ≤ 𝐴2𝑠(𝑒̆,𝑥)

− (𝑢) 

  𝑎𝑛𝑑   𝐴1𝑠(𝑒̆,𝑥)
+ (𝑢) ≤ 𝐴2𝑠(𝑒̆,𝑥)

+ (𝑢) 

 

Thus,  

 inf{𝐴1𝑠(𝑒̆,𝑥)(𝑢), 𝐴2𝑠(𝑒̆,𝑥)(𝑢)} = inf{𝐴1𝑠(𝑒̆,𝑥)
− (𝑢) ≤ 𝐴2𝑠(𝑒̆,𝑥)

− (𝑢)}, inf{𝐴1𝑠(𝑒̆,𝑥)
+ (𝑢) ≤ 𝐴2𝑠(𝑒̆,𝑥)

+ (𝑢)} 

 = [𝐴1𝑠(𝑒̆,𝑥)
− (𝑢) ≤ 𝐴1𝑠(𝑒̆,𝑥)

+ (𝑢)] 

 and  

 inf{𝜆1𝑠(𝑒̆,𝑥)(𝑢), 𝜆2𝑠(𝑒̆,𝑥)(𝑢)} = 𝜆1𝑠(𝑒̆,𝑥)(𝑢). 

By using definition 2.9,  

 𝛽1𝑠(𝑒̆,𝑥) ∩𝑃𝑠 𝛽2𝑠(𝑒̆,𝑥) = {〈𝑢, inf{𝐴1𝑠(𝑒̆,𝑥)(𝑢), 𝐴2𝑠(𝑒̆,𝑥)(𝑢)}, inf{𝜆1𝑠(𝑒̆,𝑥)(𝑢), 𝜆2𝑠(𝑒̆,𝑥)(𝑢)}〉: 𝑢 ∈ 𝑈} 

 = {〈𝑢, 𝐴1𝑠(𝑒̆,𝑥)(𝑢), 𝜆1𝑠(𝑒̆,𝑥)(𝑢)}〉: 𝑢 ∈ 𝑈} 

 = 𝛽1𝑠(𝑒̆,𝑥). 

 Hence, 𝛽1𝑠(𝑒̆,𝑥) ∩𝑃𝑠 𝛽2𝑠(𝑒̆,𝑥) = 𝛽1𝑠(𝑒̆,𝑥). 

(2.14)⇒(2.14) 

By definition 2.8, we have  

 (𝛽1𝑠, 𝐸1𝑠, 𝑋1𝑠) ∪𝑃𝑠 (𝛽2𝑠, 𝐸2𝑠, 𝑋2𝑠) = (𝛽1𝑠 ∪𝑃𝑠 𝛽2𝑠, 𝐸1𝑠 ∪𝑃𝑠 𝐸2𝑠, 𝑋1𝑠 ∪𝑃𝑠 𝑋2𝑠) 

 = (𝛽1𝑠 ∪𝑃𝑠 𝛽2𝑠, 𝐸1𝑠, 𝑋1𝑠) 

 as 𝐸1𝑠 ∩ 𝐸2𝑠 = 𝐸1𝑠 and 𝑋1𝑠 ∩ 𝑋2𝑠 = 𝑋1 by hypothesis. 

Now for any (𝑒̆, 𝑥) ∈ (𝐸1𝑠 × 𝑋1𝑠). Since  

 𝛽1𝑠(𝑒̆, 𝑥) ∩𝑃𝑠 𝛽2𝑠(𝑒̆, 𝑥) = 𝛽1𝑠(𝑒̆, 𝑥). 

By definition 2.9 we have  

 inf{𝐴1𝑠(𝑒̆,𝑥)(𝑢), 𝐴2𝑠(𝑒̆,𝑥)(𝑢)} = 𝐴1𝑠(𝑒̆,𝑥)(𝑢) 

and  

 inf{𝜆1𝑠(𝑒̆,𝑥)(𝑢), 𝜆2𝑠(𝑒̆,𝑥)(𝑢)} = 𝜆1𝑠(𝑒̆,𝑥)(𝑢). 

This implies that  

 sup{𝐴1𝑠(𝑒̆,𝑥)(𝑢), 𝐴2𝑠(𝑒̆,𝑥)(𝑢)} = 𝐴2𝑠(𝑒̆,𝑥)(𝑢) 

and  

 sup{𝜆1𝑠(𝑒̆,𝑥)(𝑢), 𝜆2𝑠(𝑒̆,𝑥)(𝑢)} = 𝜆2𝑠(𝑒̆,𝑥)(𝑢). 

Thus we have,  

 𝛽1𝑠(𝑒̆, 𝑥) ∪𝑃𝑠 𝛽2𝑠(𝑒̆, 𝑥) = {〈𝑢, sup{𝐴1𝑠(𝑒̆,𝑥)(𝑢), 𝐴2𝑠(𝑒̆,𝑥)(𝑢)}, sup{𝜆1𝑠(𝑒̆,𝑥)(𝑢), 𝜆2𝑠(𝑒̆,𝑥)(𝑢)}〉: 𝑢 ∈ 𝑈} 

 = {〈𝑢, 𝐴2𝑠(𝑒̆,𝑥)(𝑢), 𝜆2𝑠(𝑒̆,𝑥)(𝑢)}〉: 𝑢 ∈ 𝑈} 

 = 𝛽2𝑠(𝑒̆,𝑥). 

 

(2.14)⇒(2.14) 

By hypothesis, we have  

 (𝛽1𝑠, 𝐸1𝑠, 𝑋1𝑠) ∪𝑃𝑠 (𝛽2𝑠, 𝐸2𝑠, 𝑋2𝑠) = (𝛽1𝑠 ∪𝑃𝑠 𝛽2𝑠, 𝐸1𝑠 ∪𝑃𝑠 𝐸2𝑠, 𝑋1𝑠 ∪𝑃𝑠 𝑋2𝑠) 

 = (𝛽1𝑠 ∪𝑃𝑠 𝛽2𝑠, 𝐸1𝑠, 𝑋1𝑠) 

 as 𝐸1𝑠 ∪ 𝐸2𝑠 = 𝐸2𝑠 and 𝑋1𝑠 ∪ 𝑋2𝑠 = 𝑋2𝑠 ⇒ 𝐸1𝑠 ⊆ 𝐸2𝑠 and 𝑋1𝑠 ⊆ 𝑋2𝑠. 
Also,  

 𝛽1𝑠(𝑒̆, 𝑥) ∪𝑃𝑠 𝛽2𝑠(𝑒̆, 𝑥) = {〈𝑢, sup{𝐴1𝑠(𝑒̆,𝑥)(𝑢), 𝐴2𝑠(𝑒̆,𝑥)(𝑢)}, sup{𝜆1𝑠(𝑒̆,𝑥)(𝑢), 𝜆2𝑠(𝑒̆,𝑥)(𝑢)}〉: 𝑢 ∈ 𝑈} 

 = {〈𝑢, 𝐴2𝑠(𝑒̆,𝑥)(𝑢), 𝜆2𝑠(𝑒̆,𝑥)(𝑢)}〉: 𝑢 ∈ 𝑈} 

 = 𝛽2𝑠(𝑒̆,𝑥) ⇒ 𝐴1𝑠(𝑒̆,𝑥)(𝑢) ≤ 𝐴2𝑠(𝑒̆,𝑥)(𝑢) 

 and 𝜆1𝑠(𝑒̆,𝑥)(𝑢) ≤ 𝜆2𝑠(𝑒̆,𝑥)(𝑢) for any 𝑢 ∈ 𝑈. 

Hence, (𝛽1𝑠, 𝐸1𝑠, 𝑋1𝑠) ⊆𝑃𝑠 (𝛽2𝑠, 𝐸2𝑠, 𝑋2𝑠).  
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Corollary 2.15 If we take X1s = X2s = Xs in above proposition then the following are equivalent.   

    1.  (𝛽1𝑠, 𝐸1𝑠, 𝑋𝑠) ⊆𝑃𝑠 (𝛽2𝑠, 𝐸2𝑠, 𝑋𝑠)  

    2.  (𝛽1𝑠, 𝐸1𝑠, 𝑋𝑠) ∩𝑃𝑠 (𝛽2𝑠, 𝐸2𝑠, 𝑋𝑠) = (𝛽1𝑠, 𝐸1𝑠, 𝑋𝑠)  

    3.  (𝛽1𝑠, 𝐸1𝑠, 𝑋𝑠) ∪𝑃𝑠 (𝛽2𝑠, 𝐸2𝑠, 𝑋𝑠) = (𝛽2𝑠, 𝐸2𝑠, 𝑋𝑠)  

    4.  (𝛽2𝑠, 𝐸2𝑠, 𝑋𝑠)
𝑐 ⊆𝑃𝑠 (𝛽1𝑠, 𝐸1𝑠, 𝑋𝑠)

𝑐  

  

Definition 2.16  Let {ℒis}i∈J be a family of Neutrosophic spherical cubic soft sets over U, where  

 𝛽𝑖𝑠(𝑒̆, 𝑥) = {〈𝑢, 𝐴𝑖𝑠(𝑒̆,𝑥)(𝑢), 𝜆𝑖𝑠(𝑒̆,𝑥)(𝑢)〉: 𝑢 ∈ 𝑈} 

for any 𝑒̆ ∈ 𝐸𝑖, 𝑥 ∈ 𝑋𝑖. Then 𝑃 −union, 𝑃 −intersection, 𝑅 −union and 𝑅 −intersection are defined as below:   

    1.  ⋃𝑃𝑠 𝑖∈𝐽
{ℒ𝑖} = {〈𝑢, (sup𝑖∈𝐽𝐴𝑖𝑠(𝑒̆,𝑥))(𝑢), (∨𝑖∈𝐽 𝜆𝑖𝑠(𝑒̆,𝑥))(𝑢)〉; 𝑢 ∈ 𝑈}  

    2.  ⋂𝑃𝑠 𝑖∈𝐽
{ℒ𝑖} = {〈𝑢, (inf𝑖∈𝐽𝐴𝑖𝑠(𝑒̆,𝑥))(𝑢), (∧𝑖∈𝐽 𝜆𝑖𝑠(𝑒̆,𝑥))(𝑢)〉; 𝑢 ∈ 𝑈}  

    3.  ⋃𝑅𝑠 𝑖∈𝐽
{ℒ𝑖} = {〈𝑢, (sup𝑖∈𝐽𝐴𝑖𝑠(𝑒̆,𝑥))(𝑢), (∧𝑖∈𝐽 𝜆𝑖𝑠(𝑒̆,𝑥))(𝑢)〉; 𝑢 ∈ 𝑈}  

    4.  ⋂𝑅𝑠 𝑖∈𝐽
{ℒ𝑖} = {〈𝑢, (inf𝑖∈𝐽𝐴𝑖𝑠(𝑒̆,𝑥))(𝑢), (∨𝑖∈𝐽 𝜆𝑖𝑠(𝑒̆,𝑥))(𝑢)〉; 𝑢 ∈ 𝑈}  

  

 

Theorem 2.17 Let {ℒi}i∈J = {βis, Eis, Xis}i∈J be a family of Internal Neutrosophic spherical cubic soft sets 

(INSCSSs) over U, where  

 𝛽𝑖𝑠(𝑒̆, 𝑥) = {〈𝑢, 𝐴𝑖𝑠(𝑒̆,𝑥)(𝑢), 𝜆𝑖𝑠(𝑒̆,𝑥)(𝑢)〉: 𝑢 ∈ 𝑈 

for any 𝑒̆ ∈ 𝐸𝑖𝑠, 𝑥 ∈ 𝑋𝑖𝑠. Then the ⋃𝑃𝑠 𝑖∈𝐽
{ℒ𝑖} and ⋂𝑃𝑠 𝑖∈𝐽

{ℒ𝑖} are INSCSSsover 𝑈.  

  

Proof. By using definitions 2.16 and 2.2, we can easily prove this theorem.  

 

 

Theorem 2.18  Let (𝛽1𝑠, 𝐸1𝑠, 𝑋1𝑠) and (𝛽2𝑠, 𝐸2𝑠, 𝑋2𝑠) are two INSCSSs over 𝑈, where  

 𝛽1𝑠(𝑒̆, 𝑥) = {〈𝑢, 𝐴1𝑠(𝑒̆,𝑥)(𝑢), 𝜆1𝑠(𝑒̆,𝑥)(𝑢)〉: 𝑢 ∈ 𝑈} 

for any (𝑒̆, 𝑥) ∈ 𝐸1 × 𝑋1 and  

 𝛽2𝑠(𝑓, 𝑧) = {〈𝑢, 𝐴2𝑠(𝑓,𝑧)(𝑢), 𝜆2𝑠(𝑓,𝑧)(𝑢)〉: 𝑢 ∈ 𝑈} 

for any (𝑓, 𝑧) ∈ (𝛽2𝑠, 𝐸2𝑠, 𝑋2𝑠) is also an INSCSSs over 𝑈.  

  

Proof. Since (𝛽1𝑠, 𝐸1𝑠, 𝑋1𝑠) and (𝛽2𝑠, 𝐸2𝑠, 𝑋2𝑠) are INSCSSs over 𝑈,  

 𝐴1𝑠(𝑓,𝑧)
− (𝑢) ≤ 𝜆1𝑠(𝑓,𝑧)(𝑢) ≤ 𝐴1𝑠(𝑓,𝑧)

+ (𝑢) 

for all 𝑢 ∈ 𝑈 and  

 𝐴2𝑠(𝑓,𝑧)
− (𝑢) ≤ 𝜆2𝑠(𝑓,𝑧)(𝑢) ≤ 𝐴2𝑠(𝑓,𝑧)

+ (𝑢) 

for all 𝑢 ∈ 𝑈. Then we have  

sup{𝐴1𝑠(𝑓,𝑧)
− (𝑢), 𝐴2𝑠(𝑓,𝑧)

− (𝑢)} ≤ 𝜆1𝑠(𝑓,𝑧)(𝑢) ∨ 𝜆2𝑠(𝑓,𝑧)(𝑢) ≤ sup{𝐴1𝑠(𝑓,𝑧)
+ (𝑢), 𝐴2𝑠(𝑓,𝑧)

+ (𝑢)} 

for all 𝑢 ∈ 𝑈 and (𝑓, 𝑧) ∈ (𝐸1𝑠 ∪ 𝐸2𝑠 × 𝑋1𝑠 ∪ 𝑋2𝑠). 
By definition of 2.8, we have  

 (𝛽1𝑠, 𝐹𝑠, 𝑌𝑠) = (𝛽1𝑠, 𝐸1𝑠, 𝑋1𝑠) ∪𝑃𝑠 (𝛽2𝑠, 𝐸2𝑠, 𝑋2𝑠) 

where 𝐹𝑠 = 𝐸1𝑠 ∪ 𝐸2𝑠 and 𝑌𝑠 = 𝑋1𝑠 ∪ 𝑋2𝑠 and for any 𝑓 ∈ 𝐹 and 𝑧 ∈ 𝑌.  

𝛽3𝑠(𝑓, 𝑧) =

{
 
 

 
 
{〈𝑢, 𝐴1𝑠(𝑓,𝑧)(𝑢), 𝜆1𝑠(𝑓,𝑧)(𝑢)〉}  𝑖𝑓   (𝑓, 𝑧) ∈ (𝐸1𝑠 × 𝑋1𝑠)\(𝐸2𝑠 × 𝑋2𝑠)

{〈𝑢, 𝐴2𝑠(𝑓,𝑧)(𝑢), 𝜆2𝑠(𝑓,𝑧)(𝑢)〉}  𝑖𝑓   (𝑓, 𝑧) ∈ (𝐸2𝑠 × 𝑋2𝑠)\(𝐸1𝑠 × 𝑋1𝑠)

{〈𝑢, sup{𝐴1𝑠(𝑓,𝑧)(𝑢), 𝐴2𝑠(𝑓,𝑧)(𝑢)},

sup{𝜆1𝑠(𝑓,𝑧)(𝑢), 𝜆2𝑠(𝑓,𝑧)(𝑢)}〉}  𝑖𝑓   (𝑓, 𝑧) ∈ (𝐸1𝑠 ∩ 𝐸2𝑠) × (𝑋1𝑠 ∩ 𝑋2𝑠)}
 
 

 
 

 

If (𝑓, 𝑧) ∈ (𝐸1𝑠 ∩ 𝐸2𝑠 × 𝑋1𝑠 ∩ 𝑋2𝑠) then,  

 𝛽3𝑠(𝑓, 𝑧) = {〈𝑢, sup{𝐴1𝑠(𝑓,𝑧)(𝑢), 𝐴2𝑠(𝑓,𝑧)(𝑢)}, 𝜆1𝑠(𝑓,𝑧)(𝑢) ∨ 𝜆2𝑠(𝑓,𝑧)(𝑢)〉: 𝑢 ∈ 𝑈}. 

Thus  

 (𝛽1𝑠, 𝐸1𝑠, 𝑋1𝑠) ∪𝑃𝑠 (𝛽2𝑠, 𝐸2𝑠, 𝑋2𝑠) 
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is INSCSS. 

If (𝑓, 𝑧) ∈ (𝐸1𝑠 × 𝑋1𝑠)\(𝐸2𝑠 × 𝑋2𝑠)  or if (𝑓, 𝑧) ∈ (𝐸2𝑠 × 𝑋2𝑠)\(𝐸1𝑠 × 𝑋1𝑠) , then the result is trivial. 

Hence (𝛽1𝑠, 𝐸1𝑠, 𝑋1𝑠) ∪𝑃𝑠 (𝛽2𝑠, 𝐸2𝑠, 𝑋2𝑠) is an INSCSS over 𝑈.  

 

 

Theorem 2.19 Let (β1s, E1s, X1s) and (β2s, E2s, X2s) are two INSCSs over U, where  

 𝛽1𝑠(𝑒̆, 𝑥) = {〈𝑢, 𝐴1𝑠(𝑒̆,𝑥)(𝑢), 𝜆1𝑠(𝑒̆,𝑥)(𝑢)〉: 𝑢 ∈ 𝑈} 

for any (𝑒̆, 𝑥) ∈ 𝐸1𝑠 × 𝑋1𝑠 and  

 𝛽2𝑠(𝑓, 𝑧) = {〈𝑢, 𝐴2𝑠(𝑓,𝑧)(𝑢), 𝜆2𝑠(𝑓,𝑧)(𝑢)〉: 𝑢 ∈ 𝑈} 

for any (𝑓, 𝑧) ∈ 𝐸2𝑠 × 𝑋2𝑠. Then the 𝑃 −intersection of (𝛽1𝑠, 𝐸1𝑠, 𝑋1𝑠) and (𝛽2𝑠, 𝐸2𝑠, 𝑋2𝑠) is also an INSCSS.  

  

Proof. By similar way as theorem 2.18, we can prove this theorem.  

 

The following theorem gives the condition that 𝑅 −union of INSCSSs is also an INSCSS. 

 

Theorem 2.20 Let (β1s, E1s, X1s) and (β2s, E2s, X2s) are two INSCSSs over U, where  

 𝛽1𝑠(𝑒̆, 𝑥) = {〈𝑢, 𝐴1𝑠(𝑒̆,𝑥)(𝑢), 𝜆1𝑠(𝑒̆,𝑥)(𝑢)〉: 𝑢 ∈ 𝑈} 

for any (𝑒̆, 𝑥) ∈ 𝐸1𝑠 × 𝑋1𝑠 and  

 𝛽2𝑠(𝑓, 𝑧) = {〈𝑢, 𝐴2𝑠(𝑓,𝑧)(𝑢), 𝜆2𝑠(𝑓,𝑧)(𝑢)〉: 𝑢 ∈ 𝑈} 

for any (𝑓, 𝑧) ∈ 𝐸2𝑠 × 𝑋2𝑠 such that  

 sup{𝐴1𝑠(𝑓,𝑧)
− (𝑢), 𝐴2𝑠(𝑓,𝑧)

− (𝑢)} ≤ (𝜆1𝑠(𝑓,𝑧)(𝑢) ∧ 𝜆2𝑠(𝑓,𝑧)(𝑢) 

for all 𝑢 ∈ 𝑈 and (𝑓, 𝑧) ∈ (𝐸1𝑠 ∩ 𝐸2𝑠 × 𝑋2𝑠 ∩ 𝑋2𝑠). 
Then the 𝑅 −union of (𝛽1𝑠, 𝐸1𝑠, 𝑋1𝑠) and (𝛽2𝑠, 𝐸2𝑠, 𝑋2𝑠) is also an INSCSS.  

  

Proof. By definition 2.10 and 2.2 we can easily prove this theorem.  

 The following theorem gives the conclusion that 𝑅 −intersection of two 𝐼𝑁𝑆𝐶𝑆𝑆𝑠 is also the ±NSCSS. 

 

Theorem 2.21 Let (β1s, E1s, X1s) and (β2s, E2s, X2s) are two INSCSSs over U, where  

 𝛽1𝑠(𝑒̆, 𝑥) = {〈𝑢, 𝐴1𝑠(𝑒̆,𝑥)(𝑢), 𝜆1𝑠(𝑒̆,𝑥)(𝑢)〉: 𝑢 ∈ 𝑈} 

for any (𝑒̆, 𝑥) ∈ 𝐸1𝑠 × 𝑋1𝑠 and  

 𝛽2𝑠(𝑓, 𝑧) = {〈𝑢, 𝐴2𝑠(𝑓,𝑧)(𝑢), 𝜆2𝑠(𝑓,𝑧)(𝑢)〉: 𝑢 ∈ 𝑈} 

for any (𝑓, 𝑧) ∈ 𝐸2𝑠 × 𝑋2𝑠 such that  

 inf{𝐴1𝑠(𝑓,𝑧)
+ (𝑢), 𝐴2𝑠(𝑓,𝑧)

− (𝑢)} ≥ (𝜆1𝑠(𝑓,𝑧)(𝑢) ∨ 𝜆2𝑠(𝑓,𝑧)(𝑢)) 

for all 𝑢 ∈ 𝑈 and (𝑓, 𝑧) ∈ (𝐸1𝑠 ∩ 𝐸2𝑠) × (𝑋2𝑠 ∩ 𝑋2𝑠). 
Then the 𝑅 −intersection of (𝛽1𝑠, 𝐸1𝑠, 𝑋1𝑠) and (𝛽2𝑠, 𝐸2𝑠, 𝑋2𝑠) is also an INSCSS over 𝑈.  

  

Proof. By definition 2.11, we have  

 (𝛽3𝑠, 𝐸3𝑠, 𝑋3𝑠) = (𝛽1𝑠, 𝐸1𝑠, 𝑋1𝑠) ∩𝑅 (𝛽2𝑠, 𝐸2𝑠, 𝑋2𝑠) 
where, 𝐸3𝑠 = 𝐸1𝑠 ∩ 𝐸2𝑠 and 𝑋3𝑠 = 𝑋1𝑠 ∩ 𝑋2𝑠, 𝑓 ∈ 𝐸3𝑠 and 𝑧 ∈ 𝑋3𝑠.  

 â3𝑠(𝑓, 𝑧) = {〈𝑢, inf{𝐴1𝑠(𝑓, 𝑧)(𝑢), 𝐴2𝑠(𝑓, 𝑧)(𝑢)}, sup{𝜆1𝑠(𝑓, 𝑧)(𝑢), 𝜆2𝑠(𝑓, 𝑧)(𝑢)}〉} 
since (𝛽1𝑠, 𝐸1𝑠, 𝑋1𝑠) and (𝛽2𝑠, 𝐸2𝑠, 𝑋2𝑠) are INSCSSs over 𝑈. So we have,  

 𝐴1𝑠(𝑓,𝑧)
− (𝑢) ≤ 𝜆1𝑠(𝑓,𝑧)(𝑢) ≤ 𝐴1𝑠(𝑓,𝑧)

+ (𝑢) 

for all 𝑢 ∈ 𝑈 and  

 𝐴2𝑠(𝑓,𝑧)
− (𝑢) ≤ 𝜆2𝑠(𝑓,𝑧)(𝑢) ≤ 𝐴2𝑠(𝑓,𝑧)

+ (𝑢) 

for all 𝑢 ∈ 𝑈. Also  

inf{𝐴1𝑠(𝑓,𝑧)
− (𝑢), 𝐴2𝑠(𝑓,𝑧)

− (𝑢)} ≤ 𝜆1𝑠(𝑓,𝑧)(𝑢) ∨ 𝜆2𝑠(𝑓,𝑧)(𝑢) ≤ inf{𝐴1𝑠(𝑓,𝑧)
+ (𝑢), 𝐴2𝑠(𝑓,𝑧)

+ (𝑢)} 

for all 𝑢 ∈ 𝑈 and (𝑓, 𝑧) ∈ (𝐸1𝑠 ∩ 𝐸2𝑠 × 𝑋1𝑠 ∩ 𝑋2𝑠). 
Hence (𝛽1𝑠, 𝐸1𝑠, 𝑋1𝑠) ∩𝑅𝑠 (𝛽2𝑠, 𝐸2𝑠, 𝑋2𝑠) is an INSCSS over 𝑈.  
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Theorem 2.22  Let (β1s, E1s, X1s) and (β2s, E2s, X2s) are two ENSCSSs over U, where  

 𝛽1𝑠(𝑒̆, 𝑥) = {〈𝑢, 𝐴1𝑠(𝑒̆,𝑥)(𝑢), 𝜆1𝑠(𝑒̆,𝑥)(𝑢)〉: 𝑢 ∈ 𝑈} 

for any (𝑒̆, 𝑥) ∈ 𝐸1𝑠 × 𝑋1𝑠 and  

 𝛽2𝑠(𝑓, 𝑧) = {〈𝑢, 𝐴2𝑠(𝑓,𝑧)(𝑢), 𝜆2𝑠(𝑓,𝑧)(𝑢)〉: 𝑢 ∈ 𝑈} 

for any (𝑓, 𝑧) ∈ 𝐸2𝑠 × 𝑋2𝑠 such that  

 𝜆1𝑠(𝑓,𝑧)(𝑢) ∧ 𝜆2𝑠(𝑓,𝑧)(𝑢) ∈ {inf{sup{𝐴1𝑠(𝑓,𝑧)
+ (𝑢), 𝐴2𝑠(𝑓,𝑧)

− (𝑢)}, 

 sup{𝐴1𝑠(𝑓,𝑧)
− (𝑢), 𝐴2𝑠(𝑓,𝑧)

+ (𝑢)}, 

 inf{𝐴1𝑠(𝑓,𝑧)
+ (𝑢), 𝐴2𝑠(𝑓,𝑧)

− (𝑢)}, 

 inf{𝐴1𝑠(𝑓,𝑧)
− (𝑢), 𝐴2𝑠(𝑓,𝑧)

+ (𝑢)}}} 

 for all 𝑢 ∈ 𝑈 and (𝑓, 𝑧) ∈ (𝐸1𝑠 ∩ 𝐸2𝑠) × (𝑋1𝑠 ∩ 𝑋2𝑠). 
Then  

 (𝛽1𝑠, 𝐸1𝑠, 𝑋1𝑠) ∪𝑅𝑠 (𝛽2𝑠, 𝐸2𝑠, 𝑋2𝑠) 

is also an ENSCSS over 𝑈.  

  

Proof. By definition 2.10, we have  

 (𝛽3𝑠, 𝐸3𝑠, 𝑋3𝑠) = (𝛽1𝑠, 𝐸1𝑠, 𝑋1𝑠) ∪𝑅𝑠 (𝛽2𝑠, 𝐸2𝑠, 𝑋2𝑠) 

where,  

𝛽3𝑠(𝑓, 𝑧) =

{
 
 

 
 
{〈𝑢, 𝐴1𝑠(𝑓,𝑧)(𝑢), 𝜆1𝑠(𝑓,𝑧)(𝑢)〉}  𝑖𝑓   (𝑓, 𝑧) ∈ (𝐸1𝑠 × 𝑋1𝑠)\(𝐸2𝑠 × 𝑋2𝑠)

{〈𝑢, 𝐴2𝑠(𝑓,𝑧)(𝑢), 𝜆2𝑠(𝑓,𝑧)(𝑢)〉}  𝑖𝑓   (𝑓, 𝑧) ∈ (𝐸2𝑠 × 𝑋2𝑠)\(𝐸1𝑠 × 𝑋1𝑠)

{〈𝑢, sup{𝐴1𝑠(𝑓,𝑧)(𝑢), 𝐴2𝑠(𝑓,𝑧)(𝑢)},

inf{𝜆1𝑠(𝑓,𝑧)(𝑢), 𝜆2𝑠(𝑓,𝑧)(𝑢)}〉}  𝑖𝑓   (𝑓, 𝑧) ∈ (𝐸1𝑠 ∩ 𝐸2𝑠) × (𝑋1𝑠 ∩ 𝑋2𝑠)}
 
 

 
 

 

if (𝑓, 𝑧) ∈ (𝐸1𝑠 ∩ 𝐸2𝑠 × 𝑋1𝑠 ∩ 𝑋2𝑠). 
Take  

 ℎ = inf{sup{𝐴1𝑠(𝑓,𝑧)
+ (𝑢), 𝐴2𝑠(𝑓,𝑧)

− (𝑢)}, sup{𝐴1𝑠(𝑓,𝑧)
− (𝑢), 𝐴2𝑠(𝑓,𝑧)

+ (𝑢)}}, 

and  

 𝑘 = sup{inf{𝐴1𝑠(𝑓,𝑧)
+ (𝑢), 𝐴2𝑠(𝑓,𝑧)

− (𝑢)}, inf{𝐴1𝑠(𝑓,𝑧)
− (𝑢), 𝐴2𝑠(𝑓,𝑧)

+ (𝑢)}}. 

Then ℎ  on of 𝐴1𝑠(𝑓,𝑧)
+ (𝑢) , 𝐴2𝑠(𝑓,𝑧)

− (𝑢)} , 𝐴1𝑠(𝑓,𝑧)
− (𝑢) , 𝐴2𝑠(𝑓,𝑧)

+ (𝑢) , we only consider ℎ =

𝐴2𝑠(𝑓,𝑧)
− (𝑢)   𝑂𝑟   𝐴2𝑠(𝑓,𝑧)

+ (𝑢) because remaining cases are similar to this one. If ℎ = 𝐴2𝑠(𝑓,𝑧)
− (𝑢) then  

 𝐴1𝑠(𝑓,𝑧)
− (𝑢) ≤ 𝐴1𝑠(𝑓,𝑧)

+ (𝑢) ≤ 𝐴2𝑠(𝑓,𝑧)
− (𝑢) ≤ 𝐴2𝑠(𝑓,𝑧)

+ (𝑢) 

and 𝑘 = 𝐴1𝑠(𝑓,𝑧)
+ (𝑢). 

Thus  

 (sup{𝐴1𝑠(𝑓,𝑧), 𝐴2𝑠(𝑓,𝑧)}
−)(𝑢) = 𝐴2𝑠(𝑓,𝑧)}

−(𝑢) = ℎ > (𝜆1𝑠(𝑓,𝑧) ∧ 𝜆2𝑠(𝑓,𝑧))(𝑢). 

Hence  

 (𝜆1𝑠(𝑓,𝑧) ∧ 𝜆2𝑠(𝑓,𝑧))(𝑢) ∈ (sup{𝐴1𝑠(𝑓,𝑧), 𝐴2𝑠(𝑓,𝑧)}
−(𝑢), sup{𝐴1𝑠(𝑓,𝑧), 𝐴2𝑠(𝑓,𝑧)}

+(𝑢)). 

If ℎ = 𝐴2𝑠(𝑓,𝑧)
− (𝑢) then  

 𝐴1𝑠(𝑓,𝑧)
− (𝑢) ≤ 𝐴2𝑠(𝑓,𝑧)

+ (𝑢) ≤ 𝐴1𝑠(𝑓,𝑧)
+ (𝑢) 

so  

 𝑘 = sup{𝐴1𝑠(𝑓,𝑧)
− (𝑢), 𝐴2𝑠(𝑓,𝑧)

− (𝑢)}. 

Assume 𝑘 = 𝐴2𝑠(𝑓,𝑧)
− (𝑢), then we have  

 𝐴2𝑠(𝑓,𝑧)
− (𝑢) ≤ 𝐴1𝑠(𝑓,𝑧)

− (𝑢) ≤ (𝜆1𝑠(𝑓,𝑧) ∧ 𝜆2𝑠(𝑓,𝑧))(𝑢) < 𝐴2𝑠(𝑓,𝑧)
+ (𝑢) ≤ 𝐴1𝑠(𝑓,𝑧)

+ (𝑢). 

So we can write  

 𝐴2𝑠(𝑓,𝑧)
− (𝑢) ≤ 𝐴1𝑠(𝑓,𝑧)

− (𝑢) < (𝜆1𝑠(𝑓,𝑧) ∧ 𝜆2𝑠(𝑓,𝑧))(𝑢) < 𝐴2𝑠(𝑓,𝑧)
+ (𝑢) ≤ 𝐴1𝑠(𝑓,𝑧)

+ (𝑢) 

or  

 𝐴2𝑠(𝑓,𝑧)
− (𝑢) ≤ 𝐴1𝑠(𝑓,𝑧)

− (𝑢) = (𝜆1𝑠(𝑓,𝑧) ∧ 𝜆2𝑠(𝑓,𝑧))(𝑢) ≤ 𝐴2𝑠(𝑓,𝑧)
+ (𝑢) ≤ 𝐴1𝑠(𝑓,𝑧)

+ (𝑢). 

For the case  

 𝐴2𝑠(𝑓,𝑧)
− (𝑢) ≤ 𝐴1𝑠(𝑓,𝑧)

− (𝑢) < (𝜆1𝑠(𝑓,𝑧) ∧ 𝜆2𝑠(𝑓,𝑧))(𝑢) < 𝐴2𝑠(𝑓,𝑧)
+ (𝑢) ≤ 𝐴1𝑠(𝑓,𝑧)

+ (𝑢) 

which contradicts the fact that (𝛽1𝑠, 𝐸1𝑠, 𝑋1𝑠) and (𝛽2𝑠, 𝐸2𝑠, 𝑋2𝑠) are ENSCSSs. 

For the case  
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 𝐴2𝑠(𝑓,𝑧)
− (𝑢) < 𝐴1𝑠(𝑓,𝑧)

− (𝑢) = (𝜆1𝑠(𝑓,𝑧) ∧ 𝜆2𝑠(𝑓,𝑧))(𝑢) ≤ 𝐴2𝑠(𝑓,𝑧)
+ (𝑢) ≤ 𝐴1𝑠(𝑓,𝑧)

+ (𝑢), 

we have  

 (𝜆1𝑠(𝑓,𝑧) ∧ 𝜆2𝑠(𝑓,𝑧))(𝑢) ≠ sup{𝐴1𝑠(𝑓,𝑧), 𝐴2𝑠(𝑓,𝑧)}
−(𝑢), sup{𝐴1𝑠(𝑓,𝑧), 𝐴2𝑠(𝑓,𝑧)}

+(𝑢) 

because  

 sup{𝐴1𝑠(𝑓,𝑧), 𝐴2𝑠(𝑓,𝑧)}
−(𝑢) = 𝐴2𝑠(𝑓,𝑧)

− (𝑢) = (𝜆1𝑠(𝑓,𝑧) ∧ 𝜆2𝑠(𝑓,𝑧))(𝑢). 

If (𝑓, 𝑧) ∈ (𝐸1𝑠 × 𝑋1𝑠)\(𝐸2𝑠 × 𝑋2𝑠) or (𝑓, 𝑧) ∈ (𝐸2𝑠 × 𝑋2𝑠)\(𝐸1𝑠 × 𝑋1𝑠) then the result holds trivially. Hence 

(𝛽1𝑠, 𝐸1𝑠, 𝑋1𝑠) ∪𝑅𝑠 (𝛽2𝑠, 𝐸2𝑠, 𝑋2𝑠) is an ENSCSS over 𝑈.  

 

 

Theorem 2.23  Let (β1s, E1s, X1s) and (β2s, E2s, X2s) are two ENSCSSs over U, where  

 𝛽1𝑠(𝑒̆, 𝑥) = {〈𝑢, 𝐴1𝑠(𝑒̆,𝑥)(𝑢), 𝜆1𝑠(𝑒̆,𝑥)(𝑢)〉: 𝑢 ∈ 𝑈} 

for any (𝑒̆, 𝑥) ∈ 𝐸1𝑠 × 𝑋1𝑠 and  

 𝛽2𝑠(𝑓, 𝑧) = {〈𝑢, 𝐴2𝑠(𝑓,𝑧)(𝑢), 𝜆2𝑠(𝑓,𝑧)(𝑢)〉: 𝑢 ∈ 𝑈} 

for any (𝑓, 𝑧) ∈ 𝐸2𝑠 × 𝑋2𝑠 such that  

 𝜆1𝑠(𝑓,𝑧)(𝑢) ∨ 𝜆2𝑠(𝑓,𝑧)(𝑢) ∈ {inf{sup{𝐴1𝑠(𝑓,𝑧)
+ (𝑢), 𝐴2𝑠(𝑓,𝑧)

− (𝑢)}, 

 sup{𝐴1𝑠(𝑓,𝑧)
− (𝑢), 𝐴2𝑠(𝑓,𝑧)

+ (𝑢)}, 

 inf{𝐴1𝑠(𝑓,𝑧)
+ (𝑢), 𝐴2𝑠(𝑓,𝑧)

− (𝑢)}, 

 inf{𝐴1𝑠(𝑓,𝑧)
− (𝑢), 𝐴2𝑠(𝑓,𝑧)

+ (𝑢)}}} 

 for all 𝑢 ∈ 𝑈 and (𝑓, 𝑧) ∈ (𝐸1𝑠 ∩ 𝐸2𝑠) × (𝑋1𝑠 ∩ 𝑋2𝑠). 
Then  

 (𝛽1𝑠, 𝐸1𝑠, 𝑋1𝑠) ∩𝑅𝑠 (𝛽2𝑠, 𝐸2𝑠, 𝑋2𝑠) 

is also an ENSCSS over 𝑈.  

  

Proof. We can prove this theorem similar to theorem 2.22  

 

In the next theorem we derive condition that 𝑃 −union of two ENSCSSs are ENSCSS over 𝑈. 

 

Theorem 2.24  Let (β1s, E1s, X1s) and (β2s, E2s, X2s) are two ENSCSSs over U, where  

 𝛽1𝑠(𝑒̆, 𝑥) = {〈𝑢, 𝐴1𝑠(𝑒̆,𝑥)(𝑢), 𝜆1𝑠(𝑒̆,𝑥)(𝑢)〉: 𝑢 ∈ 𝑈} 

for any (𝑒̆, 𝑥) ∈ 𝐸1𝑠 × 𝑋1𝑠 and  

 𝛽2𝑠(𝑓, 𝑧) = {〈𝑢, 𝐴2𝑠(𝑓,𝑧)(𝑢), 𝜆2𝑠(𝑓,𝑧)(𝑢)〉: 𝑢 ∈ 𝑈} 

for any (𝑓, 𝑧) ∈ 𝐸2𝑠 × 𝑋2𝑠 such that  

 𝜆1𝑠(𝑓,𝑧)(𝑢) ∨ 𝜆2𝑠(𝑓,𝑧)(𝑢) ∈ {inf{sup{𝐴1𝑠(𝑓,𝑧)
+ (𝑢), 𝐴2𝑠(𝑓,𝑧)

− (𝑢)}, 

 sup{𝐴1𝑠(𝑓,𝑧)
− (𝑢), 𝐴2𝑠(𝑓,𝑧)

+ (𝑢)}, 

 inf{𝐴1𝑠(𝑓,𝑧)
+ (𝑢), 𝐴2𝑠(𝑓,𝑧)

− (𝑢)}, 

 inf{𝐴1𝑠(𝑓,𝑧)
− (𝑢), 𝐴2𝑠(𝑓,𝑧)

+ (𝑢)}}} 

 for all (𝑓, 𝑧) ∈ (𝐸1𝑠 ∩ 𝐸2𝑠) × (𝑋1𝑠 ∩ 𝑋2𝑠) and 𝑢 ∈ 𝑈. 

Then  

 (𝛽1𝑠, 𝐸1𝑠, 𝑋1𝑠) ∪𝑃𝑠 (𝛽2𝑠, 𝐸2𝑠, 𝑋2𝑠) 

is also an ENSCSS over 𝑈.  

  

Proof. By definition 2.8, we can prove this theorem.  

 

In the next theorem we derive condition that 𝑃 −intersection of two NSCSSs are ENSCSS(INSCSS). 
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Theorem 2.25  Let (β1s, E1s, X1s) and (β2s, E2s, X2s) are two NSCSSs over U, where  

 𝛽1𝑠(𝑒̆, 𝑥) = {〈𝑢, 𝐴1𝑠(𝑒̆,𝑥)(𝑢), 𝜆1𝑠(𝑒̆,𝑥)(𝑢)〉: 𝑢 ∈ 𝑈} 

for any (𝑒̆, 𝑥) ∈ 𝐸1𝑠 × 𝑋1𝑠 and  

 𝛽2𝑠(𝑓, 𝑧) = {〈𝑢, 𝐴2𝑠(𝑓,𝑧)(𝑢), 𝜆2𝑠(𝑓,𝑧)(𝑢)〉: 𝑢 ∈ 𝑈} 

for any (𝑓, 𝑧) ∈ 𝐸2𝑠 × 𝑋2𝑠 such that  

 𝜆1𝑠(𝑓,𝑧)(𝑢) ∧ 𝜆2𝑠(𝑓,𝑧)(𝑢) ∈ {inf{sup{𝐴1𝑠(𝑓,𝑧)
+ (𝑢), 𝐴2𝑠(𝑓,𝑧)

− (𝑢)}, 

 sup{𝐴1𝑠(𝑓,𝑧)
− (𝑢), 𝐴2𝑠(𝑓,𝑧)

+ (𝑢)}, 

 inf{𝐴1𝑠(𝑓,𝑧)
+ (𝑢), 𝐴2𝑠(𝑓,𝑧)

− (𝑢)}, 

 inf{𝐴1𝑠(𝑓,𝑧)
− (𝑢), 𝐴2𝑠(𝑓,𝑧)

+ (𝑢)}}} 

 for all (𝑓, 𝑧) ∈ (𝐸1𝑠 ∩ 𝐸2𝑠) × (𝑋1𝑠 ∩ 𝑋2𝑠) and 𝑢 ∈ 𝑈. 

Then  

 (𝛽1𝑠, 𝐸1𝑠, 𝑋1𝑠) ∩𝑃𝑠 (𝛽2𝑠, 𝐸2𝑠, 𝑋2𝑠) 

is both an ENSCSS and INSCSS over 𝑈.  

  

Proof. We can prove this theorem by similar way to theorem 2.22.  

 

 

Theorem 2.26  Let (β1s, E1s, X1s) and (β2s, E2s, X2s) are two NSCSSs over U, where  

 𝛽1𝑠(𝑒̆, 𝑥) = {〈𝑢, 𝐴1𝑠(𝑒̆,𝑥)(𝑢), 𝜆1𝑠(𝑒̆,𝑥)(𝑢)〉: 𝑢 ∈ 𝑈} 

for any (𝑒̆, 𝑥) ∈ 𝐸1𝑠 × 𝑋1𝑠 and  

 𝛽2𝑠(𝑓, 𝑧) = {〈𝑢, 𝐴2𝑠(𝑓,𝑧)(𝑢), 𝜆2𝑠(𝑓,𝑧)(𝑢)〉: 𝑢 ∈ 𝑈} 

for any (𝑓, 𝑧) ∈ 𝐸2𝑠 × 𝑋2𝑠 such that  

 𝜆1𝑠(𝑓,𝑧)(𝑢) ∨ 𝜆2𝑠(𝑓,𝑧)(𝑢) ∈ {inf{sup{𝐴1𝑠(𝑓,𝑧)
+ (𝑢), 𝐴2𝑠(𝑓,𝑧)

− (𝑢)}, 

 sup{𝐴1𝑠(𝑓,𝑧)
− (𝑢), 𝐴2𝑠(𝑓,𝑧)

+ (𝑢)}, 

 inf{𝐴1𝑠(𝑓,𝑧)
+ (𝑢), 𝐴2𝑠(𝑓,𝑧)

− (𝑢)}, 

 inf{𝐴1𝑠(𝑓,𝑧)
− (𝑢), 𝐴2𝑠(𝑓,𝑧)

+ (𝑢)}}} 

 for all (𝑓, 𝑧) ∈ (𝐸1𝑠 ∩ 𝐸2𝑠) × (𝑋1𝑠 ∩ 𝑋2𝑠) and 𝑢 ∈ 𝑈. 

Then  

 (𝛽1𝑠, 𝐸1𝑠, 𝑋1𝑠) ∩𝑅𝑠 (𝛽2𝑠, 𝐸2𝑠, 𝑋2𝑠) 

is both an ENSCSS and INSCSS over 𝑈.  

  

Proof. We can prove this theorem by similar way to theorem 2.22.  

 

 

Theorem 2.27  For any two NSCSS (β1s, E1s, X1s) and (β2s, E2s, X2s) the following absorption law hold [1)]  

    1.  (𝛽1𝑠, 𝐸1𝑠, 𝑋1𝑠) ∪𝑅𝑠 ((𝛽1𝑠, 𝐸1𝑠, 𝑋1𝑠) ∩𝑃𝑠 (𝛽2𝑠, 𝐸2𝑠, 𝑋2𝑠)) = (𝛽1𝑠, 𝐸1𝑠, 𝑋1𝑠)   

    2.  (𝛽1𝑠, 𝐸1𝑠, 𝑋1𝑠) ∩𝑃𝑠 ((𝛽1𝑠, 𝐸1𝑠, 𝑋1𝑠) ∪𝑃𝑠 (𝛽2𝑠, 𝐸2𝑠, 𝑋2𝑠)) = (𝛽1𝑠, 𝐸1𝑠, 𝑋1𝑠)   

    3.  (𝛽1𝑠, 𝐸1𝑠, 𝑋1𝑠) ∪𝑅𝑠 ((𝛽1𝑠, 𝐸1𝑠, 𝑋1𝑠) ∩𝑃𝑠 (𝛽2𝑠, 𝐸2𝑠, 𝑋2𝑠)) = (𝛽1𝑠, 𝐸1𝑠, 𝑋1𝑠)   

    4.  (𝛽1𝑠, 𝐸1𝑠, 𝑋1𝑠) ∩𝑅𝑠 ((𝛽1𝑠, 𝐸1𝑠, 𝑋1𝑠) ∪𝑅𝑠 (𝛽2𝑠, 𝐸2𝑠, 𝑋2𝑠)) = (𝛽1𝑠, 𝐸1𝑠, 𝑋1𝑠)   

  

  

Proof. [1)]  

    1.  By definitions 2.8 and 2.9, we have  

 (𝛽1𝑠, 𝐸1𝑠, 𝑋1𝑠) ∪𝑃𝑠 ((𝛽1𝑠, 𝐸1𝑠, 𝑋1𝑠) ∩𝑃𝑠 (𝛽2𝑠, 𝐸2𝑠, 𝑋2𝑠)) 

 = (𝛽3𝑠, (𝐸1𝑠 ∪𝑃𝑠 (𝐸1𝑠 ∩𝑃𝑠 𝐸2𝑠)), (𝑋1𝑠 ∪𝑃𝑠 (𝑋1𝑠 ∩𝑃𝑠 𝑋2𝑠))) 

 = (𝛽3𝑠, 𝐸1𝑠, 𝑋1𝑠) 
 such that for any 𝑓 ∈ 𝐸1𝑠 and 𝑧 ∈ 𝑋1𝑠 we have  

 𝛽3𝑠(𝑓, 𝑧) = 𝛽1𝑠(𝑓, 𝑧) ∪𝑃𝑠 (𝛽1𝑠(𝑓, 𝑧) ∩𝑃𝑠 𝛽2𝑠(𝑓, 𝑧)). 

If (𝑓, 𝑧) ∈ 𝐸1𝑠 × 𝑋1𝑠,  
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 𝛽1𝑠(𝑓, 𝑧) ∪𝑃𝑠 (𝛽1𝑠(𝑓, 𝑧) ∩𝑃𝑠 𝛽2𝑠(𝑓, 𝑧)) 

 = {〈𝑢, 𝐴1𝑠(𝑒̆, 𝑥)(𝑢), 𝜆1𝑠(𝑒̆, 𝑥)(𝑢)〉, 𝑢 ∈ 𝑈, (𝑒̆, 𝑥) ∈ 𝐸1𝑠 × 𝑋1𝑠} 
 ∪𝑃𝑠 {{〈𝑢, 𝐴1𝑠(𝑒̆, 𝑥)(𝑢), 𝜆1𝑠(𝑒̆, 𝑥)(𝑢)〉, 𝑢 ∈ 𝑈, (𝑒̆, 𝑥) ∈ 𝐸1𝑠 × 𝑋1𝑠} 

 ∩𝑃𝑠 {〈𝑢, 𝐴2𝑠(𝑓, 𝑧)(𝑢), 𝜆2𝑠(𝑓, 𝑧)(𝑢)〉, (𝑓, 𝑧) ∈ 𝐸2𝑠 × 𝑋2𝑠}} 

 = {〈𝑢, 𝐴1𝑠(𝑒̆, 𝑥)(𝑢), 𝜆1𝑠(𝑒̆, 𝑥)(𝑢)〉, 𝑢 ∈ 𝑈, (𝑒̆, 𝑥) ∈ 𝐸1𝑠 × 𝑋1𝑠} 
 ∪𝑃𝑠 {〈𝑢, 𝑟inf{𝐴1𝑠(𝑒̆, 𝑥)(𝑢), 𝐴2𝑠(𝑓, 𝑧)(𝑢)}, inf{𝜆1𝑠(𝑒̆, 𝑥)(𝑢), 𝜆2𝑠(𝑓, 𝑧)(𝑢)}〉} 

 = {〈𝑢, 𝑟sup{𝐴1𝑠(𝑒̆, 𝑥)(𝑢), 𝑟inf{𝐴1𝑠(𝑒̆, 𝑥)(𝑢), 𝐴2𝑠(𝑓, 𝑧)(𝑢)}, 
 sup{𝜆1𝑠(𝑒̆, 𝑥)(𝑢), inf{𝜆1𝑠(𝑒̆, 𝑥)(𝑢), 𝜆2𝑠(𝑓, 𝑧)(𝑢)}〉} 
 ⊆ {〈𝑢, 𝐴1𝑠(𝑒̆, 𝑥)(𝑢), 𝜆1𝑠(𝑒̆, 𝑥)(𝑢)〉, 𝑢 ∈ 𝑈, (𝑒̆, 𝑥) ∈ 𝐸1𝑠 × 𝑋1𝑠} 
 = 𝛽1𝑠(𝑒̆, 𝑥) 
 ⊆ {〈𝑢, 𝑟inf{𝐴1𝑠(𝑒̆, 𝑥)(𝑢), 𝑟sup{𝐴1𝑠(𝑒̆, 𝑥)(𝑢), 𝐴2𝑠(𝑓, 𝑧)(𝑢)}}, 
 inf{𝜆1𝑠(𝑒̆, 𝑥)(𝑢), sup{𝜆1𝑠(𝑒̆, 𝑥)(𝑢), 𝜆2𝑠(𝑓, 𝑧)(𝑢)}}〉} 
 = {〈𝑢, 𝑟sup{𝐴1𝑠(𝑒̆, 𝑥)(𝑢), 𝑟inf{𝐴1𝑠(𝑒̆, 𝑥)(𝑢), 𝐴2𝑠(𝑓, 𝑧)(𝑢)}}, 
 sup{𝜆1𝑠(𝑒̆, 𝑥)(𝑢), inf{𝜆1𝑠(𝑒̆, 𝑥)(𝑢), 𝜆2𝑠(𝑓, 𝑧)(𝑢)}}〉} 
 = 𝛽1𝑠(𝑒̆, 𝑥) ∪𝑃𝑠 ((𝛽1𝑠(𝑒̆, 𝑥) ∩𝑃𝑠 𝛽2𝑠(𝑓, 𝑧))). 

 In second case, when (𝑓, 𝑧) ∈ (𝐸1𝑠 × 𝑋1𝑠)\(𝐸2𝑠 × 𝑋2𝑠), using definitions 2.8 and 2.9, we have  

 𝛽1𝑠(𝑒̆, 𝑥) ∪𝑃𝑠 ((𝛽1𝑠(𝑒̆, 𝑥) ∩𝑃𝑠 𝛽2𝑠(𝑓, 𝑧))) = 𝛽1𝑠(𝑒̆, 𝑥) ∪𝑃𝑠 𝛽1𝑠(𝑒̆, 𝑥) = 𝛽1𝑠(𝑒̆, 𝑥) 

which is one required result for both the cases. 

Similarly we can prove 2.27),2.27) and 2.27).  

  

 

Definition 2.28  For two NSCSSs (𝛽1𝑠, 𝐸1𝑠, 𝑋1𝑠) and (𝛽2𝑠, 𝐸2𝑠, 𝑋2𝑠) over 𝑈, 𝑃 − 𝐴𝑁𝐷 is denoted and defined 

as,  

 (𝛽1𝑠, 𝐸1𝑠, 𝑋1𝑠) ∧𝑃𝑠 (𝛽2𝑠, 𝐸2𝑠, 𝑋2𝑠) = 𝛽3𝑠(𝐸1𝑠 × 𝐸2𝑠), (𝑋1𝑠 × 𝑋2𝑠) 

where 𝛽3𝑠((𝑒̆, 𝑓), (𝑥, 𝑦)) = 𝛽1𝑠(𝑒̆, 𝑥) ∩𝑃𝑠 𝛽2𝑠(𝑓, 𝑧) for all ((𝑒̆, 𝑓), (𝑥, 𝑦)) ∈ ((𝐸1𝑠 × 𝐸2𝑠) × (𝑋1𝑠 × 𝑋2𝑠)).  

 

Definition 2.29  For two NSCSSs (β1s, E1s, X1s) and (β2s, E2s, X2s) over U, R − AND is denoted and defined 

as,  

 (𝛽1𝑠, 𝐸1𝑠, 𝑋1𝑠) ∧𝑅𝑠 (𝛽2𝑠, 𝐸2𝑠, 𝑋2𝑠) = 𝛽3𝑠(𝐸1𝑠 × 𝐸2𝑠), (𝑋1𝑠 × 𝑋2𝑠) 

where 𝛽3𝑠((𝑒̆, 𝑓), (𝑥, 𝑦)) = 𝛽1𝑠(𝑒̆, 𝑥) ∩𝑅𝑠 𝛽2𝑠(𝑓, 𝑧) for all ((𝑒̆, 𝑓), (𝑥, 𝑦)) ∈ ((𝐸1𝑠 × 𝐸2𝑠) × (𝑋1𝑠 × 𝑋2𝑠)).  

 

Definition 2.30  For two NSCSSs (β1s, E1s, X1s) and (β2s, E2s, X2s) over U, P − OR is denoted and defined as,  

 (𝛽1𝑠, 𝐸1𝑠, 𝑋1𝑠) ∧𝑃𝑠 (𝛽2𝑠, 𝐸2𝑠, 𝑋2𝑠) = 𝛽3𝑠(𝐸1𝑠 × 𝐸2𝑠), (𝑋1𝑠 × 𝑋2𝑠) 

where 𝛽3𝑠((𝑒̆, 𝑓), (𝑥, 𝑦)) = 𝛽1𝑠(𝑒̆, 𝑥) ∪𝑃𝑠 𝛽2𝑠(𝑓, 𝑧) for all ((𝑒̆, 𝑓), (𝑥, 𝑦)) ∈ ((𝐸1𝑠 × 𝐸2𝑠) × (𝑋1𝑠 × 𝑋2𝑠)).  

 

Definition 2.31  For two NSCSSs (β1s, E1s, X1s) and (β2s, E2s, X2s) over U, R − OR is denoted and defined as,  

 (𝛽1𝑠, 𝐸1𝑠, 𝑋1𝑠) ∨𝑅𝑠 (𝛽2𝑠, 𝐸2𝑠, 𝑋2𝑠) = 𝛽3𝑠(𝐸1𝑠 × 𝐸2𝑠), (𝑋1𝑠 × 𝑋2𝑠) 

where 𝛽3𝑠((𝑒̆, 𝑓), (𝑥, 𝑦)) = 𝛽1𝑠(𝑒̆, 𝑥) ∪𝑃𝑠 𝛽2𝑠(𝑓, 𝑧) for all ((𝑒̆, 𝑓), (𝑥, 𝑦)) ∈ ((𝐸1𝑠 × 𝐸2𝑠) × (𝑋1𝑠 × 𝑋2𝑠)).  

 

 

Example 2.32 Let U = {u1, u2, u3} be the initial universe. Es = {e1, e2} be the set of attributes, Xs =
{x1, x2} be the set of experts. Then the cubic set (β1s, E1s, X1s) over U is given below.  

 𝛽1𝑠(𝑒1, 𝑥1) = {

𝑢1, ([0.1,0.4], [0.6,1.0], [0.3,0.4]), (0.2,0.5,0.3)
𝑢2, ([0.4,0.5], [0.5,1.0], [0.1,0.2]), (0.4,0.4,0.2)
𝑢3, ([0.3,0.5], [0.6,1.0], [0.1,0.4]), (0.5,0.4,0.5)

} 

 

 𝛽1𝑠(𝑒2, 𝑥2) = {

𝑢1, ([0.1,0.3], [0.8,1.0], [0.1,0.4]), (0.2,0.7,0.3)
𝑢2, ([0.3,0.4], [0.5,1.0], [0.2,0.3]), (0.4,0.5,0.3)
𝑢3, ([0.1,0.2], [0.6,1.0], [0.3,0.4]), (0.1,0.7,0.4)

} 

Let 𝑈 = {𝑢1, 𝑢2, 𝑢3} be the initial universe, 𝐹𝑠 = {𝑓1, 𝑓2} be the set of attributes and 𝑌𝑠 = {𝑦1, 𝑦2} be the set of 

experts. Then the cubic set (𝛽2𝑠, 𝐹𝑠, 𝑌𝑠) over 𝑈 is given below.  
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 𝛽2𝑠(𝑓1, 𝑦1) = {

𝑢1, ([0.2,0.4], [0.5,1.0], [0.3,0.5]), (0.2,0.6,0.4)
𝑢2, ([0.3,0.5], [0.5,1.0], [0.2,0.3]), (0.3,0.6,0.2)
𝑢3, ([0.1,0.2], [0.7,1.0], [0.2,0.4]), (0.1,0.8,0.3)

} 

 

 𝛽2𝑠(𝑓2, 𝑦2) = {

𝑢1, ([0.2,0.4], [0.2,1.0], [0.3,0.5]), (0.3,0.5,0.4)
𝑢2, ([0.1,0.4], [0.8,1.0], [0.1,0.2]), (0.2,0.8,0.1)
𝑢3, ([0.3,0.4], [0.3,1.0], [0.4,0.5]), (0.4,0.6,0.5)

} 

By using definitions 2.28, 2.29, 2.30 and 2.31, we have  

 (𝛽1𝑠, 𝐸1𝑠, 𝑋𝑠) ∧𝑃𝑠 (𝛽2𝑠, 𝐹𝑠 , 𝑌𝑠) 

 = 𝛽3𝑠, (𝐸1𝑠 × 𝐹𝑠), (𝑋𝑠 × 𝑌𝑠) 
 = 𝛽3𝑠((𝑒̆, 𝑓), (𝑥, 𝑦)) 

 = {

𝑢1, ([0.1,0.4], [0.5,1.0], [0.3,0.4]), (0.2,0.5,0.3)
𝑢2, ([0.3,0.5], [0.5,1.0], [0.1,0.2]), (0.3,0.4,0.2)
𝑢3, ([0.1,0.2], [0.6,1.0], [0.1,0.4]), (0.1,0.4,0.3)

} 

 

 

 𝛽3𝑠((𝑒2, 𝑓2), (𝑥2, 𝑦2)) 

 = {

𝑢1, ([0.1,0.3], [0.2,1.0], [0.1,0.4]), (0.2,0.5,0.3)
𝑢2, ([0.1,0.4], [0.5,1.0], [0.1,0.2]), (0.2,0.5,0.1)
𝑢3, ([0.1,0.2], [0.3,1.0], [0.3,0.4]), (0.1,0.6,0.4)

} 

 

 

 (𝛽1𝑠, 𝐸𝑠, 𝑋𝑠) ∧𝑅𝑠 (𝛽2𝑠, 𝐹𝑠, 𝑌𝑠) 

 = 𝛽3𝑠, (𝐸𝑠 × 𝐹𝑠), (𝑋𝑠 × 𝑌𝑠) 
 = 𝛽3𝑠((𝑒1, 𝑓1), (𝑥1, 𝑦1)) 

 = {

𝑢1, ([0.1,0.4], [0.5,1.0], [0.3,0.4]), (0.2,0.6,0.4)
𝑢2, ([0.3,0.5], [0.5,1.0], [0.1,0.2]), (0.4,0.6,0.2)

𝑢3, ([0.1,0.2], [0.6,1.0], [0.1,0.4]), (0.5,0.8,0.5)
} 

 

 

 𝛽3𝑠((𝑒2, 𝑓2), (𝑥2, 𝑦2)) 

 = {

𝑢1, ([0.1,0.3], [0.2,1.0], [0.1,0.4]), (0.3,0.7,0.4)
𝑢2, ([0.1,0.4], [0.5,1.0], [0.1,0.2]), (0.4,0.8,0.3)
𝑢3, ([0.1,0.2], [0.3,1.0], [0.3,0.4]), (0.4,0.7,0.5)

} 

 

 

 (𝛽1𝑠, 𝐸𝑠, 𝑋𝑠) ∨𝑃𝑠 (𝛽2𝑠, 𝐹𝑠 , 𝑌𝑠) 

 = 𝛽3𝑠, (𝐸𝑠 × 𝐹𝑠)(𝑋𝑠 × 𝑌𝑠) 
 = 𝛽3𝑠((𝑒̆, 𝑓), (𝑥, 𝑦)) 

 = {

𝑢1, ([0.2,0.4], [0.6,1.0], [0.3,0.5]), (0.2,0.6,0.4)
𝑢2, ([0.4,0.5], [0.5,1.0], [0.2,0.3]), (0.4,0.6,0.2)
𝑢3, ([0.3,0.5], [0.7,1.0], [0.2,0.4]), (0.5,0.8,0.5)

} 

 

 

 𝛽3𝑠((𝑒2, 𝑓2), (𝑥2, 𝑦2)) 

 = {

𝑢1, ([0.2,0.4], [0.8,1.0], [0.3,0.5]), (0.3,0.5,0.4)
𝑢2, ([0.3,0.4], [0.8,1.0], [0.2,0.3]), (0.4,0.8,0.3)
𝑢3, ([0.3,0.4], [0.6,1.0], [0.4,0.5]), (0.4,0.7,0.5)

} 
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 (𝛽1𝑠, 𝐸𝑠, 𝑋𝑠) ∨𝑅𝑠 (𝛽2𝑠, 𝐹𝑠, 𝑌𝑠) 

 = 𝛽3𝑠, (𝐸𝑠 × 𝐹𝑠), (𝑋𝑠 × 𝑌𝑠) 
 = 𝛽3𝑠((𝑒1, 𝑓1), (𝑥1, 𝑦1)) 

 = {

𝑢1, ([0.2,0.4], [0.6,1.0], [0.3,0.5]), (0.2,0.5,0.3)

𝑢2, ([0.4,0.5], [0.5,1.0], [0.2,0.3]), (0.3,0.6,0.2)
𝑢3, ([0.3,0.5], [0.7,1.0], [0.2,0.4]), (0.1,0.4,0.3)

} 

 

 𝛽3𝑠((𝑒2, 𝑓2), (𝑥2, 𝑦2)) 

 = {

𝑢1, ([0.2,0.4], [0.8,1.0], [0.3,0.5]), (0.2,0.5,0.3)
𝑢2, ([0.3,0.4], [0.8,1.0], [0.2,0.3]), (0.2,0.5,0.1)
𝑢3, ([0.3,0.4], [0.6,1.0], [0.4,0.5]), (0.1,0.6,0.4)

} 

 respectively.  

 

Theorem 2.33 Let (β1s, E1s, X1s) be a NSCSS over U. If (β1s, E1s, X1s) is an INSCSS(ENSCSS) then 

(β1s, E1s, X1s)
C INSCSS(ENSCSS) respectively.  

  

Proof. By using definition 2.2 and 2.3 we can proof this theorem.  

 

Definition 2.34  Let As(ĕ,xi), λs(ĕ,xi) ∈ NSCSES over U, 1 ≤ i ≤ n. The Neutrosophic Spherical Cubic soft 

Weighted Average Quotient Operator(NSCSWAQO) is denoted and defined as,  

 𝑃𝑤𝑠𝑖
(𝐴𝑠(𝑒̆,𝑥𝑖), 𝜆𝑠(𝑒̆,𝑥𝑖)) 

 = (
∏𝑛𝑖=1 (1+𝐴𝑠(𝑒̆,𝑥𝑖)

− (𝑢))
𝑤𝑠𝑖−∏𝑛𝑖=1 (1−𝐴𝑠(𝑒̆,𝑥𝑖)

− (𝑢))
𝑤𝑠𝑖

∏𝑛𝑖=1 (1+𝐴𝑠(𝑒̆,𝑥𝑖)
− (𝑢))

𝑤𝑠𝑖+∏𝑛𝑖=1 (1−𝐴𝑠(𝑒̆,𝑥𝑖)
− (𝑢))

𝑤𝑠𝑖
 

 
∏𝑛𝑖=1 (1+𝐴𝑠(𝑒̆,𝑥𝑖)

+ (𝑢))
𝑤𝑠𝑖−∏𝑛𝑖=1 (1−𝐴𝑠(𝑒̆,𝑥𝑖)

+ (𝑢))
𝑤𝑠𝑖

∏𝑛𝑖=1 (1+𝐴𝑠(𝑒̆,𝑥𝑖)
+ (𝑢))

𝑤𝑠𝑖+∏𝑛𝑖=1 (1−𝐴𝑠(𝑒̆,𝑥𝑖)
+ (𝑢))

𝑤𝑠𝑖
 

 ∏𝑛
𝑖=1 (𝜆𝑠(𝑒̆,𝑥𝑖)(𝑢))

𝑤𝑠𝑖) 

 where 𝑤𝑠𝑖 is the weight of experts opinion 𝑤𝑠𝑖 ∈ [0,1] and ∑𝑛𝑖=1 𝑤𝑠
𝑖 = 1.  

 

Definition 2.35  Let βs = 〈[As(ĕ,x)
− , As(ĕ,x)

+ ], λs(ĕ,x)〉 be a NSCS value. A score function S̆ of NSCSS value 

defined as  

 𝑆̆(𝛽𝑠) =
𝐴𝑠(𝑒̆,𝑥)
− +𝐴𝑠(𝑒̆,𝑥)

+ −𝜆𝑠(𝑒̆,𝑥)

3
 

where 𝑆̆(𝛽𝑠) ∈ [−1,1].  

 

 

Example 2.36 Let U = {u1 =Kenya, u2 =Uganda, u3 =Algeria Sudan, u4 =Morocco} be the set of countries, 

E = {e1 =Dry Cough, e2 =Diarrhea, e3 =Nausea and Vomitting, e4 =Severe Headache} be the set of 

attributes, Xs = {x1, x2} be the set of symptoms of COVID patients X = (x1, x2, x3) be the set of Physicians. 

 Step 1:   

 𝛽1(𝑒1, 𝑥1) = {

𝑢1, ([0.2,0.4], [0.6,1.0], [0.2,0.4]), (0.2,0.7,0.3)
𝑢2, ([0.3,0.4], [0.5,1.0], [0.2,0.4]), (0.3,0.5,0.2)
𝑢3, ([0.4,0.5], [0.4,1.0], [0.2,0.5]), (0.5,0.5,0.3)
𝑢4, ([0.1,0.3], [0.3,1.0], [0.6,0.7]), (0.2,0.4,0.6)

} 

 

 𝛽1(𝑒2, 𝑥1) = {

𝑢1, ([0.3,0.5], [0.5,1.0], [0.2,0.3]), (0.3,0.6,0.2)
𝑢2, ([0.2,0.4], [0.3,1.0], [0.5,0.6]), (0.2,0.3,0.5)
𝑢3, ([0.1,0.3], [0.3,1.0], [0.6,0.7]), (0.1,0.4,0.6)
𝑢4, ([0.3,0.4], [0.2,1.0], [0.5,0.6]), (0.3,0.2,0.5)

} 
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 𝛽1(𝑒3, 𝑥1) = {

𝑢1, ([0.1,0.4], [0.6,1.0], [0.3,0.5]), (0.2,0.6,0.4)
𝑢2, ([0.3,0.5], [0.6,1.0], [0.1,0.4]), (0.5,0.4,0.5)
𝑢3, ([0.1,0.3], [0.6,1.0], [0.3,0.4]), (0.3,0.6,0.3)
𝑢4, ([0.5,0.6], [0.2,1.0], [0.2,0.4]), (0.5,0.6,0.3)

} 

 

 𝛽1(𝑒4, 𝑥1) = {

𝑢1, ([0.3,0.6], [0.7,1.0], [0.0,0.2]), (0.2,0.8,0.1)
𝑢2, ([0.2,0.6], [0.7,1.0], [0.1,0.4]), (0.1,0.6,0.2)
𝑢3, ([0.3,0.5], [0.6,1.0], [0.1,0.4]), (0.2,0.5,0.2)
𝑢4, ([0.2,0.3], [0.7,1.0], [0.1,0.2]), (0.2,0.7,0.1)

} 

 Step 2:   

 𝛽1(𝑒1, 𝑥2) = {

𝑢1, ([0.2,0.3], [0.5,1.0], [0.3,0.5]), (0.2,0.6,0.3)
𝑢2, ([0.1,0.4], [0.7,1.0], [0.2,0.4]), (0.2,0.8,0.3)
𝑢3, ([0.5,0.6], [0.3,1.0], [0.2,0.3]), (0.5,0.7,0.2)
𝑢4, ([0.1,0.2], [0.7,1.0], [0.2,0.3]), (0.1,0.7,0.2)

} 

 

 𝛽1(𝑒2, 𝑥2) = {

𝑢1, ([0.4,0.6], [0.4,1.0], [0.2,0.3]), (0.4,1.0,0.2)

𝑢2, ([0.5,0.6], [0.3,1.0], [0.2,0.3]), (0.5,1.0,0.3)
𝑢3, ([0.2,0.4], [0.7,1.0], [0.1,0.2]), (0.3,0.5,0.4)
𝑢4, ([0.0,0.1], [0.7,1.0], [0.3,0.4]), (0.1,0.7,0.4)

} 

 

 𝛽1(𝑒3, 𝑥2) = {

𝑢1, ([0.1,0.2], [0.5,1.0], [0.4,0.4]), (0.1,0.6,0.4)
𝑢2, ([0.2,0.3], [0.2,1.0], [0.6,0.6]), (0.1,0.2,0.6)
𝑢3, ([0.2,0.3], [0.5,1.0], [0.3,0.4]), (0.1,0.5,0.3)
𝑢4, ([0.0,0.1], [0.8,1.0], [0.2,0.4]), (0.2,0.7,0.2)

} 

 

 𝛽1(𝑒4, 𝑥2) = {

𝑢1, ([0.5,0.5], [0.4,1.0], [0.1,0.2]), (0.6,0.4,1.0)
𝑢2, ([0.2,0.3], [0.4,1.0], [0.4,0.5]), (0.1,0.0,1.0)

𝑢3, ([0.0,0.1], [0.6,1.0], [0.4,0.5]), (0.2,0.5,0.4)
𝑢4, ([0.2,0.3], [0.6,1.0], [0.2,0.3]), (0.2,0.6,0.2)

} 

 Step 3:   

 𝛽1(𝑒1, 𝑥3) = {

𝑢1, ([0.2,0.3], [0.6,1.0], [0.2,0.3]), (0.2,0.6,0.3)
𝑢2, ([0.4,0.6], [0.5,1.0], [0.1,0.2]), (0.4,0.5,0.2)
𝑢3, ([0.3,0.6], [0.2,1.0], [0.6,0.5]), (0.3,0.2,0.5)
𝑢4, ([0.2,0.3], [0.5,1.0], [0.3,0.4]), (0.1,0.5,0.3)

} 

 

 𝛽1(𝑒2, 𝑥3) = {

𝑢1, ([0.0,0.1], [0.6,1.0], [0.4,0.5]), (0.0,1.0,0.5)
𝑢2, ([0.2,0.3], [0.5,1.0], [0.3,0.4]), (0.2,0.5,0.3)
𝑢3, ([0.5,0.6], [0.4,1.0], [0.1,0.2]), (0.5,0.4,1.0)
𝑢4, ([0.3,0.4], [0.3,1.0], [0.2,0.5]), (0.4,1.0,0.2)

} 

 

 𝛽1(𝑒3, 𝑥3) = {

𝑢1, ([0.2,0.4], [0.3,1.0], [0.5,0.6]), (0.2,1.0,0.3)
𝑢2, ([0.1,0.3], [0.8,1.0], [0.1,0.2]), (0.0,0.1,0.2)
𝑢3, ([0.4,0.5], [0.6,1.0], [0.0,0.2]), (0.4,0.1,0.2)
𝑢4, ([0.5,0.6], [0.2,1.0], [0.3,0.4]), (0.5,0.2,0.3)

} 

 

 𝛽1(𝑒4, 𝑥3) = {

𝑢1, ([0.2,0.3], [0.5,1.0], [0.3,0.4]), (0.2,0.5,0.2)
𝑢2, ([0.4,0.6], [0.2,1.0], [0.4,0.5]), (0.5,0.2,0.5)
𝑢3, ([0.5,0.6], [0.4,1.0], [0.1,0.2]), (0.5,0.4,0.2)
𝑢4, ([0.1,0.2], [0.7,1.0], [0.2,0.3]), (0.1,0.8,0.2)

} 
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Step 4: The cubic soft expert weighted average of each attribute.  

 

 

{
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
𝑒1, ([0.20,0.34], [0.58,1.0], [0.22,0.39]), (0.59,0.64,0.30)

([0.29,0.47], [0.54,1.0], [0.17,0.33]), (0.31,0.57,0.22)

([0.39,0.56], [0.31,1.0], [0.31,0.46]), (0.43,0.44,0.35)

([0.16,0.28], [0.46,1.0], [0.41,0.50]), (0.14,0.50,0.41)
𝑒2, ([0.22,0.38], [0.47,1.0], [0.27,0.37]), (0.22,0.83,0.31)

([0.27,0.41], [0.37,1.0], [0.37,0.47]), (0.27,0.52,0.38)

([0.26,0.36], [0.42,1.0], [0.32,0.42]), (0.28,0.42,0.38)

([0.23,0.33], [0.33,1.0], [0.42,0.52]), (0.29,0.59,0.37)
𝑒3, ([0.12,0.36], [0.47,1.0], [0.39,0.51]), (0.18,0.43,0.37)

([0.21,0.37], [0.58,1.0], [0.21,0.37]), (0.24,0.57,0.42)

([0.26,0.37], [0.58,1.0], [0.19,0.33]), (0.49,0.40,0.27)

([0.39,0.49], [0.33,1.0], [0.24,0.40]), (0.43,0.48,0.30)

𝑒4, ([0.31,0.47], [0.56,1.0], [0.13,0.27]), (0.29,0.61,0.33)

([0.21,0.53], [0.20,1.0], [0.21,0.39]), (0.24,0.33,0.28)

([0.34,0.41], [0.53,1.0], [0.17,0.37]), (0.31,0.47,0.24)

([0.17,0.27], [0.68,1.0], [0.16,0.26]), (0.17,0.71,0.23)}
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 

 Step 5: Calculate the ∨𝑃𝑠 of 1st, 2nd, 3rd and 4th column of above table by using definition 3.30, so we have  

 𝑈1𝑠̂ = ∨
𝑗=1

4
{𝑒𝑗 , 𝑢1} = {([0.39,0.56], [0.58,1.0], [0.41,0.46]), (0.59,0.69,0.14)} 

 

 𝑈2𝑠̂ = ∨
𝑗=1

4
{𝑒𝑗, 𝑢2} = {([0.27,0.41], [0.47,1.0], [0.42,0.52]), (0.29,0.83,0.38)} 

 

 𝑈3𝑠̂ = ∨
𝑗=1

4
{𝑒𝑗, 𝑢3} = {([0.26,0.37], [0.58,1.0], [0.42,0.51]), (0.49,0.57,0.42)} 

 

 𝑈4𝑠̂ = ∨
𝑗=1

4
{𝑒𝑗, 𝑢4} = {([0.54,0.53], [0.68,0.1], [0.27,0.37]), (0.31,0.71,0.33)} 

 Step 6: Now calculate the score of above NSCSS elements by using definition 3.34 

 

 𝑆̆(𝑈1𝑠̂) = (0.19) 
 𝑆̆(𝑈2𝑠̂) = (0.01) 
 𝑆̆(𝑈3𝑠̂) = (0.18) 
 𝑆̆(𝑈4𝑠̂) = (0.61) 

 

 Step 7: Generate the non-decreasing order of the score of NCSES set values corresponding to ∨𝑃 we 

have the following order  

 𝑢4 > 𝑢1 > 𝑢3 > 𝑢2. 
 

 

In above example, we want to check which country is much affected by COVID-19. Here Morocco is 

more affected by COVID-19. 
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