ISSN: 2320-2882

IJCRT.ORG

INTERNATIONAL JOURNAL OF CREATIVE RESEARCH THOUGHTS (IJCRT)

An International Open Access, Peer-reviewed, Refereed Journal

COMPARATIVE STUDY OF COTTON, BAMBOO, VISCOSE AND MODAL UNION FABRIC IN TERMS OF BENDING LENGTH AND CREASE RECOVERY FOR KIDS WEAR, WOMEN WEAR AND MEN WEAR

^{Ms.} Kavita 1st Author, ^{Ms.} Pravesh 2nd Author,

¹ Assitant Professor – 1 1st Author, ² Teaching Associate 2nd Author, ¹Amity University of Design, 1st Author, ¹Amity University of Design, 2nd Author, ¹Amity University 1st Author, ¹Amity University 2nd Author Gurugram, India

Abstract: The objectives of the present research work to develop the Union Fabrics for kids wear, Women's wear and Men's wear having the 100% Cotton (2/50) in warp and 100 % Bamboo (1/30), 100 % Modal (1/30), 100 % Viscose(1/30) and 100 % Cotton(1/30) in weft to improve handle properties of fabric in terms of bending length and crease recovery of union fabrics with cotton yarn as warp and yarn from regenerated fibers (Viscose, Bamboo and Modal) as weft having properties similar or better than 100% cotton. Twill weave is used as fabric structure. Bending length and crease recovery property of modal fabric was found best out of cotton, bamboo and viscose.

Index Terms - Bending length, Crease Recovery, Cotton, Viscose, Bamboo, Modal, Warp, Weft, Resiliency, Stress and Strain.

I. INTRODUCTION

found about its existence even before the birth of Christ. Currently, cotton is one of the mostly used fibers applied in a variety of products ranging from men, women and kids apparels, towels, handbags, medical and sanitary supplies, to home decor. Cotton is being admired for its virtues and is even praised as 'King Cotton' due to its cultural influence. Despite its comfort, softness, and moisture absorbing capability, cotton wrinkles very easily ^(6, 8). The way people like to avoid wrinkles on their skin, they do not want it on their clothes either. To make cotton clothes wrinkle free it needs to be blended with other synthetic fibers like polyester. Manufacturing 100% wrinkle free cotton fabrics is a deceptive and complex process ^(1, 9). Ironing is a tedious chore, but wearing crumpled clothing is unprofessional. That's why "wrinkle-resistant" garments have become so popular. But the current methods for making these textiles often release formaldehyde – a chemical that in large amounts is hazardous to human health – into the air and water. Formaldehyde can leak from the clothing during the manufacturing, wearing or washing of clothes, and this has risen environmental and health concerns ^(11, 10). So to develop fabrics with natural, organic and regenerated fibers like bamboo, viscose, modal which improving the bending length and crease recovery properties of fabric and also overcomes challenges to raising harmful chemical and toxic generate at the time of chemical finishes to reduce wrinkle in fabrics.

MATERIALS AND EXPERIMENTAL METHODS

Three union fabrics were developed using 100% Cotton yarn as warp and 100% weft yarn made from Modal, Bamboo and Viscose fibers. In order to compare the above union fabrics with the fabrics that are widely used as kids wear, another set of fabrics were prepared using 100% cotton yarn as warp and weft.

Weaving Parameters

The specifications of weaving machine and fabrics used are as follows:

Loom: Sample power loom, over pick with Dobby

Speed (rpm): 120

Woven fabrics with the following specifications:

	Table 1 Specifications of fabrics used										
	Warp Yarn	100% Cotton									
	Weft Yarn	100% Cotton, 100% Bamboo, 100% Viscose, 100% Modal									
	Weave	Twill weave (2/1)									
	EPI	84									
	PPI	72									
	Warp count	2/50 Ne									
-	Weft count	1/30 Ne									
	Fabric weight	150 g/m ²									

RESULTS AND DISCUSSIONS

Results and Discussions

This chapter mainly deals with results obtained on the series of testing carried out on the prepared fabric samples under study and discuss the factors that are highly influence the properties of the product.

Yarn	Count(Ne) (actual)	Count strength product(CSP)	Twist per inch(TPI)	Hairiness (No. of fibers per 200m)	Uster Uneveness	No. of fibers in yarn cross-section
Modal(1/30)	29.78	2925.88	16.12 's'	13.22	0.80	598.82
Bamboo(1/30)	30.14	2293.47	16.04 's'	11.20	1.19	701.58
Viscose(1/30)	28.69	2203.23	15.50 's'	30.17	2.17	749.41
Cotton(1/30)	29.98	2617.96	16.08 's'	18.63	1.54	761.81
Cotton(2/50)	24.38	2751.55	25.37 'z'	9.71	1.19	914.18

Table 2 Comparison of yarn test values

 Table 3 Handle properties (Bending length and Crease recovery values) of grey and scoured fabric

		Bending	length (cm)		Crease recovery (degree)			
Fabric types	Grey		Scoured		Grey		Scoured	
	Warp	Weft	Warp	Weft	Warp	Weft	Warp	Weft
Cotton-Modal	1.46	1.43	1.42	1.16	123.20	120.40	129	133
Cotton-Bamboo	1.60	1.58	1.52	1.26	118.50	116.10	121	125.50
Cotton-Viscose	2.30	1.90	1.76	1.43	98.50	100.15	103.20	104.50
Cotton-Cotton	2.99	2.77	2.23	2.13	94.00	95	96	100

Handle Properties

Bending Length

Effect of fiber type on Bending Length of grey and scoured fabrics

	Bending length (cm)						
Fabric types	Grey f	Grey fabrics		Scoured fabrics			
	Warp	Weft	Warp	Weft			
Cotton-Modal	1.46	1.43	1.42	1.16			
Cotton-Bamboo	1.60	1.58	1.52	1.26			
Cotton-Viscose	2.30	1.90	1.76	1.43			
Cotton-Cotton	2.99	2.77	2.23	2.13			

Table 4 and Fig.1, Fig.2 depict that Cotton-Modal exhibits the lowest value of bending length in warp and weft way while Cotton-Cotton fabric shows highest value of bending length in warp and weft way and the other two fabrics i.e. Cotton-Bamboo and Cotton-Viscose exhibits in between values of bending length in warp and weft way. The fiber resilience value affects the bending length; less the fiber resilience less the bending length. Modal fiber has lowest fiber resilience value as compared to other three fibers i.e. Cotton, Bamboo and Viscose that is why Cotton-Modal fabric shows lowest bending length ^(2, 3, 4). By using the one way ANOVA method on sigma plot software it was proved that the difference observed in the scoured fabrics is statistically significant (ANOVA report can be seen from annexure A.1)

Crease Recovery

Ef	ffect of fiber type on Crease Recovery of grey and scoured fabrics											
	Table 5 Crease Recovery of grey and scoured fabrics											
	5		Crease recovery (degree)									
	Fabric types		Grey	Sco	oured							
		Warp	Weft	Warp	Weft							
	Cotton-Modal	123.20	120.40	129	133							
	Cotton-Bamboo	118.50	116.10	121	125.50							
	Cotton-Viscose	98.50	100.15	103.20	104.50							
	Cotton-Cotton	94.00	95	96	100							

From Table 5 and Fig. 3, 4 it can be observed that Cotton-Modal fabric exhibits the highest value in warp and weft way while Cotton-Cotton fabric shows lowest value of crease recovery in warp and weft way and the other two fabrics i.e. Cotton-Bamboo and Cotton-Viscose exhibit medium value of crease recovery in warp and weft way. The fiber resiliency value of fiber helps the fabric to recover from its stress and strain. More is the fiber resilient more will be the crease recovery or vice versa. As modal fiber is having highest resiliency property out of four fibers hence, Cotton-Modal fabric shows highest crease recovery value ^(5, 7). By using one way ANOVA it was proved that the difference in thecrease recovery values of scoured fabrics isstatistically significant (statistically significant one way ANOVA report can be seen from annexure A.2).

Conclusion

Bending length, crease recovery values of Cotton-Modal fabric found to be lowest whereas Cotton-Cotton fabric shows highest values of bending length and crease recovery. Cotton-Bamboo and Cotton-Viscose fabrics are showing medium values of bending length and crease recovery respectively.

Further studies can be made in the following areas

- Different weave combinations can be taken for optimizing the fiber and fabric properties.
- Varying linear density can be utilized to see the effectiveness of yarn count on handle properties.
- Varieties of union fabrics can be developed by using different blend % of Modal, Bamboo and Viscose in warp and weft directions.

References

- 1. Frydrych I, DziworskaG, Cieslinka, Mechanical fabric properties influencing the drape and handle, International Journal of clothing science and technology, May 2000 (3), p171-183
- 2. Pierce FT, The Handle Of Cloth as Measurable Quantity, Journal of Textile Institute, Aug. 1930 (52), p 377-416.
- 3. Gagliardi D and Grunfest A Comparative Study of Regenerated Bamboo, Cotton and Viscose Rayon Fabrics. Part 1: Selected Comfort and handle Properties, Journal of Family Ecology and Consumer Sciences, March 2010 (31), p 63-73.
- 4. Cooper D N E, Total Wear Comfort Index as an Objective Parameter for Characterization of Overall Wearability of Cotton Fabrics, Journal of Engineered Fibers Fabrics, March 2009(4), p 29-40.
- 5. Howorth, W.S.; The handle of suiting, lingerie and dress fabrics, Journal of Textile Institute, Aug. 1964 (67), p 251-260.
- 6. By Wang Yueping and GaoXushan, The performance of fabrics from bamboo fibre, Textile Asia, June 2005 (48), p 35-38.
- V. Sharma and A. Goel, Bamboo Fiber Versus Cotton Fiber: A Comparative Study, Man- Made Textile in India, Sep2011 (29),p 313-318
- 8. Ajay Rathod, Yarn and fabric: Bamboo Vs Cotton, TheIndainTextileJournal, Oct. 2010,p 18-22
- 9. A.goel, Fabrics made of cotton blended with bamboo bastfibre, Man- made Textile in India, September 2011, p 313-316
- 10. "When Wrinkle-Free Clothing Also Means Formaldehyde Fumes" Siegel, December 2010 (10), p 15-21
- 11. Yin Ling Lam; Chi Wai Kan; Chun Wah Yuen (2011-06-24). "Wrinkle-resistant finishing with Formaldehde the effect of co-catalyst". Textile Research Journal. **81** (14), p 26 -32
- 12. <u>Formaldehyde</u>-free wrinkle resistant treatment of cotton fabrics with novel aromatic <u>polycarboxylic acids</u>, May 2009 (6), p11-13.

					r y	Annexur	e A.1		
One wa	iy anova	test r	esults of Bei	ndin <mark>g Len</mark>	gth				2
One Wa Data so	ay Analy ource: Da	y sis of ata 1 ir	Variance finished 2						
Norma	lity Test	(Shap	oiro-Wilk)	Failed	(P < 0.050)				//*
Equal V	Variance	Test:	Passed	(P = 0.94	0)			/	
Group	Name	Ν	Missing	Mean	StdDev	SEM			
C-M be	nding	10	0	1.290	0.0149	0.00471			
C-C ber	nding	10	0	2.180	0.0149	0.00471	1		0
C-B ber	nding	10	0	1.390	0.0149	0.00471			P
C-V bei	nding	10	0	1.592	0.0181	0.00573			
Source	of Varia	tion	DF	SS	MS		F	Р	
Bendin	g Lengtl	1	2	11 705	2.012	1	1 < 200	0.001	
Between	n Groups	5	3	11./35	3.912	157	16.290	<0.001	
Kesidua	11		36	0.00896	0.00024	9			
Total			39	11./44					

The differences in the mean values among the treatment groups are greater than would be expected by chance; there is a statistically significant difference (P = < 0.001).

Power of performed test with alpha = 0.050: 1.000

All Pairwise Multiple Comparison Procedures (Holm-Sidak method): Overall significance level = 0.05

Comparisons for factor:				
Comparison	Diff of Means	t	Р	P<0.050
C-C bending vs. C-M bending	1.510	214.022	< 0.001	Yes
C-V bending vs. C-M bending	0.922	130.681	< 0.001	Yes
C-C bending vs. C-B bending	0.840	119.059	< 0.001	Yes
C-B bending vs. C-M bending	0.670	94.964	< 0.001	Yes
C-C bending vs. C-V bending	0.588	83.341	< 0.001	Yes
C-V bending vs. C-B bending	0.252	35.718	< 0.001	Yes

Annexure A.2

One way anova test results of Crease Recovery

One Way Analysis of Variance Data source: Data 1 in finished 2									
(Shap	iro-Wilk)	Failed	(P < 0.050)						
Test:	Failed	(P < 0.05	50)						
Ν	Missing	Mean	StdDev	SEM					
10	0	131.000	1.491	0.471					
10	0	123.250	1.493	0.472					
10	0	103.160	1.528	0.483					
10	0	98.020	1.491	0.472					
tion	DF	SS	MS	F	Р				
	3	7575.35	5 2525.118	1120.836	< 0.001				
Residual 36		81.104	4 2.253						
	39	7656.45	9						
	rsis of tta 1 in (Shap Test: N 10 10 10 10 10 10	xis of Variance tta 1 in finished 2 (Shapiro-Wilk) Test: Failed N Missing 10 0 10 0 10 0 10 0 10 0 10 0 36 39	xis of Variance tta 1 in finished 2(Shapiro-Wilk)Failed Test: Failed(P < 0.03 NMissing 10Mean 131.000100131.000 103.160100103.160 98.020tionDFSS 3 3 7575.35. 36 81.10 39	xis of Variance tta 1 in finished 2(Shapiro-Wilk)Failed ($P < 0.050$) Test: Failed ($P < 0.050$) NMissing 10 Mean 131.000 StdDev 	rsis of Variance tta 1 in finished 2(Shapiro-Wilk)Failed (P < 0.050)Test:Failed (P < 0.050)NMissing 10Mean 131.000StdDev 1.491100131.0001.491 1.491100123.2501.493 1.493100103.1601.528 1.52810098.0201.491 1.491tionDFSSMSF37575.355 362525.118 81.104 2.2531120.836 2.253				

The differences in the mean values among the treatment groups are greater than would be expected by chance; there is a statistically significant difference (P = <0.001).

Power of performed test with alpha = 0.050: 1.000

All Pairwise Multiple Comparison Procedures (Holm-Sidak method): Overall significance level = 0.05

Comparisons for fact	tor:					
Comparison	D	of Means	t	Р	P<0.050	
C-M crease vs. C-C	crease	<mark>33.980</mark>	5 <mark>0.622</mark>	<0.001	Yes	
C-M crease vs. C-V	crease	<mark>27.840</mark>	41.475	< <u>0</u> .001	Yes	
C-B crease vs. C-C c	crease	25.020	37.274	< 0.001	Yes	
C-B crease vs. C-V c	crease	18.880	28.127	< 0.001	Yes	
C-M crease vs. C-B	crease	8.960	13.348	< 0.001	Yes	
C-V crease vs. C-C c	crease 6.140	9.147 <0.0	01 Yes			
						10
						C.N
						3