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ABSTRACT:  Let G = (V, E) be a graph where V is the vertex set and E is the edge set. In graph 

theory, edge coloring of a graph is an assignment of “colors” to the edges of the graph so that no two 

adjacent edges have the same. Normally the aim is to use the smallest number of colors, which is denoted by 

χ0(G).  By Vizing's theorem, the number of colors needed to edge color a simple graph is either its maximum 

degree Δ or Δ+1. The edge-coloring problem is one of the fundamental problems on graphs. Edge colorings 

have appeared in a variety of contexts in graph theory.  In this paper  Graph coloring, edgecoloring, chromatic 

number of edge coloring, Konig’s, Vizing’theorems and Lemma’s, Peterson Graphs, Tait’s theorem are 

studied. 

 

KEY WORDS:  Graph Coloring,  Proper coloring, k-Coloring, chromatic index, Edge Chromatic Number, 
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INTRODUCTION TO GRAPH THEORY: A graph is an abstract structure which consists of vertices and 

edges; each edge joins two vertices called ends of the edge. It can be used to represent various combinatorial 

or topological structures that can be modelled as objects and connections between those objects.  Since then 

graph theory has been expanding its branches quite enormously, obviously due to its well-defined and 

interesting applications in various fields.  A graph can be used to represent almost any physical situation 

involving discrete objects and a relationship among them. A graph structure is very suitable for representing 

relationships between objects in the abstract, and a large number of combinatorial problems can be modelled 
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as problems on the graph structure.  Many Mathematicians have contributed to the growth of this theory and 

EULER (1707-1782) became the father of graph theory when he settled a famous unsolved problem of his 

days called the Konigsberg Bridge Problem.   

 

Def: A graph G = (V, E) consists of two sets: a non-empty finite set V and a finite set E. The elements of  V 

are called vertices (or points or nodes) and the elements of E are called edges (or lines).  Each edge is 

identified with a pair of vertices. The set V (G) is called the vertex set of G, and the set E(G) is called the 

edge set of E(G). If e = {u, v} ∈ E(G) then we say that e joins u and v. The vertices u and v are called the 

ends of the edge uv. 

 

 The order of a graph, denoted by n(G), is the number of vertices and the size of a graph, denoted by 

m(G), is the number of edges. Graphs are finite or infinite according to their order; however the graphs we 

consider are all finite.  If a graph allows more than one edge (but yet a finite number) between the same pair 

of vertices in a graph, the resulting structure is a multi-graph. Such edges are called parallel or multiple edges. 

An edge that joins a single endpoint to itself is known as a loop. Graphs that allow parallel edges and loops 

are called pseudographs. A simple graph is a graph with no parallel edges and loops. For an edge x = u v in 

G deg(x)= deg u + deg v-2.  The minimum and maximum edge degrees of a graph G are denoted by (G) 

and (G) respectively.   

 

INTRODUCTION TO GRAPH COLORING: 

In its simplest form, it is a way of coloring the vertices of a graph such that no two adjacent vertices 

share the same color, called a vertex coloring. Similarly, an edge coloring assigns a color to each edge so 

that no two incident edges share the same color, and a face coloring of a planar graph assigns a color to each 

face or region so that no two faces that share a boundary share the same color. 

Graph coloring enjoys many practical applications as well as theoretical challenges.  Beside the 

classical types of problems, different limitations can also be set on the graph, or on the way a color is 

assigned, or even on the color itself. It has even reached popularity with the general public in the form of the 

popular number puzzle.  Graph coloring is still a very active field of research. 

A k-coloring of a graph is a proper coloring involving a total of k colors. A graph that has a k-coloring 

is said to be k-colorable. 

Graph coloring problem is to assign colors to certain elements of a graph subject to certain constraints.  

The graph coloring problem has huge number of applications.   
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EDGE COLORING: 

An edge coloring of a graph G is a coloring of the edges of G  such that adjacent edges (or the edges bounding 

different regions) receive different colors. The chromatic number  χ(G) of graph G is the minimum number 

of colors required to assign to the vertices of G in such a way that no two adjacent vertices in G receive the 

same color. The edge chromatic number / chromatic index of a graph G, denoted χ0(G),  minimum number 

of different colors required for a proper edge coloring of G.  

History of Edge Coloring: The edge-coloring problem is to color all edges of a given graph with the 

minimum number of colors so that no two adjacent edges are assigned the same color. The edge-coloring 

problem was appeared in 1880 in relation with the four-color problem. The problem is that every map could 

be colored with four colors so that any neighboring countries have different colors. It took more than 100 

years to prove the problem affirmatively in 1976 with the help of computers. The first paper dealing with the 

edge-coloring problem was written by Tait in 1880. In this paper Tait proved that if the four-color conjecture 

is true, then the edges of every 3-connected planar graph can be properly colored using only three colors. 

Several years later, in 1891 Petersen pointed out that there are 3-connected, cubic graphs which are not 3 

colorable.  The minimum number of colors needed to color edges of G is called the chromatic index  χ0(G) 

of G. Obviously  χ0(G) ≥ ∆(G),  since all edges incident to the same vertex must be assigned different colors. 

In 1916, K¨nig has proved his famous theorem which states that every bipartite graph can be edge-colored 

with exactly ∆(G) colors, that is  χ0(G) = ∆(G).   In 1949,  Shannon proved that every graph can be edge-

colored with at most 3∆(G)/2  colors,  that is  χ0(G) ≤ 3∆(G)/2.  In 1964, Vizing  proved that  χ0(G) ≤ ∆(G) 

+ 1 for every simple graph i.,ethe number of colors needed to edge color a simple graph is either its maximum 

degree Δ or Δ+1. 

Def: An edge coloring of a graph G is a function f : E(G) → C, where C is a set of distinct colors. For any 

positive integer k, a k-edge coloring is an edge coloring that uses exactly k different colors.  

Def: A proper edge coloring of a graph is an edge coloring such that no two adjacent edges are assigned the 

same color. Thus a proper edge coloring f of G is a function f : E(G) → C such that f(e) ≠ f(e’) whenever 

edges e and e’ are adjacent in G.  

Def: An edge coloring containing the smallest possible number of colors for a given graph is known as 

a minimum edge coloring. 

Def: The edge chromatic number / chromatic index of a graph G, denoted χ0(G),  minimum number of 

different colors required for a proper edge coloring of G.  

 

Theorem:  For any graph G, 

       ∆(G) ≤  χ0(G) ≤ 2∆(G) – 1 

  

Proof: An obvious lower bound for χ0(G)  is the maximum degree ∆(G) of any vertex in G. This is of course, 

because the edges incident one vertex must be differently colored.  It follows that ∆(G) ≤ χ0(G).  The upper 
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bound can be found by using adjacency of edges. Each edge is adjacent to at most ∆(G) − 1 other edges at 

each of its endpoints. Thus, 

1 + (∆(G) − 1) + (∆(G) − 1) = 2∆(G) – 1 

colors will always suffice for a proper edge coloring of G. 

Chromatic Index for Common Graph Families: 

Path Graphs:  χ0(Pn) = 2, for n ≥ 3. 

Cycle Graphs: χ0(Cn)=    2,  if n is even; 

      3, if n is odd. 

Trees: χ0(T) = ∆(T), for any tree T. 

 

Wheel Graphs: χ0(G) = n − 1, for n ≥ 4. 

 

Edge coloring of K2n : In a league with 2n teams, we may want to schedule games so that each pair of teams 

plays each other, but each team plays at most once a week.  Since each team must play 2n-1 others, the season 

losts at least 2n-1 weeks.  The games of each week must form a matching.  We can schedule the season in 

2n-1 weeks if and only if we can partition E(K2n) into 2n-1 disjoint matchings.   Since  K2nis 2n-1–regular, 

these must be perfect matchings. 

 

 The figure below describes the solution.  Arrange 2n-1 vertices cyclically, and let the length of an 

edge be the number of steps between its endpoints along the circle.  This creates 2n-1 edges of each length  

1, 2, …….., n-1.   

 

 

In the figure, the solid matching has one edge of each length, plus an edge from the central  vertex  to 

the leftover vertex on the circle.  Rotating the picture as indicated by the dashed matching yields  new edges, 

again one of each length.  The 2n-1 rotations of the figure yield the desired matchings.  

 

Definition: A  k-edge-coloring of G is labeling f : E(G) [k]; the labels are colors, and the set of edges with 

one color is a color class.  A  k-edge-coloring is proper if edges sharing a vertex have different colors; 

equivalently, each color class is a matching. A graph is k-edge-colorable if it has a proper k-edge-coloring.  
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The edge-chromatic number  χ0(G) of a loop less graph G is the least k such that G is k-edge-colorable.  The 

multiplicity of an edge is the number of times its vertex pair appears in the edge set. 

 

 Chromatic index is another name used for  χ0(G).  Since edges sharing a vertex need different colors, 

χ0(G) (G).  Vizing [1964] and Gupta [1965] independently proved that (G) + 1 colors suffice when G is 

simple. 

 

Theorem: (Konig [1916]) If G is bipartite, then  χ0(G) = (G). 

Proof: We have corollary that “For k 0, every k-regular bipartite graph has a perfect matching.”   By   this  

corollary  every  regular  bipartite  graph  H  has a 1-factor. By induction on H, this yields a proper  H-

edge-coloring. It therefore suffices to show that every bipartite graph G  with maximum degree k  has a k-

regular bipartite supergraph H .  

 

We construct such a supergraph.  Add vertices to the smaller partite set of G if necessary, to equalize 

the sizes.  If the resulting G' is not regular, then each partite set has a vertex with degree less than  G' = 

G. Add an edge consisting of this pair.   Continue adding such edges until the graph becomes regular. 

 

 A regular graph G  has a G-edge-coloring if and only if decomposes into 1-factors.  Such 

subgraphs form a 1-factorization of G , and we then say G is 1-factorable.  For an odd cycle, χ0(G) = 3 

G. 

 

The Petersen graph also requires an extra color, but only one extra color. 

 

ExampleThe Petersen graph is 4-edge-chromatic  Petersen [1898]. Consider the drawing of the Petersen 

graph  consisting of an outer 5-cycle, an inner (twisted) 5-cycle, and a matching between them (the cross 

edges).  Since C5  is  3-edge-colorable, giving the five cross edges the same color produces a  4-edge-coloring.  

To prove that the Petersen graph is not  3-edge-colorable, we prove that every  2-factor is isomorphic to  2C5. 

 

Since a 2-factor is a union of disjoint cycles, a 2-factor  H  of the Petersen graph  has  an  even  number   

m  of cross  edges.   If   m = 0,  then   H = 2C5.   If  m = 2, then the two cross edges have nonadjacent endpoints 

on the inner cycle or the outer cycle. On the cycle where their endpoints are nonadjacent, the remaining 

vertices force all five edges of that cycle into H (see illustration), which is impossible.  Finally, if m = 4, then 

the cycle edges forced into H  by the unused cross edge yield 2P5  in H in such a way that the only completion 

to a 2-factor is again 2C5. 
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  Now we consider all simple graphs.  We make (G) + 1 colors available and build a proper edge-coloring, 

incorporating edges one by one until we have a proper (G) + 1-edge-coloring of  G.  The algorithm runs 

surprisingly quickly, considering that it is hard to tell whether a graph has a proper (G)-edge-coloring.  

 

Theorem: (Vizing [1964, 1965], Gupta [1966]) Every simple graph with maximum degree   has a proper  

+1-edge-coloring. 

Proof: Suppose u,v is an edge left uncolored by a proper (G) +1-edge coloring f of a proper subgraph G' of 

G.  After possibly recoloring some edges, we extend the coloring to include uv ; call this an augmentations, 

we obtain a proper (G) +1-coloring of G. 

 

Since the number of colors exceeds  (G), every vertex has some color not appearing on its incident 

edges.  Let ao be a color missing at u, and let a1 be a color missing at v.  We may assume that a1 appears at u, 

or we could use a1 on uv.  Suppose v1 is the neighbour of u along the edge of color a1.   At v1 some color a2 is 

missing.  We may assume that a2  appears at u, or we could recolor uv1from a1 to a2  and then use a1 on uv to 

extend the coloring.  

 

For i  2, we continue this process.  Having selected a new color  ai that appears at  u, let  vibe the 

neighbor of   u   along the edge of color  ai .  Let ai+1be a color missing at vi.  If ai+1 is missing at u, then we 

shift color aj from  uvj  to uvj-1 for  1ji ( where vo= v ) to complete the augmentation.  We call shifting of 

colors down shifting fromi .  We are finished  ai+1  appears at u, in which case the process continues. 

 

 Since we have only (G) + 1 colors to choose from, the iterative selection of   ai+1  eventually repeats 

a color.  Let  l  be the smallest index such that a color 

al+1  missing at  v1 is in the list  a1 ,……. , al .  Suppose  al+1 = ak; this color is missing at vk-1  and  appears on  

uvk .  If ao  does not appear at vl ,then we downshift from vl and use color  ao on  u vl   to complete augmentation. 
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Hence we may assume that ao appears at vl  and that ak does not.  Let P be  the maximum alternating 

path of edges color ao and ak that begins at vl..   There is only one such path, because each vertex has at most 

one incident edge in each color (we ignore edges not yet colored).  Switching on P means interchanging 

colors ao and ak on the edges of P.  Depending on the location of the other end of P, we describe a recoloring 

that completes the augmentation. 

 

 If  P reaches vk , then it reaches vk along an edge with color ao , continues along  vk u  in color ak ,and 

stops at u , which lacks color ao .  In this case, we downshift from vk and switch on P( see the dia 1 above).  

Similarly, if P reaches vk-1 , give color ao to uvk-1, and switch on P(see the dia 2 above).  Finally, suppose P 

does not reach vk  orvk-1 ,  so it ends at some vertex outside{u, vl , vk ,vk-1 ).  In this case, we downshift from vl 

, give a color ao  to uvl and switch on P(see the dia 3 above). 
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Vizing’s Adjacency Lemma: 

A graph G with at least two edges is minimal with respect to chromatic index if χ0(G − e) = χ0(G) − 1 for 

every edge e of G. Since isolated vertices have no efect on edge colorings, it is natural to rule out isolated 

vertices when considering such minimal graphs. Therefore, the added hypothesis is that a minimal graph G 

is connected is equivalent to the assumption that G has no isolated vertices. 

Two of the most useful results dealing with these minimal graphs are also results of Vizing [22], 

which are presented without proof. 

Theorem: Let G be a connected graph of Class 2 that is minimal with respect to chromatic index. Then every 

vertex of G is adjacent to at least two vertices of degree ∆(G). In particular, G contains at least three vertices 

of degree ∆(G). 

Theorem: Let G be a connected graph of Class 2 that is minimal with respect to chromatic index.If u and v 

are adjacent vertices with deg(u) = k, then v is adjacent to at least (G) − k + 1 vertices of degree ∆(G). 

 

A Tait coloring is a 3-edge coloring of a cubic graph.  

 

Theorem  [Tait(1878)] :    A simple 2-edge-connected  3-regular plane graph is 3-edge-colorable if and only 

if it is 4-face-colorable. 

Proof: Let G be such a graph.  Suppose first that G is 4-face-colorable; we obtain a 3-edge-coloring.  Let the 

four colors be denoted by binary ordered pairs: co=00, c1 =01, c2 =10, c3 = 11.  We obtain a proper 3-edge-

coloring of G by assigning to the edge between faces with colors ci and cj the color obtainted by adding ci and 

cj as vectors of length 2,  using coordinate wise addition modulo 2.  Because G is  2-edge-connected, each 

edge bounds two distinct faces, and hence the color 00 never occurs as a sum.  It suffices to prove that the 3 

edges at a vertex receive distinct colors.  At vertex v the faces bordering the three incident edges are pairwise 

adjacent, so these three faces must have three distinct colors {ci , cj , ck }, as illustrated below.  If color 00 is 

not in this set, then sum of any two of these is the third, and hence {ci , cj , ck }, is the set of colors on the 

three edges.  If ck  =00, then ci  and  cj  appear on two of the edges, and third receives the color ci + cj , which 

is the color not in {ci , cj , ck }.   
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           Now suppose G has a proper 3-edge-coloring using colors a, b, c on the subgraphs Ea , Eb , Ec ;we 

construct a 4-face-coloring using four colors defined above.  Since G is 3-regular, each color appears at every 

vertex, and the union of any two of  Ea, Eb , Ec is 2-regular, which makes it a union of disjoint cycles.  Each 

face of this subgraph is a union of faces of the original graph.  Let    H1  = Ea  Eb and H2 = Eb Ec .  To each 

face of G, assign the color whose  ith coordinate  (i{1,2})  is the parity of the number of cycles in   Hi   that 

contain it  

(0 for even, 1 for odd).  We claim this is a proper 4-face-coloring, as illustrated above.  If two faces F, F' are 

separated by an edge e, they are distinct faces, since G is 2-edge-connected.   This edge belongs to a cycle  

C in atleast  one   of H1 , H2 (in both if e has color b).  By the Jordan Curve Theorem, one of  F, F' is inside 

C and the other is outside.  However, forever other cycle in H1 or H2 ,  F, F' are on the same side.  Hence if 

ehas color a, c, or  b, then the parity of the number of cycles containing F and F' is different in  H1 , in  H2 or 

in both, respectively.  This means that F and F' receive different  color in the face-coloring we have 

constructed.                          
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