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Abstract:  In reality, RISC processors and Digital signal processors (DSP) are used to construct the 

majority of embedded devices, and MAC (multiplications and/or accumulator) units are crucial here. During 

the multiplication and addition processes, the executions in MAC units frequently include a variety of crucial 

actions. Different adders and multipliers are required for constructing more effective MAC units, whereas 

approximation adders are typically developed based on their individual needs. In contrast to prior simple 

accurate adders, the innovative approximate adder proposed in this study delivers great speed and requires 

minimal complexity. The proposed adder's efficiency breakthrough paves the possibility for its incorporation 

into real-time IOT (Internet of Things) processors. This newly developed error-tolerant, highly accurate 

approximate adder was created to get over the implementation issues that parallel prefix adders have. In this 

situation, computing with fewer calculation nodes, maximum depth, and higher latency can be used to 

overcome the complexity of executions. The suggested approximation adder is synthesised and simulated in 

Xilinx Vivado22.2 using Verilog code. 

 

Keywords: Image processing, MAC unit, and approximate adders. 

I. INTRODUCTION 

In digital circuits, computer arithmetic is essential for creating approximative algorithms that make good 

use of the hardware. Adders are implemented in ALUs in a variety of processor types to carry out fundamental 

operations. The output may not be as accurate as expected when a circuit is equipped with few components. In 

contrast, contemporary technical advancements anticipate not only moderate circuit utilisation but also low 

power consumption, an improvement in performance speed, and a small chip size. This anticipation 

demonstrates the close relationship between algorithms and demand in contemporary applications. 

To add two binary numbers of any length together, adders can be concatenated. Half adders and complete 

adders are the two types of adders. While complete adders are employed in multiple bit addition, digital 

processors, etc., half-adder applications are found in calculators, computers, digital measuring instruments, etc. 

The most efficient binary adders, such as the Ripple carry adder, Carry choose adder, Carry look ahead 

adder, Common Boolean logic adder, etc., are being used to update the basic approximation adders. In these 

applications, a delay in the generation of carry output causes the time it takes for carry to spread from one stage 

to the next, and the addition of each carry to the outcomes of the forthcoming stages. The number of bit 

additions rises together with the carry generation. This limitation is taken into consideration for the device's 
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efficient operation. Approximate adders are created to fulfil the Parallel Prefix Adder (PPA) accuracy in order 

to do away with these drawbacks. They are regarded as being the easiest to design and create adders. The Carry 

Tree adders are proven to perform better in VLSI designs and are effective in binary addition. This development 

in ETA design takes into account the Carry tree implementation of the Sklansky, Koggestone, Brent Kung, 

Ladner- Fischer, etc. adders. 

The programme is run primarily to achieve high speed and low power consumption while obtaining the 

output with less accuracy. We employ error-tolerant adders because precision is not a top priority in this 

situation. The primary goal of this approach is efficient processing, even in intricate circuits. The high-speed 

MAC unit was created with IoT applications in mind as a result. Error Tolerant High Accurate Adder is used 

for comparing the performances of various approximation adders during designation. 

II. LITERATURE SURVEY 

The Accuracy-Configurable Radix-4 Adder with a Dynamic Output Modification Scheme was developed 

by K. Tsai, Y. Chang, and others. It makes use of the power gating technique to stoutly turn on or off the partial 

logic gates of an adder element to calculate accurate or inaccurate results. The ACRA's compute output 

demonstrates an excellent trade-off between power usage, propagation delay time, and error distance. But 

compared to the other Energy Quality Scalable Adder (EQSA), ACRA consumed more electricity. 

M. E. Elbtity et al. [2020] suggested an accelerator design that makes use of approximation MAC units in 

the convolutional layer, parallel memory access, and N-way high speed. The chip space and power consumption 

are decreased by using the approximate adder with OR operations on LSBs (AOL). The approximation MAC 

units in CNN can be set up in several ways to attain more accuracy than the standard CNN architecture. 

Comparatively approximate multipliers have a larger effect than comparative approximate adders, and FC 

layers are more sensitive to approximate units than Convolutional layers. 

In order to reduce the overall error distance caused by inexact addition, Sunghyun Kim et al. [2016] 

presented an adaptive approximate adder (A3) employing a modified XNOR-based adder and an adaptive idea 

to set the approximation bits during runtime. The authors of this study came to the conclusion that the bit 

lengths for the precise adder and the approximative adder can be determined using a Simple XOR operation. 

This technique also demonstrated that both the error rate and the error distance may be significantly improved. 

This claim's restriction is thought to be the low accuracy and complexity range that results from trying to add 

more bits.. 

For applications involving medical image processing, gradient filters, and Gaussian filters, P.L. Lahari et al. 

[2020] presented a truncated (MAC) multiplier and accumulator unit with reduced delay and reduced area 

consumption. Additionally, the algorithms for image and video processing applications can be realised with 

less time thanks to truncated based designs. Their proposal uses the proposed approximate adder to demonstrate 

an effective 16x16 truncated MAC unit delay realisation. When compared to earlier approximate adder designs, 

it produces the best area and least amount of delay.. 

Through generalising an architectural template for approximate adders, Ayad Dalloo, A. Najafi, et al. [2018] 

developed an ideal approximate adder. When compared to the previously mentioned best architectures, the 

suggested adder OLOCA exhibits a significant reduction in both hardware cost and error metrics. The 

mathematical analysis and additional experimental findings have demonstrated the superiority of OLOCA over 

the current approximate adders. 

III. EXISTING METHOD 

ARITHMETIC LOGIC UNIT 

A digital circuit that can execute both arithmetic and logical operations is known as an arithmetic logic unit 

(ALU). It is renowned for showing the essential components of a computer's central processor unit (CPU). 

Along with the ALUs, modern CPUs also have a control unit (CU). The control unit instructs the ALU on the 

operations to be carried out on the data, and the ALU stores the outcome in an output register. Transferring 

data between these registers, the ALU, and the memory is the responsibility of the control unit.  

The fundamental ALUs accept two data inputs and an opcode, which is a group of control signals. The 

ALU's function is represented by the opcode and the carry-in. C0 = 0 yields a+b when the ALU is set to add, 

while C0 = 1 produces a+b+1. 
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ADDERS 

To gauge the speed of arithmetic processes, the addition is one of the simplest and most frequently utilised 

procedures. The addition of two binary numbers is the fundamental operation of microprocessors, digital signal 

processing (DSP), and other data-processing application-specific ICs (Integrated Circuits). Numerous 

algorithms have been proposed in order to support high-speed parallel addition as a result of the need for 

efficient operation in contemporary applications. Because of this, speed and area are typically traded off. The 

importance of the issue has been demonstrated by this, and binary adders are made to be the fundamental 

components of VLSI (Very Large-Scale Integration) circuits. 

SINGLE BIT ADDITION  

Adders are divided into two primary groups. Half-adder and full-adder, respectively. Less complicated 

half-adder addition is used in several fundamental circuits. Two input binary bits, known as input bits A and 

B, make up the adder. The sum (S) and carry (Cout) would be the obtained outputs when the two inputs are 

added to the equation. Figure (2), which is below Figure (1), displays the block schematic for both the half-

adder and full-adder circuits. 

  
Fig.1. Half Adder Circuit  Fig. 2. Full Adder Circuit 

MULTIPLE BIT ADDITION 

 When N-bit adders are taken into account, the two inputs are taken as "AN..., A1," "BN,..., B1," and 

"Cin," which is also treated as the propagation adder's third input." With these inputs, the output is calculated 

as the sum of the most significant bit's carry coefficient and the SN,..., S1, S1 bits. The text A0 often calls the 

least significant bit rather than absorbing the larger value. Cary-propagate adders (CPAs) are adders that operate 

in such a way that the carry into one bit affects the carry into every other succeeding bits. In this case, Cin has 

an impact on the total and carry bits. The carry-out from one bit is provided as the input (Cin) to the subsequent 

step of the connection in the most fundamental and basic architecture that uses the carry propagation adder. 

Faster adders look ahead to predict the carry-out of a multi-bit group by computing group PG (Propagate-

Generate) signals in Fig. 3. This is typically done to show how the multi-bit group can propagate a carry-in or 

how to generate a carry-out. Long adders employ look-ahead structures with numerous levels to increase speed.  

 
    Fig.3. Complementary Pass transistor Logic (CPL) adder 

 

 CARRY RIPPLE ADDER 

An N-bit carry ripple adder (also known as ripple carry adder) is created by cascading a one-bit full 

adder N times. The adder's name implies that carry spreads throughout all of the adder's phases. The key delay 

path runs from the 0-bit inputs up through the Ci's to the n-1 bit because the addition is not complete until the 

nth adder computes its Sn-1 output; the outcome at that step depends upon Ci input, and so on down the line. 

The rippling time of the carry across the N stages determines the adder delay. Because addiction is a self-dual 

function, it is possible to eliminate the inverters on the outputs to reduce this delay. A full adder inversion 

receives complementary inputs and generates true outputs. 
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Fig.4. 4-bit ripple carry adder 

  CARRY LOOK-AHEAD ADDER 

The adders also accelerate as the carry chain does. Carry look-ahead adders may not be utilised much in 

VLSI, but they provide as an example of several essential concepts that can be applied to many adders. The 

carry computation in this adder is divided into two easy steps that begin with the computation of two 

intermediate values. The adder inputs are taken as Ai's and Bi's, just like the previous ones, and P (propagate) 

and G (generate) are computed from them. 

Pi = Ai + Bi        - (1) 

Gi = Ai . Bi        - (2) 

When Gi = 1, the ith part of the sum will be carried out, and a carry will then be formed. The carry from 

the i-1th bit will propagate to the subsequent bit stage when Pi = 1. Both the sum and carry equations could be 

rewritten as follows in terms of P and G 

Si = Ci ⊕ Pi⊕ Gi       - (3) 

Ci+1 = Gi + Pi Ci       - (4) 

The carry formula is simpler and thus easier to recursively expand when expressed in terms of P and G: 

Ci + 1 = Gi + Pi . (Gi-1 + Pi-1 . Ci-1) 

  = Gi + Pi Gi-1 + Pi Pi-1. (Gi-2 + Pi¬-2 Ci-2) 

  =Gi + Pi Gi-1 + Pi Pi-1. Gi-2 + Pi Pi-1. Pi¬-2 Ci-2  - (5) 

The restrictions highlight how slower larger gates are as compared to smaller gates. In general, four 

carry levels could be expanded. 

Each unit generates its own P and G values, which are used to feed the carry-look ahead unit at the next 

level of the tree. The carry-look ahead units in fig. 5 can be connected recursively to build a tree.  

 
Fig.5. Carry look ahead adder structure 
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 CARRY SELECT ADDER 

In the carry-select adder shown in Figure 6, the computation is carried out by comparing the addition of 

two alternative carry-in versions and then choosing the appropriate one. The carry-select adder is typically 

divided into m-bit stages, just like the carry-skip adder. In the second stage, computation is done using two 

numbers, one assuming carry-in is 0 and the other assuming it is 1. These candidate outcomes were all 

calculated using the corresponding adder structures' favourites. 

 
Fig.6. Carry select adder 

TREE ADDERS 

The delay of carry-lookahead (or carry-skip, carry-select) adders predominates for broad adders that 

perform sophisticated arithmetic operations (approximately N > 16 bits). This delay is caused by sending the 

carry through many stages of look-ahead adders. By scanning across the look-ahead blocks, this time can be 

reduced. In order to achieve the delayed growth with log N, a multilevel tree of look-ahead structures is built. 

These adders are also known as tree adders, logarithmic adders, parallel-prefix adders, multilevel-look-ahead 

adders, or just look-ahead adders. The look-ahead tree can be constructed in a variety of ways, offering trade-

offs between the logic stages, the number of logic gates, the approximate fanout on each gate, and the amount 

of writing between stages. The primary fundamental trees are Sklansky, Kogge-Stone, and Brent-Kung 

architectures. 

The log2 N stages and a fanout of 2 are achieved using the Kogge-Stone tree (Fig. 7). This may have 

the drawback of increasing the cost of rerouting numerous lengthy wires between phases. There are more PG 

cells at the tree; even if the surrounding region might not be affected, assuming the adder's layout is on a regular 

grid, this should result in higher power usage. The Kogge-Stone tree is employed in numerous high-

performance 32-bit and 64-bit adders in spite of the expenses. 

 
Fig.7.Kogge- Stone Tree 

 

To cut the delay to log2 N stages, the Sklansky adder, also known as the divide-and-conquer tree (Fig. 

8), computes intermediate prefixes in addition to large group prefixes. The use of this adder results in each 

level's fanouts being doubled: The gates spread out to other columns in [8, 4, 2, 1]. Unless the high fanout gates 

are scaled properly or the crucial signals are buffered before being used for intermediate prefixes, this leads to 

subpar performance on wide adders. Since each cell needs a variety of sizes of transistors, even though larger 

gates can stretch into adjacent columns, there may be some regularity in the layout's transistor scaling. It should 

be noted that the recursive doubling in this tree is comparable to the conditional sum adders. With the right 

amount of buffering, the fanouts might be cut down to [8, 1, 1, 1]. 
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Fig.8. The Divide-and-Conquer Tree 

 

The Brent-Kung tree (Fig. 9) can calculate the prefixes for 2-bit groups. They typically find prefixes for 

4-bit groups, which find prefixes for 8-bit groups, and so forth. The respected carries-in to each bit will then be 

computed as the prefixes fan back down. The 2log2 N - 1 step is necessary in this tree. It is agreed that there 

will only be two fans at each stage. Although the diagram suggests using buffers to reduce fanout and gate 

loading, in reality, buffers are typically left out. 

 
Fig.9. Brent-Kung Tree 

 

Implementing a Sklansky or Kogge-Stone tree adder results in a shorter critical path when compared to 

the other two tree adders.   

Ttree≈ tpg + [log2 N] tAO + tXOR     (6) 

 

The ideal tree adder will have wire tracks that are not more than one (Gi:j and Pi:j bundle) between 

each row and logic that is implemented at log2 N levels with a fanout that never exceeds two. The fundamental 

tree architecture represents examples that come close to the ideal but differ in one specific way. 

 

PROPOSED METHODOLOGY 

 

APPROXIMATE ADDERS 

 The major factors to be taken into account when building a digital circuit are the circuit's low power 

consumption, small design footprint, and high-performance speed. Approximate adders are primarily made to 

meet these requirements under circumstances where it is acceptable for errors to occur. In practically all 

arithmetic operations, including multiplication, subtraction, and division in digital circuits, these adders are 

regarded as the fundamental building blocks.  

Numerous advancements in contemporary technology have the audacity to implement their designs 

using approximation adders, where certain faults are thought to be acceptable. In fields of implementation 

including machine learning, image processing, digital signal processing (DSP), Internet of Things (IoT), 

wireless communication, etc., approximate computations are highly sought-after and have gained popularity. 

These applications take advantage of the area, latency, and power advantages that come with mistake. The 

following approximation adder equations are included in the current approach and are hence suggested to 

ensure implementation efficiency. 

 

 

http://www.ijcrt.org/


www.ijcrt.org                                                            © 2023 IJCRT | Volume 11, Issue 6 June 2023 | ISSN: 2320-2882 

IJCRT2306450 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org e7 
 

APPROXIMATE ADDER 1 

Both the sum and the carry are approximated. In conclusion, it is accurate in 6 out of 8 cases, while the carry 

is accurate in 7 out of 8 cases. The following logical equations carry the sum and carry approximation. 

S=A’ (B’Cin +BCin’)       -(7) 

Cout=A + BCin        -(8) 

 

APPROXIMATE ADDER 2 

When this adder type is taken into account, the approximation is carried out for the total alone and is accurate 

in 6 out of 8 situations. Since there is no approximation made here and the carry ensures that all outputs are 

error-free, it remains accurate in all situations. The following equations represent the sum (s) and carry (Cout). 

S=AB’Cin’ +ABCin        -(9) 

Cout= AB + BCin + ACin       -(10) 

 

APPROXIMATE ADDER 3 

Both the sum and the carry are approximated in this instance. Six out of eight examples involve a precise 

amount, and seven out of eight involve a precise carry. These are the acknowledged sum and carry formulae. 

S= A’B’Cin +AB’Cin’       -(11) 

Cout= (A+ B) Cin        -(12) 

 

APPROXIMATE ADDER 4 

Here, both the sum and the carry are approximated. For 8 examples, the exactness of the total and carry is 

tested. Up to 5 out of 8 cases are accurate for the sum, while 6 out of 8 cases are accurate for carry.  

S=A’(B + Cin)        - (13) 

Cout=B         - (14) 

 

APPROXIMATE ADDER 5 

Here, both the sum and the carry are approximated. Eight cases are verified for accuracy in the case of the 

sum and carry. Up to 6 out of 8 cases are calculated for the preciseness of the total, and 6 out of 8 cases are 

calculated for the preciseness of the carry. The following formulae are used to determine the respected sum and 

carry. 

S = ABCin + A’Cin’ + B’       - (15) 

Cout= B         - (16) 

 

INPUT OUTPUT 

 F. A AA1 AA2 AA3 AA4 AA5 

A B Cin S CO S CO S CO S CO S CO S CO 

0 0 0 0 0 0 0 0 0 0 0 0 0 1* 0 

0 0 1 1 0 1 0 0* 0 1 0 1 0 1 0 

0 1 0 1 0 1 0 0* 0 0* 0 1 1* 1 1* 

0 1 1 0 1 0 1 0 1 0 1 1* 1 0 1 

1 0 0 1 0 0* 1* 1 0 1 0 0* 0 1 0 

1 0 1 0 1 0 1 0 1 0 1 0 0* 1* 0* 

1 1 0 0 1 0 1 0 1 0 0* 0 1 0 1 

1 1 1 1 1 0* 1 1 1 0* 1 0* 1 1 1 

Table. 1. Truth table for approximate adders (1 to 5) 

 

The truth table comparison between the full adder and the approximate adders 1 to 5 is shown in Table 1. In 

the table above, the wrong output is represented by the Star symbol. In adders, you can either approximate both 

the sum and the carry, or you can approximate just the sum. Adders 1, 3, 4, and 5 are approximated by 

approximating both sums and carry, while adder 2 is approximated by approximating sum alone while leaving 

carry unchanged. 
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APPROXIMATE ADDER 6 

Both the sum and the carry are approximated. 5 of the 8 situations have the correct sum, while 6 have the 

correct carry. Below are the formulae for solving sum and Cout. 

S= A’B + Cin         (17) 

Cout= B         -(18) 

 

APPROXIMATE ADDER 7 

5 out of 8 times when using this kind of approximation, the sum is accurate. In carry, 6 out of 8 instances 

involve the fault. Below are the logic equations for sum and carry. 

S = (B’+ AB) Cin        -(19) 

Cout = BCin         (20) 

 

APPROXIMATE ADDER 8 

Overall, 5 out of 8 cases have the correct outcome, and all carry cases have the correct output. So, each of 

the three examples has a mistake. As opposed to carry, where 7 out of 8 scenarios are right. The following list 

contains the equations for sum and carry. 

S= B’(A+ Cin)        - (21) 

Cout= ACin + BCin        - (22) 

 

APPROXIMATE ADDER 9 

Here, the total alone is the only thing that is approximated. Six out of eight times, the result is received 

perfectly for sum, and all are accurate for carry. 9 will be deemed the better when comparing approximate 

adders 8 and 9 because it produces fewer inaccuracy. Below are the formulae for resolving sum and carry. 

S= (A’B’ + AB) Cin        - (23) 

Cout= AB + BCin + ACin       - (24) 

 

APPROXIMATE ADDER 10 

Only 5 of the total cases are accurate. based on these three situations of incorrect observation. For every 

case, the carry is unchanged. 8 fewer errors are returned when this adder's sum is checked with another adder. 

Below are the logical equations for resolving sum and carry.  

S= A’B + Cin        (25) 

Cout = AB + BCin + ACin       (26) 

 

INPUT OUTPUT 

 F. A AA6 AA7 AA8 AA9 AA10 

A B Cin S CO S CO S CO S CO S CO S CO 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 1 1 0 1 0 1 0 1 0 1 0 1 0 

0 1 0 1 0 1 1* 0* 0 0* 0 0* 0 1 0 

0 1 1 0 1 1* 1 0 1 0 1 0 1 1* 1 

1 0 0 1 0 0* 0 0* 0 1 0 0* 0 0* 0 

1 0 1 0 1 1* 0* 1* 0* 1* 1 0 1 1* 1 

1 1 0 0 1 0 1 0 0* 0 0* 0 1 0 1 

1 1 1 1 1 1 1 1 1 0* 1 1 1 1 1 

Table 2. The truth table for approximate adders (6 to 10) 

 

The contrast between the full adder and the approximations of adders 6 to 10 is shown in Table 2. In the 

approximation of adders, the star sign in the bits represents inaccurate output. Out of all the approximate adders, 

adders 2, 9 and 10 approximate 2 in sum while maintaining the carry. Adders 1, 3, 5, 6, 7 and 8 include 
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approximation in both sum and carry as compared to other adders. The approximate adder 2,9 and 10 uses sum-

only approximation. The present adders' approximation was created to maintain output accuracy and minimise 

errors. The processors' performance is compared for efficiency using the suggested approximate adder 11, 

which is very accurate with minimal errors. 

ETHAA – ERROR TOLERANT HIGH ACCURATE ADDER 

The design of the approximation adder sacrifices accuracy. Both sum and carry are calculated while taking 

the outputs' approximation into account. There was one inaccuracy in the sum output and none in the carry 

output as a result of applying the derived equations. Adders 9 and 11 have a lower delay rate when compared 

to the existing adder formulae. Below are the logical equations for sum and carry calculations. 

S = (A+B) Cin’ + (AB+A’B’) Cin      -(27) 

Cout = AB’Cin + B(A+Cin)       -(28) 

 

INPUT OUTPUT 

 Full Adder ETHAA (Proposed) 

A B Cin Sum Cout Sum Cout 

0 0 0 0 0 0 0 

0 0 1 1 0 1 0 

0 1 0 1 0 1 0 

0 1 1 0 1 0 1 

1 0 0 1 0 1 0 

1 0 1 0 1 0 1 

1 1 0 0 1 1* 1 

1 1 1 1 1 1 1 

Table 3. The truth table of the proposed approximate adder 

 

 The approximation result of proposed adder 11, where accuracy is reached for 7 out of 8 cases in sum 

output, is shown in the truth table above. When compared to the full adder result, the proposed equation gives 

accuracy in carry in all 8 circumstances. Incorrect cases are indicated by the star symbol. The advantage of this 

adder over other approximate adders is its fast execution. 

ERROR RATE CALCULATION 

There are certain metrics for analysing the approximation of the adders that can be used to compare the 

approximate adders. The Error Rate (ER) for any multi-bit adder is the proportion of incorrect responses to all 

test instances. The following equation can be used to represent the error rate. 

ER = No. of erroneous results / Total test cases    (29) 

The Error Distance (ED) is the difference between the accurate result (S) and the erroneous result (S*) 

ED = |S – S*|        (30) 
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Approximate 

adders 

Error Rate Error Distance 

 Sum O/P Carry O/P Sum O/P Carry O/P 

AA1 0.25 0.125 2 1 

AA2 0.25 0 2 0 

AA3 0.25 0.125 2 1 

AA4 0.375 0.25 3 2 

AA5 0.25 0.25 2 2 

AA6 0.375 0.25 3 2 

AA7 0.375 0.25 3 2 

AA8 0.25 0.125 2 1 

AA9 0.25 0 2 0 

AA10 0.375 0 3 0 

ETHAA 

(Proposed) 

0.125 0 1 0 

Table 4. ER and ED comparison of the Approximate adders. 

 

The efficacy of the suggested Error Tolerant High Accurate adder is shown by the comparison of Error 

Rate and Error Distance above. 

 

 RESULT 

For a variety of IoT-based real-time applications in the VLSI era, low-power, high-speed, and area-

efficient circuits are preferred. Any signal processing for medical imaging applications must take into account 

the importance of arithmetic circuits, adders, and multipliers. Performance of the circuits as a whole is impacted 

by the adders' and multipliers' performance. In order to achieve high performance, efficient adder and multiplier 

circuits are required. This work proposes a speed, area, and power-efficient approximation adder design for the 

MAC unit that is appropriate for real-time IoT-based applications. 

Three chosen adders and the suggested approximation adders are compared for efficient applications in 

terms of speed, area use, and power.  

Ripple-carry adders and a multiplexer often make up the carry-select adder. Once the two results have 

been computed, the proper carry-in is known, and the multiplexer is then used to pick the correct carry-in, the 

correct sum, and the correct carry-out. 

Due to the elimination of the pairs of ripple carry adders, the Carry Select adder has fewer logic gates 

(low area), but its power consumption is unchanged.  

The Kogge-stone adder, which is regarded as the quickest adder that concentrates on design time and is 

a good substitute for high-performance applications, is the second adder. Due to limited fan-out and minimal 

logic depth, this nature is swift. Compared to the Kogge-Stone adder, which is significantly easier to construct, 

the Brent-Kung adder requires less modules for implementation. It is also simpler because there are less 

connections between the modules. Due to its lower complexity, this adder was chosen to be compared to the 

suggested adder. The fan-out of the Brent-Kung adder is one of its drawbacks. 
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Attributes Carry 

Select 

Adder 

Kogge- 

Stone 

Adder 

Brent-

Kung 

Adder 

Proposed 

ETHAA 

No. of LUT 

slices 

25 51 24 15 

Bonded 

IOB 

50 50 49 50 

Path delay 

in ns 

13.721 12. 713 11.838 10.062 

Power (w) 11.894 11.838 11.238 9.765 

     Table 5. comparison of four adders. 

 

Table 5 compares the proposed approximate adder's performance to that of the current adders. The area 

used by the adders is determined by the number of slices LUTs that the FPGA has taken up. The delay is 

specified in terms of nanoseconds. The amount of power used during execution is calculated in Watt units (w). 

The only adder with fewer numbers than the other two, the Brent Kung adder, has the same bonded IOBs as 

the other two. 

The outcome demonstrates that the proposed approximate adder is more effective than other conventional 

adders in terms of delay, area, and power. Comparing the slice LUTs utilisation to the existing adders, it is 

likewise quite low. 

 

 
Fig.13. Simulation diagram. 

The simulation output for the suggested approximate adder is shown in Figure 13. The suggested 

ETHAA's technological schematic is shown in the figure below. 

 

 
Fig.14. The schematic diagram of the proposed adder. 
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CONCLUSION 

IoT technology is developing quickly, and this has increased the demand for CPUs with high speed, 

low power, and small form factors. In many real-time applications, they are crucial. The ALU unit and MAC 

units found in all digital processors are used to carry out some complicated and arithmetic computations. It 

needs an effective multiplier and an adder to function well. Numerous approximative adder equations are 

constructed to produce an equation with the least amount of error in order to satisfy the futuristic need. During 

the comparison, the equation with the highest degree of accuracy is suggested, carried out, and found to have 

the desired efficiency. By deriving both the Sum and Carry equations, the suggested adder achieves the highest 

accuracy possible. Utilising Verilog code, Xilinx Vivado is used to synthesise and simulate this adder 

equation. 
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