JCRT.ORG

ISSN: 2320-2882

INTERNATIONAL JOURNAL OF CREATIVE **RESEARCH THOUGHTS (IJCRT)**

An International Open Access, Peer-reviewed, Refereed Journal

A LITERATURE REVIEW TO FIND THE EFFECTIVNESS OF INSTRUMENTED ASSISTED SOFT TISSUE MOBILIZATION IN MUSCULOSKELETAL PAIN

Rajeev kumar¹, Dr. Pinky Dutta², Dr Natasha verma³

¹Post Graduate Student, Department of Physiotherapy, Garden City University, Bangalore

²Assistant Professor, Department of Physiotherapy Garden City University, Bangalore

³ Assistant Professor, Department of Physiotherapy Garden City University, Bangalore

Abstract

In current time, musculoskeletal pain is one of the major leading conditions which cause disability in all the age group. musculoskeletal pain occurs due to overuse or repetitive use of particular muscles or repetitive strain injuries. It is taken as common medical and socioeconomic issue all over the world because it affects muscles, bones, tendon ligament and also nerves. IASTM is a form of non-invasive manual therapy involving rigid instrument of various shapes and materials to locate and treat soft tissue disorder. Several IASTM tools and technique are available to provide soft tissue mobilizations and improve pain and range of motions.

There is article which suggests IASTM may be effective tools and technique for musculoskeletal pain but strong evidence yet to be discussed. the purpose of this review article is to find out more strong evidence to support the effectiveness of IASTM in musculoskeletal pain

Keywords-

IASTM, Musculoskeletal pain, connective tissue, Neuromobility, James Cyrix cross-friction massage.

Abbreviation-

WHO: World Health Organization, IASTM: Instrument Assisted Soft Tissue Mobilization,

FAKTR: Functional and Kinetic Treatment with Rehab.

Objective- to find out the strong evidence which support the effectiveness of IASTM on musculoskeletal pain intensity and improve functional task.

Results-

The above article shows that IASTM [Graston and Ergon] technique is more effective when it is applied alone or combined with exercises in treatment of musculoskeletal pain.

Conclusions-

After a detail review of literature, it has been observed that IASTM is a technique used to treat musculoskeletal pain, remove scar tissue that formed in the soft tissue. IASTM is effective technique to treat musculoskeletal condition and to reduce pain intensity.

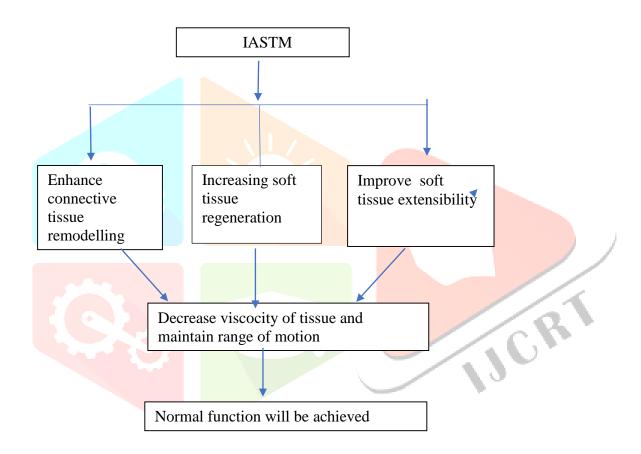
INTRODUCTION

Musculoskeletal pain is defined as pain that affects bones, muscles, ligaments, tendons, and even nerves. The pain associated with musculoskeletal disorder is a common medical and socioeconomic problem worldwide¹.According to world health organization [WHO], musculoskeletal pain affects 20 to 33 percent of the world's population^{1,2}. Musculoskeletal pain can be acute, meaning it is sudden and severe or the pain maybe chronic [long lasting]. There are various types of musculoskeletal pain such as bone pain, pain due to injuries such as bone fracture or the musculoskeletal injuries, less commonly a tumor may cause pain, muscle spasm. Sprains, strains and overuse injuries can lead to tendon or ligamentous pain¹

IASTM is a technique that involves using instruments to address musculoskeletal pathology related impairments and help heal soft tissues³. soft tissues manipulation technique includes several types ranging from classical to cross- friction massage and muscle energy, passive or active release and myofascial release technique. These techniques are performed with therapists' hand or with specialize equipment called iastm⁴.

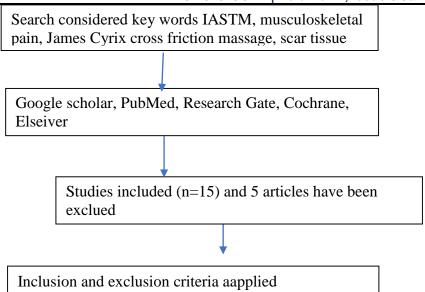
IASTM is a popular treatment for myofascial restriction based upon the rational introduced by James-Cyriax. IASTM is applied using specially designed instrument such as GRASTON, functional and kinetic treatment and rehab [FAKTR]⁵. Different types of materials such as wood, ceramics, plastic, stone and stainless steel are used to make different brand of tools^{6,10}.

MECHANISM


On a daily basis 87 percent of clinicians are using manual therapy^{6,11}. IASTM is designed to both treatment of soft tissues injuries and promotion of recovery⁷. IASTM intervention included gentle and firm strokes that applied compression and shear stress to produce a pulling force in the engaged tissues around the edges of the instruments⁸.

When a stimulation is applied to the injured soft tissue using an instrument, the activity and the number of fibroblasts increases, along with fibronectin, through localized inflammation, which then facilitates the synthesis and realignments of collagen is one of the proteins that makes up the extracellular matrix³. when an IASTM is applied to skin, it increased blood flow to facilitate the supply of blood and oxygen to the soft tissues.

The goal of IASTM is to remove scar tissue and promote a return to normal function following soft tissue regeneration. When the scar tissue is removed by IASTM, functional normalization around soft tissue can be achieved³. Favorable effects on the organization of underlying collagen substructure have been reported, which may result in stronger, stiffer ligaments with an increased ability to absorb mechanical energy 9.


The Graaston technique contains a protocol for treatment that contain several components. That is Examination, Warmup, IASTM treatment, Post treatment stretching, Strengthening and Ice⁵.

Objective for the study will be recognize pain and discomfort which is due to musculoskeletal pain and then find out the review on the study on effect of IASTM and also compare the effect of tapping in various pain syndromes.

METHODOLOGY

Online search engines used to collect journals were Google scholar, PubMed, Research Gate, Cochrane, Elsevier. Full text articles were assessed for inclusion and exclusion criteria(n=20). Inclusion and exclusion criteria applied and then this study included n=15 participant.

REVIEW OF LITERATURE;

SLN	Author	Journal an	d	Title	TYPE OF	RESULT
		year		JIV A	STUDY	
1	Tahir	2021 an	d	Instrument assisted soft tissue	Review	IASTM is effective in
	Mahmoo	journal o	of	mobilization an emerging trend	Article	treatment for soft
	d	Pakistan		for soft tissue dysfunction		tissues dysfunction
		medical				
	هو ا	association ¹				
2	Salah N	2021 and pai	n	Management of musculoskeletal	Review	IASTM has
	et al	ther ²		pain an update with emphasis on	article.	effectiveness in
)		chronic musculoskeletal pain.	12	reducing pain.
3	Jooyoung	2017 an	d	Therapeutic effectiveness of IAS	RM view	IASTM is found
	Kim et al	Journal	of	for soft tissue injury mechanisms	andicle	effective to improve
		exercise		practical application.		soft tissue function and
		rehabilitation ³				range of motion and
			•			reduce pain.
4	Konstanti	2020 and th	ie	Effect of IASTM mobilization at	Original	IASTM ergon
	nos	journal c	of	three different application angles	Article	technique can increase
	fousekis	physical		on hamstring surface thermal		hamstring flexibility
	et al	therapy		response.		by increasing and
		science ⁴ .				maintain hamstring
						skin temperature.
	<u> </u>					

	ijcrt.org		·		e 2023 ISSN: 2320-2882
5	Jeong	2016 and the	The effect of graston technique on	Review	IASTM was
	Hoon lee	journal of	the pain and range of motion in	Article.	significant in reducing
	etal	physical	patient with chronic low back		pain and improving
		therapy	pain.		range of motion.
		science ⁵			
6	Mallika	Dec 2019 and	Instrument assisted soft tissue	Review	IASTM can help the
	bitra ¹ .S G	journal of	mobilization in the management	article	scar tissue
	sudhan ²	clinical and	of musculoskeletal pain		mobilization, reduced
		diagnostic			pain n inflammation in
		research ⁶			musculoskeletal
					injuries
7	Jooyoung	2019 and	Effect of instrument assisted soft	Randomized	Application of IASTM
	kim ¹	journal of	tissue mobilization on exercise	control trial	accelerate muscles
	Joohyung	men's health ⁷	induced muscle damage and		strength recovery and
	Lee ²		fibrotic factor		effective for reducing
			340		scar tissues.
8	Naoki	2019 and	The effect of instrument assisted	Case report	IASTM is effective to
	Ikeda et	journal of	soft tissue mobilization on		improve ankle joint
	al	American	musculoskeletal properties.		dorsiflexion range of
		college of			motion and stiffness
	هو ا	sports			and reduced pain.
	4 0	medicine ⁸ .			2
9	Arif	2019 journal of	The efficacy of IASTM for	Systemic	IASTM was found
	Karmali	contemporary	musculoskeletal pain	review	effective for reducing
	et al	chiropractic ⁹ .			pain in
					musculoskeletal
					disorder.
10	Dr	2017 and	Effect of instrument assisted soft	Pilot study	Reduction in heel pain
	Ashwini	journal of	tissue mobilization using		intensity according to
	bulbuli	medical	M2Tblade on acute heel pain.		pre and post foot
		science and			function index score
		clinical			
		research ¹⁰ .			
11	Terry	2016 and	Instrument assisted soft tissue	Review	IASTM is effective in
	Loghman	journal of	manipulation evidence for its	Article	musculoskeletal
	i.M ¹	novel	emerging efficacy.		condition as it effects
	Sammie	physiotherapie			as a mechano
	Bane ²	s ¹¹			therapeutic modality
	1	<u> </u>	1	<u> </u>	<u> </u>

www.	ijcrt.org		© 2023 IJCRT Volume 11, Issue 6 June 2023 ISSN: 2320-2882
12	Joseph	2017 and the	Short term effects of instrument Case report IASTM is effective in
	Paul	international	assisted soft tissue mobilization on improving pain free
	coviello	journal of	pain free range of motion in flexion range of
	et al	sports physical	weightlifter with subacromial pain motion, decrease
		therapy ¹² .	syndrome. disability and reduced
			pain.
13	Corrie	2018 and	Effect of instrument assisted soft Blinded and IASTM is effective for
	my burgh	Journal of	tissue mobilization on ankle range intervention reducing pain and
	et al	rehabilitation	of motion and triceps sure pressure study improving range of
		medicine	pain sensitivity motion.
		Clinical	
		communication	
		13	
14	Scott W.	2019 and the	IASTM A commentary on clinical Original IASTM will be
	Cheatha	international	practice guidelines for article effective for treatment
	m et al	journal of	rehabilitation professionals. in musculoskeletal
		sports physical	pain.
		therapy ¹⁴ .	
15	Russell T.	2015 and the	A Novel approach for the reversal
	Baker et	international	of chronic apparent hamstring Case study. IASTM has an impact
	al	journal of	tightness. for improving
		sports physical	hamstring flexibility
		therapy ¹⁵ .	and improve range of
			motion
1	Ì		

CONCLUSION

After a detail review of literature, it has been observed that IASTM is a technique used to treat musculoskeletal pain, and remove scar tissue that formed in the soft tissue. it helps in the healing process by activating fibroblasts. It is a simple technique and requires a very short period for a session. IASTM is an effective technique to treat musculoskeletal condition, to reduce pain intensity and improve function.

REFERENCES.

- 1.Mahmood T, Hafeez M, Ghauri MW, Salam A. Instrument assisted soft tissue mobilization- An emerging trend for soft tissue dysfunction. J Pak Med Assoc. 2021;71(3):977-81
- 2.Salah N, El-Tallawy, Rohit Nalamasu, Gehan I.Salem etal. Management of musculoskeletal pain an update with emphasis on chronic musculoskeletal pain. Pain ther 2021,10;181-209
- 3. Kim J, Sung DJ, Lee J. Therapeutic effectiveness of instrument-assisted soft tissue mobilization for soft tissue injury: Mechanisms and practical application. J Exerc Rehabil. 2017;13(1):12–22
- 4. Konstantinos Fousekis, Dimitris Mandalidis, Pavlos Angelopoulos, Elias Tsepis. Effect Of instrument assisted soft mobilization at three different application angles on hamstring surface thermal responses.J.Phys.Ther.Sci.32;506-509,2020.
- 5. Scott W.Cheatham, Matt Lee, Matt Cain Russel Baker. The efficacy of instrument assisted soft tissue mobilization a systemic review.ISSN0008-3194p/ISSN1715-6181e/2016/200-211/\$2.00/@JCCA2016.
- 6.Bitra M, Sudhan S. Instrument Assisted Soft Tissue Mobilisation in the Management of Musculoskeletal Pain: A Literature Review with Implications for Clinical Practice Guidelines. J Clin Diagnostic Res. 2019
- 7. Kim J, Lee J. Effect of Instrument-Assisted Soft Tissue Mobilization on Exercise-Induced Muscle Damage and Fibrotic Factor: a Randomized Controlled Trial. J Mens health. 2019;15
- 8. Naoki Ikeda, Shun Otsuka, Yozo Kawanishi ,Yasuo Kawakmi. Effect of instrument-assisted soft tissue mobilization on Musculoskeletal properties.medicine &science in sports &exercise.0195-9131/19/5110-2166/0.
- 9. Karmali A, Walizada A, Stuber K. 51-Article Text-75-1-10-20190329. 2019;2:25-33...
- 10. Bulbuli DA. Effect of IASTM Using M2T Blade on Acute Heel Pain: A Pilot Study. J Med Sci Clin Res. 2017,05[04];20631-6..

IJCR

- 11.Terry Loghmani, Sammie Bane.Instrument-assisted soft tissue manipiulation evidence for its emerging efficacy. J NOV Physiother 2016.ISSN; 2165-7025.
- 12. Coviello, Joseph Paul; Kakar, Rumit S; Reynolds TJ. 2017_short-term effects of iastm on pain free range of motion in a weightlifter with subacromial pain syndrome_Coviello. Int J Sports Phys Ther. 2017;12(1):144-54.
- 13. Myburgh C, Hammern A, Mannfjord P, Boyle E. Effects of instrument-assisted soft-tissue mobilization on ankle range of motion and triceps surae pressure pain sensitivity. J Rehabil Med - Clin Commun. 2018;1(1):1000005.
- 14. Cheatham SW, Baker R, Kreiswirth E. Instrument Assisted Soft-Tissue Mobilization: a Commentary on Clinical Practice Guidelines for Rehabilitation Professionals. Int J Sports Phys Ther. 2019;14(4):670–82.
- 15.Russell T.baker, Bethany L. hansberger, Lindsay Warren, Alan Nasypany. Anovel approach for the reversal of chronic apparent hamstring tightness a cse report. The international journal of sports physical therapy
- 16. Zeynab Ahmadpour Emshi, Farshad Okhovatian, Marzieh Mohammadi Kojidi, Sahar Zamani. The effects of instrument-assisted soft tissue mobilization on active myofascial trigger points of upper trapezius muscle. Journal of clinical physiotherapy research. 2018;3[3];107-114.