ISSN: 2320-2882

IJCRT.ORG

INTERNATIONAL JOURNAL OF CREATIVE RESEARCH THOUGHTS (IJCRT)

An International Open Access, Peer-reviewed, Refereed Journal

TEMPERATURE CONTROLLED DC FAN BY USING THERMISTOR

Durgaprasad N, Tejprathap V B, Gurubasavaraja S G, Roopaknatha A, Sharath P C

Department of Metallurgical and Materials Engineering, Jain University, Bengaluru 562112.

Abstract:

An electronic circuit employing an Arduino board can be used to create the temperature-based fan speed control system. Due to an increase in the use of electrical equipment in both home and commercial appliances, the consumption of electricity has reached a high level. Electricity conservation and management are significant since power is essential for a country's industrial and economic development. In this work, Arduino board for fan speed control because it is now one of the most innovative electronic circuits available. The proposed system is built to measure the room's temperature and transmit that data to the Arduino board. The Arduino board then runs a programme that compares the current temperature to the set temperature. With an Arduino board and an LM-35 temperature sensor, this project suggests how to create temperature-based fan speed control and monitoring. The suggested work uses a microcontroller to dynamically and more quickly adjust the speed of an electric fan. The LCD utilised in the project makes it user-friendly and displays temperature changes as well as the fan's efficiency in real time. As a result, this project helps to conserve energy and utilise less of it for its intended purposes.

Keywords: DC-Fan, LCD Display, Embedded 'C' Language, LM-35 sensor, Arduino.

1. Introduction:

Electric fans are among the most widely used electrical appliances because of how affordable they are and how efficiently they use power. In many applications, it is also one of the most popular and widely used. Offering a comfortable and energy-efficient space is one of the sane options.

Today, the need for precise temperature control and air freshening control has spread to many industrial sectors, including process heat, automotive, industrial settings, and office buildings where cool air is used to keep occupants comfortable. The achievement of the desired temperature and consumption optimisation are two of the key issues in the heat domain. Therefore, an automatic temperature control system is required for the purpose of regulating fan speed in response to temperature change. This project suggests using a user-friendly strategy to lower electricity usage and increase electrical component efficiency. As science and technology have advanced, electrical equipment efficiency has had to be improved. Only then can cutting-edge technology rule the forthcoming digital era. The LM 35 sensor, which senses the room's temperature and adjusts the fan speed proportionately to the environmental room temperature, would take the place of the regulator used in standard model fans in household and industrial equipment in the proposed work. By employing technology, this effort encourages consumers to use less energy in their homes and workplaces. Benefits will come from numerous studies focusing on the use of automatic temperature control systems in various industries.

Because of its inexpensive cost and advantages in low power consumption, the electric fan is one of the most well-known electrical devices. It is a common circuit that is used in many different applications. Offering a comfortable and energy-efficient space is also one of the smartest alternatives. The fan has really been used for a long time and is still available on the market. By pressing on the switch button, the fan can be physically controlled. Currently, a change in temperature does not cause the fan speed to alter. However, the fan's actual speed might alter depending on usage. Therefore, an automatic temperature control system technology is required for the purpose of adjusting the fan speed in response to temperature variations.

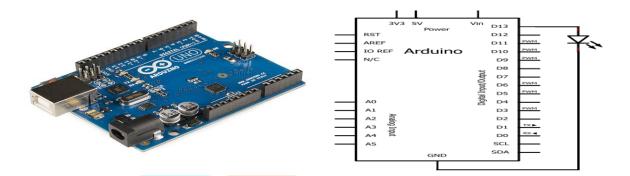
2. Literature Review:

Regulators are typically used to control the fan's speed. In comparison to employing an LM35 sensor, the conventional method uses more electrical energy [1]. According to Tito Smailagich's research, removing the traditional ON/OFF switch reduces electrical energy consumption and boosts power consumption efficiency, which results in energy and financial savings. According to articles written by the Lawrence Berkeley National Laboratory, fans alone in the manufacturing sector use 78.7 billion kilowatt-hours of energy annually. This article leads us to the conclusion that the motor alone accounts for 15% of the total electricity consumed [2]. In light of the aforementioned articles, this project replaces the typical type of regulator with an LM35 sensor and modifies the fan's speed in response to the room's temperature, thereby using less energy overall and allowing for other uses for the energy saved.

In the systems that are being presented, the development of smart systems depends heavily on the controller [3-4]. Controllers are becoming a crucial component of the technologies that are being introduced daily. This article talks about utilising an Arduino system to regulate and monitor fan speed based on temperature [5]. Based on the ambient temperature, this technology is utilised to automatically control the cooling system. The system implements a control system using an Arduino board [6]. Given that this system is intended to regulate the cooling system, it is crucial to understand Arduino controlled system thoroughly. The overall objective of this work is to provide a user-friendly, low-cost automatic temperature-controlled fan regulator that helps those who are unable to manage the speed of a fan from their current location while also consuming less electricity [7].

3. Methodology:

This project utilises two different temperature ranges: running a fan while the temperature is low the temperature of the surrounding region is detected using the LM-35 sensor [8-9]. The 12V DC fan stops or operates at minimum speed if the temperature drops below 30 °C. As previously noted, the fan's speed and the temperature outside are directly inversely linked. Fan operation at the highest temperature. The fan's speed will change in response to changes in the ambient temperature as the room temperature rises. This project calculates temperatures that range from 30 to 60°C while the fan's efficiency ranges from 0% to 100%. The fan's maximum speed is 100 % at precisely 60°C. FIG.1.3 displays the circuit diagram for the temperature fan speed control and monitoring. The Arduino Uno board (Board1), 16*2 LCD (LCD1), temperature sensor LM35 (IC1), and a few other parts are used to construct it. The circuit's brain, Arduino, controls every function. JUCR


3.1. List of Components:

Following are the components which are used for this project-

3.1.1 Arduino:

A microcontroller is the computer control system on a signal-cheap; it has numerous electronic circuits built into it, which can decode written instructions and convert them to electrical signal; the microcontroller will then step through these instructions and execute them one by one. As an example, a microcontroller could be used to control the fan speed according to the room's temperature. There are different types of microcontrollers; this project only focused on the smallest microcontrollers [10-11-12]. A microcontroller board called Arduino is utilized to manage the entire circuit. Here, an ATMEGA328P microcontroller is built into the Arduino board. For the proposed work, an IC (integrated circuit) is an ATMEGA328P. This IC's primary function is to regulate the circuit that controls all of the parts attached to the various ports of the Arduino. For the highest possible output as well as high precision of readings displayed in the output of the LCD screen, the temperature-based fan control uses an ARDUINO UNO board. This board is programmable and uses the C programming language as its code input. The advantage of Arduino over the other boards is because many circuit embedded boards

available in the market are not compatible with the code such as C, C++ etc...This board comes with a crystal oscillator with a frequency of 16MHz. This type of oscillator is employed in this board because it can deal with the time delay, time synchronization etc., Arduino has both digital as well as analog pins which is used as different ports for the input as well as output ports. The function of the voltage regulator which regulates the voltage given to the ARDUINO board circuit, since if some un-regulated voltage supply comes to the board it regulates the supply.

3.1.1.1 Arduino IDE:

Languages like C and C++. While C++, a well-known object-oriented programming language, is one of the languages used here. The programme is written in embedded C because temperature-based fan control employs this language. The fan works. The ARDUINO IDE is a piece of software that only works with ARDUINO boards. Platform uses the two in two separate temperature ranges, larger than and less than 30°C. When the room temperature exceeds 60 degrees Celsius, the fan functions at its peak efficiency. Windows 7 is the operating system in use here, and it offers the ARDUINO IDE programme a system environment setup. The term "Integrated Development Environment" (IDE) is also used.

Specifications:

- Microcontroller: ATmega328
- Operating Voltage: 5V
- Input Voltage (recommended): 7-12V
- Input Voltage (limits): 6
- Digital I/O Pins: 14 (of which 6 provide PWM output)
- Analog Input Pins: 6 DC
- Current per I/O Pin: 40 mA
- DC Current for 3.3V Pin: 50 mA

3.1.2 LCD Display (liquid Crystal Display):

This component cannot be actuated by conventional IC circuits because it was made specifically to work with microcontrollers. It is utilized to show various messages on a tiny liquid crystal display. Messages can be displayed in two lines of 16 characters each. Additionally, it may show Greek letters, all of the alphabet's letters, punctuation, mathematical symbols, etc. The LCD (2 x 16 characters) and its connection are shown in Fig. 3.1.2 there are several applications for LCD all over the place, including as an electronic display component. Used mostly exclusively for industrial reasons to display the vast range of characteristics in projects, household uses, and other daily applications. In this project, user-friendly and highly clear displays are used to display metrics like the fan's efficiency, which is measured in %, and the room's temperature. In order to manage fan speed based on temperature, a 16x2 display is used, with 16 letters per line and two fixed lines. The LCD type of display is chosen over the LED type for a variety of reasons, including the ease with which it can be purchased affordably, the extent to which it can be customized, and the fact that it supports the more commonly used ASCII characters. Considering that ASCII is the global coding standard for electronic data exchange. Comparatively speaking to LED when ASCII standard is not followed, this LCD makes it simple to delete, insert, and re-enter characters. The optimum way to display the output is hence to choose an LED over an LCD display.

Fig. 3.1.2 LCD Display (liquid Crystal Display)

Specifications:

- Operating Voltage is 4.7V to 5.3V
- Current consumption is 1mA without backlight
- Alphanumeric LCD display module, meaning can display alphabets and numbers
- Consists of two rows and each row can print 16 characters.
- Each character is built by a 5×8 pixel box
- Can work on both 8-bit and 4-bit mode

- It can also display any custom generated characters
- Available in Green and Blue Backlight

3.1.3 LM-35 Temperature Sensor:

The LM35 is an IC-based sensor that measures the temperature of a space and its surroundings, with an electrical output that is directly proportional to the temperature. Compared to a thermistor, the LM35 temperature sensor provides more accurate temperature readings. The LM35 is an alternative to a thermistor. Additionally, it generates voltage as an output in line with the ambient temperature in Celsius. The LM35 sensor doesn't need to be calibrated or trimmed externally. Additionally, it keeps a high degree of temperature precision. The LM35 is used in this research since it is widely available and is a low-cost sensor with a good degree of accuracy for monitoring environmental temperature. It is a three-pin sensor with a +5V input, an output, and GND.

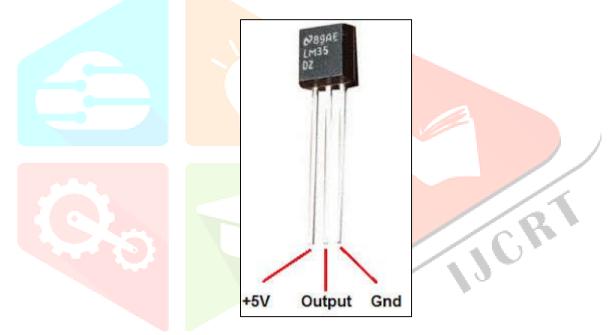


Fig. 3.1.3 LM-35 Temperature Sensor

Specifications:

- Architecture-Bipolar
- Operating temperature range (C)-0 to 70
- Total supply voltage (Max)-32
- Slew rate (V)-03
- Output current (mA) -0.35
- CMRR (4)-80
- Total supply voltage (Min)-3

3.1.4 12V DC Fan:

When a 12 volt direct current (DC) supply is used as input, a fan will operate. By using the temperature as an input and controlling the fan's efficiency as an output, the LM35 temperature sensor regulates the fan's speed. This 12V DC fan has rotor or impeller and blades, just as other varieties of conventional model fans.

Fig. 3.1.4 12V DC Fan

3.1.5 2N2222:

This project makes use of the 2N2222 NPN bipolar junction transistor. By magnifying the lesser power, the 2N2222 BJT is utilized for general purpose applications. This application uses the 2N2222 BJT for switching purposes. It has base, emitter, and collector just like a standard transistor. It is designed to function at moderate voltages and relatively fast speeds with low to medium current ranges. To-18 metal is used in its construction. This transistor is utilized in this project because it is readily available, widely used, and reasonably priced. It is also adaptable. The popularity of this transistor makes its ongoing use obvious. Small signal transistors of this kind are extensively used in modern electronics.

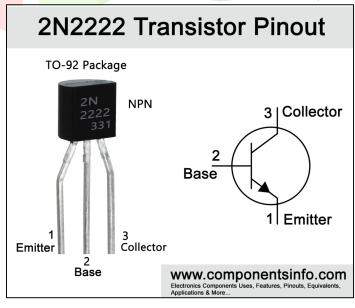


Fig. 3.1.5 2N2222

3.1.6 Resistor:

In a circuit, resistors are typically used to obstruct the flow of current. Afterward, it shields the circuit from the erratic flow of electricity. At normal temperature, the resistor also complies with Ohm's law. In our research, we are using carbon composition resistors, or CCRs, which are made of solid, resistive cylindrical elements. Using a color-coding technique sprayed on the resistor, the value of the resistance is determined. Since carbon, an extremely nonconductive material, makes up this resistor, current is being employed.

3.2 Circuit Diagram and Connections:

This project is implemented by the circuit diagram given below.

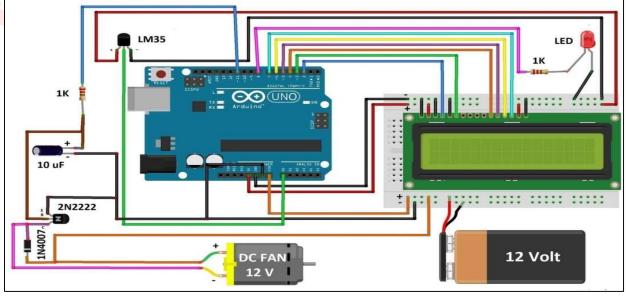


Fig. 3.2 Circuit diagram

JCR

The temperature of the room and the fan's effectiveness are shown on an LCD shield. For powering the circuit, a 12V battery is used. A connection is made between the LM35's positive and negative ends and the bread board. The positive end of the capacitor, the base of the 2N2222 transistor that serves as the circuit's switch, and the resistor's 1K ohms are all connected to the Arduino board's digital pin -11. The negative of the 2N2222 is linked to the collector side of the transistor, which serves as a switch, and the collector of the transistor is connected to the collector side of the 12V DC fan via the IN4007 and the collector side of the transistor. The output pin of the LM35 is connected to the analog pin of the Arduino board. The LED pin is used to indicate whether the speed of the fan crosses minimum and maximum threshold speed of the fan.

3.2.1 Software

Programming in the Arduino programming language is used to create the software for the automatic temperature controller and monitor circuit. Software called Arduino IDE is used to programme the Arduino Uno. The Arduino Uno's ATmega328P has a built-in boot loader that enables users to upload new code to it without the need for an external hardware programmer. Connect the Arduino board to the computer, then in the Arduino IDE, choose the proper COM port. Put the programme (sketch) together. The programme is then uploaded to Arduino through a regular USB port after choosing the relevant board from the Tools Board menu in the Arduino IDE.

3.2.2 Software Implementation

Algorithm

- Set the temp min=30 and set the temp max =60.
- Declare the variable temp to measure the room temperature.
- If the room temperature is less than temperature minutes, the fan speed will be 0.
- If the room temperature is between the temp min and the temperature maximum, the speed of the fan speed=1.5*fan speed.
- If the room temperature is greater than temp max, the LED will burn.
- The loop continues until the user wishes to use the device.

Result and discussion:

The design and building of a fan speed control system to regulate room temperature are explained in this paper. To gauge the temperature of the room, a temperature sensor was carefully selected. Additionally, the Arduino was effectively coded using C/C++ Language to compare temperature and standard temperature, set fan speed, and display their attributes on LCD. The microcontroller had been used to regulate the fan speed using the fan speed in rpm. A temperature-controlled fan is implemented using Arduino. Thus, the fan speed in this instance has been managed by an Arduino board in accordance with the temperature detected with the aid of a temperature and humidity sensor. The project's goal is automatic temperature adjustment of the fan. Additionally, if the room temperature rises, the fan speed will follow suit. In conclusion, the technology that is now being created for programmed control works fairly well for any temperature change. Future versions of the suggested system could incorporate cloud-based predictive analytics and IoET [13].

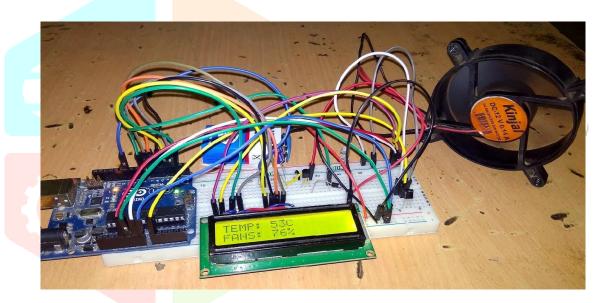


Figure. Hardware circuit in the OFF state.

The fan uses less energy and changes its speed in response to the dynamic changes in the room's temperature. By utilizing embedded system technology, where hardware and software work in tandem to address problems in the real world. In this instance, the challenge is to address electrical energy loss so that the user has more time to focus on his or her task and be effective in dealing with the issues of the current world. The suggested temperature-based fan control system functions well by detecting changes in the ambient temperature. Senior persons and people with physical disabilities will find this to be of great help. It is a very economical approach that may be applied to business. This work may eventually be expanded for industrial use.

Conclusion:

The primary objective of this project was to design a circuit that could regulate a fan's speed in response to variations in the surrounding temperature. The Aurdino board was used to construct the circuit, and the other parts were connected. As a DC fan, it was put to the test. The test results showed that, at the desired speed, our fan performed estimably.

References:

1. National Power and Energy Conference (PEC on) 2004 Procedures, Kuala Lumpur, Malaysia.

2. Hamad S. H; S. M. Bashi, I. Aris and N. F. Marlah. Speed Drive of Single-stage Induction Motor.

3. K.A Akpado1, C.O Ezeagwu2, A. Ejiofor3, A.O N wokeke Global Journal of Advanced Research in Electrical, Electronics and Instrumentation IJIRT 147629INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 23 Engineering, Vol. 2, Issue 7, July 2013, Copyright to IJAREEIE www.ijareeie.com 3470Design, Modeling and Simulation of a Microcontroller Based Temperature Control in a Ventilation System.

4. Huijsing, J.H., 2017. Precision instrumentation amplifiers, in: Meijer, G.C.M., Pertijis, M.A.P., Makinwa, and K.A.A, Smart sensor system: Emerging technologies and application. Weiley, Chichester, pp. 42-47.

5. K. Singh, M. Dhar, P. Roy, Automatic fan speed control system using Arduino, ISSN: 2456-4184 International Journal of Novel Research and Development (IJNRD) 4 April 2017.

6. S. Verma, A. Das, S. Dey, P. Chowdhury, Automatic Temperature Controlled Fan Using Thermistor, ISSN: 2321-1156 International Journal of Innovative Research in Technology & Science (IJIRTS) July 2016.

7. T, Fu, X. Wang, G. Yang, "Design of Automatic- Temperature-Control Circuit Module in Tunnel Microwave Heating System," In Proceedings of the IEEE International Conference on Computational and Information Sciences, pp. 1216-1219, 2019.

8. B Iyer, N Patil IoT enabled tracking and monitoring sensor for military applications Int J Syst Assur Eng Manag, volume 9, p. 1294 – 1301, 2018.

9. Herwaarden van, A.W., 2018. Thermal sensors, In: Meijer, G.C.M., Pertijs, M.A.P., Makinwa, K.A.A. (Eds.), and Smart sensor system: emerging technologies and applications Weiley, Chichester, pp, 42-67.

10. Sixth Int'l Conference on Electrical, Electronics and Civil Building (ICEECE'2014) Nov. 27-28, 2014 Cape Town (South Africa) Automatic Fan Speed Control System Using Microcontroller Mustafa Saad, Hossam Abdoalgader, and Muammer Mohamed. 11. Mustafa Saad, Hossam Abdoalgader, and Muammer Mohamed Cape Town (South Africa) Automatic Fan Speed Control System Using Microcontroller Sixth Int'l Conference on Electrical, Electronics and Civil Building (ICEECE'2014) Nov, p. 27 – 28, 2014.

12. Surabhi1, Upendra Prasad2, Vivek Kumar Jain3, Vol. 4, Issue 7, July 2015, Design and Fabrication of Temperature based DC Fan Speed Control System utilizing Microcontroller and Pulse Width Modulation Technique.

13. P. Deshpande and B. Iyer, "Research directions in the Internet of Every Things (IoET)," 2017 International Conference on Computing, Communication and Automation (ICCCA), Greater Noida, 2017, pp. 1353-1357, doi : 10.1109/CCAA.2017.8230008.

