© 2023 LICRT | Volume 11, Issue 5 May 2023 | ISSN: 2320-2882

IJCRT.ORG

ww.iicrt.ord

INTERNATIONAL JOURNAL OF CREATIVE RESEARCH THOUGHTS (IJCRT)

An International Open Access, Peer-reviewed, Refereed Journal

STATIC ANALYSIS & IDENTIFICATION OF MALWARE IN SANDBOX ENVIRONMENT

¹Supriti Banik,²Mr. Toufique Ahammad Gazi

¹M.Tech Student,²Assistant Professor ¹Computer Science & Engineering, ¹Supreme Knowledge Foundation Group of Institutions, Hooghly, India

Abstract: Usage of internet is a daily routine nowadays. From office work, e-commerce, banking, education, business, entertainment, stock market, everywhere we depend abundantly on internet. The numbers of internet users are growing largely day by day and so does cyber crimes. Malware is like a weapon used for cyber crime. Analysis of malware is important to prevent malware's action in today's cyber world. This paper is written of static analysis and identification of malware in sandbox environment. Here, in windows 7 ultimate sandbox, static malware analysis is performed using some tools and the malware is identified. Also some details about the malware attached file type; characteristics and functions of the malware, which discover by tools; have been discussed in this research paper.

Index Terms - Malware, static malware analysis, tools, method of analysis, results, discussion, identification.

I. INTRODUCTION

Malware is the malicious software or file that is delivered over network for unlawful motive. There are multiple types of malware exist. Section 8 denotes about overview of literature of various researchers. Section 3 denotes about malware and its kinds. From section 4 and 5 malware analysis and variety of analyzing method are known. From data extraction of file through static malware analysis, we come to know about the file or folder acquired by us is malware infected or not. Section 6 defines about the usage of static analysis tools used in this research. Method of analysis performed in research is stated in section 7. In section 8, result of the whole analysis process is discussed. Conclusion and future work are in section 9. Acknowledgement is in section 10. At last the references, which have helped in performing this research by carrying a lot of useful information.

1.1 Objectives

The main objectives of this research are-

- Creating a sandbox environment.
- Downloading some static analysis tools.
- Using the tools, analysis the collected sample in various ways and identifying the malware type.
- Discussing about the characteristics and other details of this malware according to the analysis result.

II. OVERVIEW OF LITERATURE

Narender Solanki and Dr. Neetu Sharma [1] said that the static analysis can be done by some methods like; AV (antivirus) scanning using the hash values; which helps to identify the existing malware and it's nature; checking it's a packed malicious file or not and the packing tool, picking the strings hidden in malware binary. They proposed also the reverse engineering technique using IDA or Ollydbg tool to convert the machine readable language to human readable assembly language to know about the malware functionality.

Dolly Uppal, Vishakha Mehra and Vinod Verma [2] also gave proposal of some static analysis techniques like; reverse engineering, to built the source code from assembly code of software extracted from binary for finding it's maliciousness, file signature analysis for detecting malware, heuristic analysis etc. They expressed four ways of heuristic analysis. Firstly, file based, where the suspected file will undergo a deep analysis to observe the purpose, working process etc. Secondly, weight based, where every sample executable will be weighted by dangerous activity. If the weight value crosses the predefined limit, it will be known as malicious. Thirdly, rule based, where mismatch of some predefined rules, which was made by analyzer for defining the executable, tells about the maliciousness of the executable. Fourthly, generic signature based, where by checking the previous reports of antivirus engines using the signature of malware, can be exposed the new variant of old malware.

S Megira, A R Pangesti and F W Wibowo [3] performed their static analysis by using the tools; CFF explorer for Portable Executable (PE) header analysis, PEview for PE structure analysis, Virustotal for online scanning, IDA for code dissembling or reverse engineering and dependency walker for import analysis.

Syarif Yusirwan S, Yudi Prayudi and Imam Riadi [4] implemented basic static malware analysis by using such tools-Virustotal.com; Md5deep (hash calculating tool); three types of pack/unpack detection tool like, PEid, RDG packer, Exeinfo PE; D4dot (.net unpacker); PEview (structure displayer of PE). And for advanced techniques they used BinText, Dependency walker and IDA.

Omer ASLAN [5] created a comparison between the performances of some static malware analysis tools and malware detection tool in a virtual environment (Windows 7, 8.1 and 10). He used PEid, PEview, PEBrowser professional (disassembler), BinText, MD5deep, UPX, dependency walker, resource hacker, IDA pro, for analysis statically. Norton, Kaspersky, Avast, Bitdefender, Avira, ClamAV, McAfee- these are the most common offline anti-virus softwares, which are used for his research. As per his research, for new coming or unknown malware, static tools are better than anti-virus softwares.

III. WHAT IS MALWARE?

Malware or Malicious software is a program (code) or file, which is designed to hurt computer, network or server deliberately. The malware steals, encrypts and deletes sensitive facts. There are numerous sorts of malware exist. A number of them are computer virus, worm, Trojan horse, spyware, ransomware etc. Malware can infect the system automatically for vulnerable services of network. Downloading files, softwares and so on from web browser invites the malware. Cyber criminals intentionally send malicious files into the sufferer's device with the aid of unsolicited mail or message. By means of clicking attachment of this form of mail or message spreads over the device.

- Virus: It's far one of the conventional type of malware which can execute by itself and spread by way of infecting other applications or files. Virus especially comes as an attachment of an email. After opening this, device is infected.
- Worm: It's like virus, but it can self-replicate without a host program and commonly spreads from machine to machine, without any interaction of user.
- Trojan Horse: it is a kind of malware is designed to get right of entry to a system as a legitimate software program. After installation, it is able to execute their malicious capabilities on owner's data or device.
- Spyware: It is a type of malicious software, which installed secretly on device and collects user data from the device and observes user's activities without their knowledge.[6]
- Ransomware: It is designed to infect user's system and encrypt its data. After being inaccessible the system, cyber criminals demand money from the victim to restore the system to its previous state.
- Rootkit: It is a malicious software, designed to gain unauthorized access over a system [7].
- Keylogger: Keylogger, also called as keystroke logger, is a malware same like spyware. By monitoring every keystroke of user, steals important data [8].

IV. MALWARE ANALYSIS

Malware analysis is a process by which all the details about the arrived malware of system like; its identity, characteristics, functions, purpose of use, how to defeat it; can be known. After finding the malicious file, it is analyzed by examining its code or by executing it in a safe controlled environment.

V. Types of Malware Analysis

To analyze malware, there are three ways - Static Malware Analysis, Dynamic Malware Analysis and Hybrid Malware Analysis.

5.1Static Malware Analysis

Analyze malicious software or file (malware) without executing its program, is called static malware analysis. This is the safest way of malware analysis because of not running of the malicious code does not infect the system. There are various ways to extract information from the sample like, examining the file format, string extracting, file fingerprinting, antivirus scanning etc. [9]

5.1.1 Antivirus Scan

Antivirus software scanning is one of the simplest ways to recognize the presence of malware. It's an essential part of devices safety. But it needs to be updated on every time. Kaspersky, Avast etc. are some popular offline malware scanning and removing software. There are online scanners also available. VirusTotal is a kind of online malware scanning platform.

5.1.2 File Format

It is a data structure, which contains all of the important and necessary data required by the operating system to run the executable file. From here the analyst can known about the sample extension (like, .dll, .exe etc.), target operating system (like, PE file targets windows operating system). Besides it a lot of useful details also can be extracted from the sample like size, compilation date and time, strings, functions, libraries etc.

5.1.3 File Fingerprinting or Hashing

Every suspicious file has a signature. File fingerprinting or file identification is a method of identifying the signature of a binary file. Hash value is a completely unique fingerprint or identifier. Hash is displayed in hexadecimal format. It is used to know that the malware file is changed or not. By searching this value in any online malware scanning website like VirusTotal, Any.Run etc., we come about to know that the malware is previously analyzed or it is a fresh one. There is a variety of different types of hash exist. Some widely used hashes are described below.-

• MD5: MD5 is the Message Digest hashing algorithm of 5th iteration, which creates a 128bit hash value. It is also designed by Ronald Rivest in 1991.

www.ijcrt.org

- SHA1: SHA1 refers to Secure Hash Algorithm 1, which is a hashing algorithm produced by United States National Security Agency (NSA). It takes an input and generates 160 bit (20 bytes) hash value as output.
- SHA256: SHA256 is the Secure Hash Algorithm, a part of the SHA2 family of hashing algorithms. It was developed in 2001 by NSA. The hash value, produced by it is 256 bit.
- SHA512: SHA512 is also a part of SHA family, generates 512 bit hash value.[10]

5.1.4 String Extraction

It is a way of extracting readable words and characters from a suspicious file. Strings are made of ASCII (American Standard Code for Information Interchange) and Unicode (Universal Character Encoding) format. Strings consist of filenames, domain names, IP addresses, attacking command, URL (Uniform Resource Locators) etc. For an example; if a malware creates file, this filename will be stored as a string or the domain name, controlled by malware attacker will be stored as domain name in a string. So, extraction of strings reveals valuable data. Strings give a hint about what malware can do. There are also some garbage strings or unwanted strings are obtained in this process. These are used by cybercriminals to keep busy to analyst.

5.2Dynamic Malware Analysis

Analyze to a malware by executing the program in a safe or controlled environment and monitor its behaviour, is called dynamic malware analysis. For obfuscated malware, dynamic malware analysis is used. In this analysis, behaviour of the malware is monitored by monitoring API or system calls, which is used by malware. If programs are not executed in a safe environment by some isolated tools, then malicious programs can affect the system.[11]

5.3Hybrid Malware Analysis

The combination of both static and dynamic malware analysis is called hybrid malware analysis. When the malicious code is more sophisticated, then this type of process is used to examine malware.[12]

Static malware analysis, where malware sample is thoroughly examined by some tools, is performed in this research.

VI. STATIC MALWARE ANALYSIS TOOLS

Some open source tools are used in this research for this static analysis process of malware. These are -

6.1Basic Static Analysis Tools

		Table 1 Basic Static Analysis Tools
	Tools	Usage
1.	Exeinfo PE	It is a software, is used to understand that the sample is executable or not, packed or unpacked. It gives unpacking tips and also more information about the sample.
2.	UPX	Cybercriminals use this tool to pack or compress the malicious file for hiding the original functions. Also the executable file can be decompressed by the help of UPX (Ultimate Packer for eXecutables).
3.	Free Hex Editor Neo	It is used to extract and edit file's binary in hexadecimal and ASCII format.
4.	HashCalc	To calculate hash value (like, MD5, SHA-1, SHA-256), which is the identification mark or fingerprint of a file, this tool is used.
5.	VirusTotal	This is a website, where suspicious URLs or files are analyzed by some antivirus engines and detect the malware or malicious contents.
6.	Pestudio	It provides a lot of information about the suspected Portable Executable or PE file like some basic data, VirusTotal report, imports, libraries, strings, etc. which are maliciousness indicator.
7.	BinText	It is a tool used for extracting string of a malware sample.

6.2Advanced Static Analysis Tool

Table 2 Advanced Static Analysis Tool

Tool	Usage
1. Dependency Walker	It is a tool shows the .DLLs and their functions, imported by malware.

VII. METHOD OF ANALYSIS

Step 1: To avoid accidental execution of the suspicious file, the first step of analyzing process is 'Creating a Safe Environment'. So, for creating a sandbox, VMware Workstation Pro 17 Software is downloaded. This software supports installation of multiple operating systems at a time in a single computer (both Windows and Linux operating system).

Then Windows 7 Ultimate (64 bits) virtual machine (sandbox) is installed in it. There are more vulnerability is present in this version of windows operating system, than other version. This makes the process some easier by attracting the malware.

After installing this operating system, windows firewall and windows updates are turned off because both of them prevent malware to come in device. Then previously mentioned tools are downloaded and installed in this virtual machine. The UPX tool is placed in the system32 folder (storage of many sensitive system files). The system32 folder is present at the windows folder of the Local Disc (C:) or C drive in computer. The UPX tool is utilized by opening Windows PowerShell.

Step 2: When the set up is completed, then a sample of suspicious file is collected for static analysis. Here 'dc030778938b8b6f98236a709d0d18734c325accf44b12a55ecc2d56b8bb9000' is this sample. Due to malicious function, it is in a zipped folder and the folder is password protected. So, after extracting the information of zipped folder with the given password, it can be used. After extracting the mentioned sample file is then opened (it can also be dragged from its location and dropped in tool) in previously defined tool to analysis that it is malicious or not and if yes, then the type of malware.

VIII. RESULT AND DISCUSSION

8.1Exeinfo PE

After opening the sample file in this tool, it gives some important information as shown in the Fig.1 below.

Figure 1 Sample analysis using Exeinfo PE

Tool confirms that the file isn't a packed or compressed file. From this tool, it can be known that the suspicious sample file's extension is .dll, it does imply it is a Dynamic Link Library file. A .dll file is an executable file although it is not directly executable however it contains executable codes. Its architecture is 32 bit and created on 2016. Subsystem is windows GUI (Graphical User Interface). Actually subsystem specifies the environment of the executable file. Exeinfo PE shows it's a PE or Portable Executable file, which is made for windows operating system. The .text section of file contains the entry point (first bytes are 55 8B EC 33), the place in a program where the execution of the program begins. Exeinfo PE reveals more data about all sections. This tool gives a hint that in case of getting the assembly code from machine readable code of the file, debugging and disassembling tools like OllyDbg version 2 or IDA version 5 can be used. Or, Pelles C, a development kit consists of many editor, debugger etc., made for windows operating system, can be used.

8.2UPX

If the sample file was packed, the UPX tool could have been used to unpack it. Fig.2 shows various usage of this tool. For an instance, to decompress or unpack the packed file, after opening Windows PowerShell, we have to follow the following process-

E Windows PowerShell		
Windows PowerShell Copyright (C) 2009 Microsoft Corporation	. All rights reserved.	
PS C:\Users\Lab-5-PC-202> upx Ultimate Packer f Copyright (C) UPX 3.95v Markus Oberhuner, Laszlo	or eXecutables 1996 - 2018 Molnar & John Reiser Aug 26th 2018	1.6
Usage: upx [-123456789dlthVL] [-qvfk] [-	o file] file	
Compands: -1 compress faster -4 decompress -5 give mort basis -5 give mort basis of the write and the series of the -5 flow of the series of the series of the -6 facts compression of surgicious file. Seriesthand to compress Type 'upx -baby' for more detailed help	-9 compress better file -9 list compressed number -1 display software license -1 display software license -v be verbose files	12
UPX comes with ABSOLUTELY NO VARBANTY; f PS C:\Users\Lab-5-PC-202> _	or details visit https://upx.github.io	

Figure 2 Usage of UPX tool

Type [upx -d (drag and drop the sample file from its current location)] -> Enter

File can also be packed (as the cybercriminals do) by this tool. The command is- upx -9 -qvfk (drag and drop the sample) -> Enter

8.3Free Hex Editor Neo

This tool extracts the file format or binary in hexadecimal and ASCII format. File format is a source of important information about sample file. From ExeinfoPE, it is able to be known that the sample file is a PE file.

So Free	e Hex I	Editor	Nec	>																		
File	Edit	Vie	w	Sele	ect	Ope	ratio	ns	Bog	kmar	ks	NT	S Str	eam	5	Tool	Hi	story	Wind	wob	Help	
1	4	-		P	-			1			E					Q	¥.	10		• 1	16	2 21
4	dc0	30778	8938	b8b6	5f98	236a7	09d0	d187	734c3	25acc	f441	×	c									
00000	000	00	01	02	03	04	05	06	07	08	09	0a	0b	0c	0d	0e	20					
00000	000	40	5a	90	00	03	00	00	00	04	00	00	00	11	11	00	00	MZ .				
00000	010	b8	00	00	00	00	00	00	00	40	00	00	00	00	00	00	00			8		
00000	020	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00					
00000	030	00	00	00	00	00	00	00	00	00	00	00	00	80	00	00	00			e		
00000	040	0e	11	ba	Oe	00	b4	09	cd	21	b 8	01	40	cd	21	54	68		İ	LÍ	ITh	
00000	050	69	73	20	70	72	61	67	72	61	6d	20	63	61	6e	6e	61	is p	rogri	am ca	nno	
00000	060	74	20	62	65	20	72	75	6e	20	69	6e	20	44	41	53	20	t be	run	in D	os	
00000	070	6d	61	64	65	2e	od	od	Oa	24	00	00	00	00	00	00	00	mode		¢		
00000	080	50	45	00	00	40	01	04	00	7d	ba	04	58	00	00	00	00	PE	L)*.X.		
00000	090	00	00	00	00	e0	00	0e	21	Ob	01	02	32	00	c8	00	00		á!.	2.	È	
00000	0a0	00	4a	00	00	00	00	00	00	12	b3	00	00	00	10	00	00	.J				
00000	000	00	eO	00	00	00	00	00	10	00	10	00	00	00	02	00	00	. å				
00000	0c0	04	00	00	00	00	00	00	00	04	00	00	00	00	00	00	00					
00000	obo	00	40	01	00	00	10	00	00	00	00	00	00	02	00	00	00					
00000	0e0	0.0	00	10	00	00	10	00	00	00	00	10	00	00	10	00	00					
00000	010	00	00	00	00	10	00	00	00	00	00	00	00	00	00	00	00					
00000	100	c4	1d	01	00	CB	00	00	00	00	00	00	00	00	00	00	00	A	È			
00000	110	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00					
00000	120	00	30	01	00	7c	80	00	00	00	00	00	00	00	00	00	00	.0	1			
00000	130	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00					
00000	140	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00					
00000	150	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0					

Figure 3 Malware file format by Free Hex Editor Neo

Here the table 3 shows the PE file structure [13] given in the PE file format.

Table 3 PE file structure

8.3.1 DOS Header / MZ Header

It contains File Signature or Magic Number, which express the file type or file extension. In the sample file, used in this research, the file signature is '4D 5A' [14] in hexadecimal format and 'MZ' in ASCII format and size is 2 bytes. This number is present at the beginning of file format. So, the file is an executable file and the file extension will be .exe or .dll or their other variants.

	4d	58	1		•	(h	N N iex: fo	lag uml ade rm	ic ber cim at)	al							Magic Number (ASCII format)
dd	03077	1938	b8b	5f982	36a7	0940	d18	734c3	25ac	cf448	b >	٢					
00000000	00	01	02	03	04	05	06	07	08	09	0a	0b	0c	0d	.0e	10	
00000000	4d	5a	90	00	03	00	00	00	04	00	00	00	ff	11	00	00	MZ
00000010	b8	00	00	00	00	00	00	00	40	00	00	00	00	00	00	00	
00000020	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
00000030	00	00	00	00	00	00	00	00	00	00	00	00	80	00	00	00	·····€···
00000000	0-		-	-	00	~ *		-	-				-			00	a

Figure 4 Dos header/MZ header of malware file format and the Magic Number

8.3.2 DOS Stub

DOS stub is present in file format from offset 0×40 (00000040) to $0 \times 7f$ (00000070). It is a simple program of 64 bytes, which prints 'This program cannot be run in DOS mode'.

 00000040
 0e
 1f
 be
 0e
 0b
 40
 9c
 21
 be
 01
 c
 cd
 21
 54
 68
ft;.Lfrh

 00000040
 0e
 1f
 0c
 0c
 0

Figure 5 Dos stub of malware file format

8.3.3 PE Header / NT Header

PE header or NT header consists of 3 parts-

8.3.3.1 PE Signature

It confirms that the file is a PE file. '50 45' (offset 0×80) in hexadecimal format is the PE signature, which is present in the beginning of PE header and in ASCII format it is 'PE'.

8.3.3.2 PE File Header

It carries some basic information about the file. It is present in the next 20 bytes of the PE signature. It's also known as Common Object File Format (COFF) file header.

8.3.3.3 Optional Header

It also carries some useful details about the file. It is present after the PE file header in file format.

Data Directory- Data directory, which is present in last some bytes of optional header, contains useful data about the executable file.

8.3.4 Section Table / Section Header

It is present after data directory from offset 0×170 in file format. It consists of .text section header, .rdata section header, .data section header, .reloc section header. These carry a lot of important information about four sections present in executable file.

1.7					27											**			
1									26	74	65	78	74	00	00	00	.text		text section header
9	6 1	6	00	00	00	10	00	00	00	cŝ	00	00	00	64	00	00	stt	10.00	Mean Section Includes
0	0.0	00	00	00	00	00	00	00	00	00	00	00	20	.00	00	60	······		
2	e Ì	72	64	61	74	61	00	00	00	01	00	00	00	eű	00	00	.rdata		.rdata section header
0	0 (02	00	00	00	¢¢.	00	00	.00	00	00	00	00	00	00	00	t	20	
0	0 1	00	00	00	40	00	00	40	26	64	61	74	61	00	00	00	88.data		data section header
5	4.	3d	00	00	00	fQ	00	00	00	38	00	00	00	ce	00	00	Tx		.uata section neauer
0	0.0	00	00	00	00	00	00	00	00	00	00	00	40	00	00	c0			
2	e '	72	65	fc	61	63	00	00	70	08	00	00	00	30	01	00	.reloc0		and a second second second
0	0.1	Da I	00	00	00	06	01	00	.00	00	00	00	00	00	00	00			.reloc section header
0	0 1	00	60	00	40	00	00	42										5555	
1.2																			

8.3.4.1 Sections

There are 4 sections are present in the file.

2e 74 65 78 74 00 00 00	.text section
2e 72 64 61 74 61 00 00	.rdata section
2e 64 61 74 61 00 00 00	.data section
2e 72 65 6c 6f 63 00 00	.reloc section

Table 4 Sections in the file format

- i. .text section- It is present at first 8 bytes of .text section header. It contains executable code.
- ii. .rdata section- It is present at first 8 bytes of .rdata section header. It contains read only data within the program. This data is globally accessible.
- iii. .data section- It is present at first 8 bytes of .data section header. It contains data which is both readable and writable and accessed by the program.

8.4HashCalc

Hash calculator shortly HashCalc calculates the file's Hash value as previously mentioned as tool list. Figure 8 shows different types of the hash values of the suspicious sample .dll file, calculated by this tool. Like MD5 hash-9F72D6C196C5814E16FA5AD192E9EB65, SHA256 hash- 19C2300F4FBA72B3A6A03AA7EB54AB1AB4F250A29742DAD. Any of hash value of the file can be taken for analyzing purpose in online antivirus scanning website. File names should not be used directly in online scanning platform because as a subscribed member of this platform, the attacker will know about the capture and analysis of his files. This may force him to turn to other methods of attack.

H HashCalc
Data Format: Data: File ▼ C:\Users\Lab-5-PC-202\Downloads\dc030778938b8
Key Format Key: Text string
I MD5 [9172d6c196c5814e16ra5ad192e9eb65
Image: MD4 b60c90583f1c3667a8d4ce95ec4f6db2
Image: With State Image: With State
▼ SHA256 19c2300f4fba72b3a6a03aa7eb54ab1ab4f250a29742dad
▼ SHA384 483fed448154c50b81a6521516d1aafb9a52bc4de47ba3€
✓ SHA512 ef0692c8d928b8dd7f6ac957fb43be23a18762dc/6302ba€
✓ RIPEMD160 d11669452378c1c736b066/da4754784ec28/321
PANAMA b5911310140/22dee57a24a06bb102/cr/4016edafef9e761
✓ TIGER b629f65565faa4d77e5a336897a527823fe9cc25280835b
✓ MD2 5aea31236/98ba7aee1d556d8aef9411
₩ ADLER32 82fe99a7
☞ CRC32 2475/175 I
I Image: Contemp / eMule b60c9058311c3667a8d4ce95ec4l6db2
StaraSoft Calculate Close Help

Figure 8 Different types of hashes using HashCalc

VirusTotal website is used for online scanning of the sample file in this research.

8.5VirusTotal

VirusTotal, a free online tool, is used to analysis suspected files, Urls or IP addresses or domains. It provides a report of many of antivirus engines and website scanners, which detect the sample file as malware or a threat. VirusTotal platform also displays the file type, file size, last analysis time of file, several types of file name given by many researchers etc.

In this research, one of hash value, the MD5 (9F72D6C196C5814E16FA5AD192E9EB65) is submitted in VirusTotal website for analysis. Here the figure 12 shows that the sample is a DLL file, sized 68 kb, which is malicious, confirmed by 58 security vendors and one sandbox, out of 69. The last analysis of this file is in 25th April, 2021 at the time of 12:55:27 UTC (Coordinated Universal Time), its mean the malware is not a new one. The SHA256 hash is displaying in the Fig.9, which is19c2300f4fba72b3a6a03aa7eb54ab1ab4f250a29742dadd2d02650dd13f620c. Mal1 is a name of this file, which was given by other researchers.

≣ 2		OTAL		Q	000
Community Score C	langed this file	as malicious	C	0_0	
19c2300f4fba72b3a6a03aa7eb54ab1ab 4f250a29742dadd2d02650dd13f620c Mal1 pedi	68.00 KB Size	2021-04-25 12:55:27 UTC 2 years ago	ODL	0 L	

Figure 9 Various types of security vendors flagged the sample as malicious

As per antivirus engines' report in VirusTotal after analysis, the threat in the file is Trojan Horse (or Trojan) malware. Maximum engines confirmed that the malware, present in the sample file is fareit or tepfer or ste, which are the variants of trojan.

- Fareit- It is a malware belongs to trojan family, used to steal password and sensitive data of user and send it to hacker. By clicking on malicious link, attached with spam mail or message, this malware affects the user computer.
- Tepfer- Like fareit, it also belongs to trojan family, steals personal data like accounts details of cloud storage or email id, cookies data from infected computer.
- Ste- It is a malware of trojan family, performs malicious actions in victim's computer in cybercriminal's direction. Figure 10 displays some of the antivirus engines that analyzed the file, used in this research.

=	VIRUSTOTAL	Q 888
SUMMARY DETECTION DET	AILS BEHAVIOR COMMUNITY 2	
Join the VT Community and enjoy addition key to <u>automate checks</u> .	al community insights and crowdsourced detections, plus an API	
Popular threat label ① trojan fareit/tepfer Thre	at categories trojan Family labels fareit tepfer	ste
Security vendors' analysis ①	Do you want to automate check	xs?
Acronis (Static ML)	() Suspicious	
Ad-Aware	Generic.PWS.2.C460A874	
AegisLab	Trojan Win32 Generic mtwx	
AhnLab-V3	Trojan/Win32 Tepfer.C3464060	
Alibaba	TrojanPSW:Win32/Tepfer.c7a16362	
ALYac	Generic PWS.2.C460A874	
Arcabit	Generic.PWS.2.C460A874	/

Figure 10 Some of antivirus engines and website scanners analysis the sample file

VirusTotal reveals the different types of hash like MD5, SHA-1, SHA-256 etc and also imphash, which is used to identify malware binary of same family. The file is a Portable Executable file, its target is Microsoft Windows (GUI) machine of 32 bit Intel 80386 microprocessor or later compatible version of this processor. The compilation (or creation) date was 17th October, 2016 at 11:48:13 UTC. VirusTotal displays the entry point of the malicious dll file, which is 45842 and gives some basic details like name, virtual address, raw size, virtual size, entropy level, MD5 hash value about the four sections present in file.

The imported DLLs as per VirusTotal report, are urlmon.dll, wininet.dll, kernel32.dll, wsock32.dll, advapi32.dll, ole32.dll, shlwapi.dll, user32.dll, userenv.dll (will be discussed below). Besides these VirusTotal gives some additional information of submitted file.

8.6Pestudio

Pestudio is a free tool used to analyze a windows executable binary statically. After dropping the sample file in this tool, it displays many useful data about file using some tabs.

₽ E × 0 8		
c:\users\lab-5-pc-202\downloads\dc0307	property	value
→ Jal indicators (virustotal > score) * → > virustotal (58/69) → > dos-header (64 bytes)	md5 sha1 sha256	9F72D6C196C5814E16FA5AD192E9E865 B25529B0C3FD7286DAA651E29BB25E160EB73BCB 19C2300F4FBA72B3A6A03AA7EB54AB1AB4F250A29742DADD2D02650D
	first-bytes-hex first-bytes-text	4D 5A 90 00 03 00 00 00 04 00 00 07 FF F0 00 08 80 00 00 00 00 00 00 4 M Z
— ▷ optional-header (GUI) — ➡ directories (2)	file-size entropy	69632 bytes 6.339
> sections (4) *	signature tooling	1ABBF3A6C8391AF2E0DE2291D34AF7FB n/a n/a
	entry-point file-version	55 88 EC 33 D0 33 C2 33 D0 68 28 B3 00 10 90 F8 90 72 02 90 C3 FE 83 7D n/a
🔂 .NET (n/a) 🔂 resources (n/a)	description file-type	n/a dynamic-link-library
	cpu subsystem	32-bit GUI
	debugger-stamp	Mon Oct 17 11:48:13 2016 UTC n/a
overlay (ri/a)	import-stamp	n/a 0>00000000

Figure 11 Malware analysis using Pestudio

© 2023 IJCRT | Volume 11, Issue 5 May 2023 | ISSN: 2320-2882

The above Fig.11 of pestudio is representing some the initial information about research sample. The widely used hashes (md5, sha-1, sha-256), the first bytes of malware binary in hexadecimal & ASCII format, which contains the file signature (4D 5A in hexadecimal and MZ in ASCII, described previously), file size, entropy value (6.339), entry point of the code, imphash value, CPU architecture (32 bit), subsystem (Windows GUI), compiler stamp (compilation time and date) are revealed by pestudio. Here, entropy is the measure of the random nature of file's data. Higher entropy value signifies more randomness. A file with high entropy value may be malicious.

The all extracted data from the tabs of pestudio are-

8.6.1 Indicators tab

This tab highlights data within the sample file that may be malicious. Table is representing that pestudio tool has identified some indicators and classified them on a scale of 1-3. Those marked as 1 are definitely highly malicious indicators.

Indicators	Detail	Level
VirusTotal score	58 out 69	1
	http://reninparwil.com/zapoy/gate.php	
3 URLs	http://leftthenhispar.ru/zapoy/gate.php	1
	http://reptertinrom.ru/zapoy/gate.php	
	OLE32 Extensions for Win32	
3 Libraries	Internet Extensions for Win32 Library	1
	Windows Socket 32-Bit Library	
Imports 🛛 🖊	30	1
File Hash	19C2300F4FBA72B3A6A03AA7EB54AB1A	3
File Size	69632 bytes	3
File Subsystem	GUI	3
	services, security, rdp, network, cryptography,	
13 APIs	execution, setup, file, reconnaissance, memory,	3
	dynamic-library, registry, exception	
Imphash	1ABBF3A6C8591AF2E0DE2291054AF7FB	3

Table 5 Malicious indicators listed by Pestudio

8.6.2 Virustotal tab

This tab highlights some antivirus engines or website scanners (58/69) that already analyzed the file and identified as malicious. The dates of every analysis are also mentioned.

8.6.3 Dos-header tab

This tab displays the hash values, size, entropy value and file ratio of dos-header in malware binary. It also shows the location of file header.

8.6.4 Dos-stub tab

This tab shows the hash values, size, entropy value, file ratio and the error message (!This program cannot be run in DOS mode) of dos-stub in malware binary.

8.6.5 File-header tab

This tab shows some characteristics of file header revealed by pestudio, as shown in table below-

Property	Value	Detail
Dynamic-link-library	0×2000	true
32-bit word support	0×0100	true
File-can-be-executed	0×0002	true
Line-stripped-from-file	0×0004	true
Local-symbols-stripped-from-file	0×0008	true

Table 6 Characteristics of file header in Pestudio

Pestudio also gives some general information like compiler stamp (Mon Oct 1711:48:13, 2016 UTC), optional header's size (224 bytes), PE signature (PE00, here 00 means null), the PE signature value is 0×00004550, targeted machine (Intel 386), number of sections (4) etc.

8.6.6 Optional header tab

This tab highlights some general information about optional header of the sample file format written in table below-

Property	Value	Detail	
Subsystem	0×0002	GUI	
Magic	0×010B	PE	
File checksum	0×00000000	0×0001EA07 (expected)	
Entry point	0×0000B312	section: .text	
Base of code	0×00001000	section: .text	
Base of data	0×0000E000	section: .rdata	
Size of code	0×0000C800	51200 bytes	
Size of initialized data	0×00004A00	18944 bytes	
Size of image	0×00014000	81920 bytes	
Size of headers	0×00001000	4096 bytes	
Size of stack reserve	0×00100000	1048576 bytes	
Size of stack commit	0×00001000	4096 bytes	
Size of heap reserve	0×00100000	1048576 bytes	
Size of heap commit	0×00001000	4096 bytes	
Section alignment	0×00001000	4096 bytes	
File alignment	0×0000200	512 bytes	
Directories count	0×00000010	16	
Image base	0×10000000	0×1000000	
Linker version	2.50	2.50	
OS version	4.0	Windows NT 4.0	
Subsystem version	4.0	4.0	

Table 7 Optional header details in Pestudio

Here, in the table, the Subsystem is GUI (Graphical User Interface) version of 4.0, is required to run the file. File is a Portable Executable file as previously said. Entry point location, where the executable code is present, is .text section and the beginning of data is present in .rdata section. Initialized data means the writable data. The image base specifies the preferred address to which the executable must be mapped to memory.

8.6.7 Directories tab

The Fig.12 shows this tab, where 2 directories and their basic details are highlighted. The directories are import and relocation. Import directory is present in .data section and relocation is in .reloc section.

C:\users\lab-5-pc-202\downloads\c	type (2/15)	size (bytes)	location (address)	location (section)	time-stamp
	export	0x00000000	0x00000000		
Virustotal (58/69)	import	0x000000C8 (200)	0x00011DC4	.data	0x00000000
dos-neader (64 bytes)	resource	0x00000000	0x0000000x0		
dos-stub (04 bytes)	exception	0x00000000	0x00000000		
b Els basedes (lotal 296)	security	0x00000000	0x00000000		
antional-beader (GUD)	relocation	0x0000087C (2172)	0x00013000	.reloc	0x00000000
B directories (2)	debug	0x00000000	0x00000000		
B sections (4) *	architecture	0x00000000	0x0000000x0		
libraries (flag)	global-pointer	0x00000000	0x00000000		
imports (flag)	thread-local-storage	0x00000000	0x00000000		
a exports (n/a)	load-configuration	0x00000000	0x00000000		
tis-caliback (n/a)	bound-import	0x00000000	0x00000000		
	import-address	0x00000000	0x00000000		
	delay-loaded	0x00000000	0x00000000		
-abc strings (1311)	INET	0x00000000	0x00000000		

Figure 12 Pestudio is highlighting directories

8.6.8 Section tab

This tab shows the sections present in the sample file and their details. Figure 13 is highlighting that-

- i. The executable code is present in .text section. Its mean this section has execute permission. This section contains entry point information.
- ii. The writable data is present in .data section. Its mean this section has write permission. This section contains import information.
- iii. The .reloc section contains relocation information.

property	value	value	value	value
general				
name	.text	.rdata	.data	.reloc
md5	0475EEBBDF0316A7049	62B50172BB46AC5A	D7A50192E6E163F3AA0	B152A3B5C3C8C66494D
entropy	6.173	3.048	5.308	6.118
file-ratio (98.53%)	73.53 %	0.74 %	20.59 %	3.68 %
raw-address	0x00000400	0x0000CC00	0x0000CE00	0x00010600
raw-size (68608 bytes)	0x0000C800 (51200 bytes)	0x00000200 (512 bytes)	0x00003800 (14336 bytes)	0x00000A00 (2560 bytes)
virtual-address	0x00001000	0x0000E000	0x0000F000	0x00013000
virtual-size (68971 bytes)	0x0000C698 (50843 bytes)	0x00000100 (256 bytes)	0x00003D54 (15700 bytes)	0x0000087C (2172 bytes)
characteristics				
value	036000020	0x40000040	0xC0000040	0x42000040
writable			×	
executable	ж			
shareable				
self-modifying				
virtualized				
items				
import		-	0x00011DC4	9
relocation				0x00013000
entry-point	0x0000B312			

Figure 13 Details of every section in Pestudio

8.6.9 Libraries tab

Libraries help to recognize the capabilities of the sample. This tab consists of the libraries, which are flagged (blacklisted) as malicious by pestudio tool. This are-

- i. Urlmon.dll
- ii. Wininet.dll
- iii. Wsock32.dll

c:\users\lab-5-pc-	library (9)	flag (3)	first-thunk (IAT)	type (1)	imports (8	group	description
Ji indicators (vin	KERNEL32.DLL		0x00012040	implicit	50		Windows NT BASE API Client
virustotal (58/	advapi32.dll		0x00012144	implicit	11		Advanced Windows 32 Base API
dos-header (o	ole32.dll		0:00012120	implicit	6		Microsoft OLE for Windows
dos-stub (04 t	shlwapi.dll		0x00012180	implicit	6		Shell Light-weight Utility Library
Sle-header (In	urimon.dll	×	0x0001210C	implicit	1	network	OLE32 Extensions for Win32
intional-head	user32.dll		0x0001213C	implicit	1		Multi-User Windows USER API Client Library
rectories (2)	userenv.dll		0x00012114	implicit	2		User Environment Library
ctions (4) *	wininet.dll	×	0x00012174	implicit	2	network	Internet Extensions for Win32 Library
ries (flag)	wsock32.dll	×	0+00012014	implicit	10	network	Windows Socket 32-Bit Library

Figure 14 Blacklisted libraries are highlighted by Pestudio

The above Fig.14 shows the blacklisted libraries. These libraries will be described below. **8.6.10 Imports tab**

Imports are saved in libraries. Pestudio flagged some imports (30) with their libraries, which are the malicious indicator of sample file, are listed with their functions [15] [16] below.-

			-	
Toble (2 Eloggo	d 20 im	norte hu	Destudio
I able a	$5 \Gamma 1 a g g g g$	и эо шн	DOILS DV	restudio

Imports	ImportsFlagGroupUsage		Library	
LoadUserProfileA	×	Security	When a user logs on, the system automatically loads the user's profile. If a file or software tries to log in user profile illegally, the system does no longer load the profile. Then the file or software loads the user's profile by using LoadUserProfileA function.	userenv.dll
UnloadUserProfile	×	Security	This function is used to unload a user profile, which was loaded via the LoadUserProfileA function.	userenv.dll
<u>GetPrivateProfileSectionName</u> ×		Registry	This function is used to recover the names of every the sections of an initialization file, which stores the settings of operating system.	Kernel32.dll
RegCreateKeyA	egCreateKeyA × Registry Registry key. Already existed key in can be opened by using this.		The RegCreateKeyA function is used to create a specific registry key. Already existed key in registry can be opened by using this.	advapi32.dll
<u>RegSetValueExA</u>	×	Registry	This function is used to set the data and type of a value under a registry key.	advapi32.dll
RegOpenCurrentUser	×	Registry	It is used to open a specific registry key when the profile of user is already loaded by impersonated user.	advapi32.dll
ObtainUserAgentString	×	Network	The malware uses ObtainUserAgentString function to retrieve the user agent.	urlmon.dll
InternetCrackUrlA	×	Network	Malware uses this function to break (crack) a URL into parts.	wininet.dll
InternetCreateUrlA	×	Network	Malware uses this function to create a URL from its broken (cracked) parts.	wininet.dll
inet addr	×	Network	It is the function used in networking purpose.	wsock32.dll
gethostbyname	×	Network	This function is used to retrieve host information.	wsock32.dll
socket	×	Network	It is used to create a new socket.	wsock32.dll
<u>connect</u>	×	Network	This function is used to connect to a remote socket. Malware frequently uses low level functionality to hook up with a command and control server. It is usually used by malware to communicate with their command and control server.	wsock32.dll
<u>closesocket</u>	×	Network	It is used to close a socket.	wsock32.dll
send	×	Network	It is used to send data to a socket.	wsock32.dll
select	×	Network	This function is used to control any process like an original user.	wsock32.dll
recv	×	Network	This function is used to control any process like an original user.	wsock32.dll
setsockopt	×	Network	It is used to control socket behaviour.	wsock32.dll
<u>WSAStartup</u>	×	Network	It initializes the use of winsock.dll for calling program.	wsock32.dll
WriteFile	×	File	This function is used to write data to a specified file or input/output device.	Kernel32.dll
MapViewOfFile	×	File	This function is used to gain access to the memory- mapped object. A memory-mapped file holds the	Kernel32.dll

IJCRT2305887 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org h253

www.ijcrt.org

© 2023 IJCRT | Volume 11, Issue 5 May 2023 | ISSN: 2320-2882

			contents of a file in the virtual memory.	
<u>UnmapViewOfFile</u>	×	File	It is used to unmap the map view.	Kernel32.dll
<u>DeleteFileA</u>	×	File	This function is used to destroy the data completely.	Kernel32.dll
<u>FindFirstFileA</u>	×	File	It is used to search via a directory and calculate the file system.	Kernel32.dll
<u>FindNextFileA</u>	×	File	It is used to search via a directory and calculate the file system.	Kernel32.dll
CreateToolhelp32Snapshot	×	Execution	CreateToolhelp32Snapshot is used to create a snapshot of processes, threads and modules. This function is typically used by malware to enumerate processes before process injection.	Kernel32.dll
Process32First	×	Execution	This function is used to retrieve the data about the first process of a system snapshot.	Kernel32.dll
<u>OpenProcess</u>	×	Execution	The OpenProcess function is used to open an existing local process object.	Kernel32.dll
Process32Next	×	Execution	This function is used to retrieve the data about the next process of a system snapshot.	Kernel32.dll
<u>SetCurrentDirectoryA</u>	×	-	By calling this function a file comes to know that, which directory is current.	Kernel32.dll

8.7BinText

Its extracted strings carry a more information about sample. Figure 15 is showing how BinText works.

From the extracted strings an unorganized line is discovered, which obviously indicates that the sample is malicious also the malware is Trojan Horse.

IN OCCORDENCE	9999219997 919	-	
A 0000000CE 3A	00001000F03A	0	http://reninparwil.com/zapoy/gate.php
A 00000000CE60	00001000F060	0	http://leftthenhispar.ru/zapoy/gate.php
A 0000000CE88	00001000F088	0	http://reptertinrom.ru/zapoy/gate.php
4 0000000CEAF	00001000F0AF	0	YUIPWDFILE0YUIPKDFILE0YUICRYPTED0YUI1.0
A 0000000CEEB	00001000F0EB	0	SOFTWARE\Microsoft\Windows\CurrentVersion\Uninstall
A 00000000CF1F	00001000F11F	0	UninstallString
A 0000000CF2F	00001000F12F	0	DisplayName
			A

Figure 16 Unorganized line is showing in the list of strings

This line is- YUIPWDFILEOYUIPKDFILEOYUICRYPTEDOYUI1.0, shown in figure 16. The line shows some hidden words and a number- PWD FILE, PKD FILE, CRYPTED, 1.0.

Figure 17 Discovering the hidden words present in line

Here PWD FILE means .DOC file & PKD FILE means VIDEO file or MP4 file. A CRYPT file is the file which is encrypted via CryptXXX [17] virus. This CryptXXX virus is a Trojan Horse, used by cybercriminals, typically entered through spam email attachments, fake updates, downloads etc. This virus is a type of ransomware because it is used for demanding ransom forcefully by encrypting victim's data. Mainly victim's .DOC or .MP4 file is encrypted to prevent access. CRYPT files became conventional in 2016. Version of the virus is 1.0.

Some functions [18] in the strings, which are may be used by malware are listed below-

- AdjustTokenPrivileges: AdjustTokenPrivileges function is utilized to enable or disable particular access privileges. Malware uses it to gain supplemental sanction in a process injection attack.
- Accept: This function is utilized to listen for incoming connections. Malware uses it to communicate with their command and conversation server in many cases.
- CertOpenSystemStore: It is utilized to access the certificates stored on the local system.
- CreateFileA: It is used to create a new file or open an already existing file.
- CreateFileMappingA: CreateFileMappingA is the function, that is used to create a handle to a file mapping that loads a file into memory and makes it accessible via memory addresses. Loaders, launchers, and injectors use this to read and modify the PE files.
- CreateProcessAsUserA: It is used to create a new process. If malware creates a new process, it must be analyzed as well.
- GetProcAddress: This is utilized to retrieve the address of a function in a DLL loaded into memory.
- GetTempPathA: It returns the temporary file path. If malware call this function, it must be examined that whether it reads or writes any files in the temporary file path.
- GetModuleHandleA: This function is used to gain a handle to an already loaded module. Malware may use it to find and modify code in a loaded module or to look for a good location to inject code.
- GetVersionExA: This function returns data about which version of windows is currently running. This can be used to select between different objects for undocumented structures that have modified between different versions of windows.
- GetWindowsDirectoryA: It returns the file path to the windows directory. Sometimes malware use this function to decide that in which directory, additional malicious codes can be installed.
- ImpersonateLoggedOnUser: This function is used to impersonate some other user to run the process. The attackers ensure that the impersonated user has all the essential permissions to run the process.

8.8Dependency Walker

The dependency walker exposes those DLLs on which the runnable sample file depends on. The imported DLLs and their functions, of the research sample are listed and described below. Figure 18 is highlighting those DLLs. The usages of DLLS [19] are discussed below.-

Figure 18 Imported DLLs by malware disclosed by Dependency Walker

8.8.1 KERNEL32.DLL

Normally, Kernel32.dll, a 32 bit dynamic link library file, is the core part of operating system. It manages the memory operations, (i/o) input/output operations, process interruption etc. If the kernel32.dll is found in import list of a file, its means that the file wants to get access on the user's computer. So, the sample must be a malicious file.

DC03077893888866F9	23 19	Ordinal A	Hint	Function	Entry Point	19	Ordinal *	Hint	Function	Entry Point
E- I HUMANDU		N/A	0(00000)	CreateFileA	Not Bound	-	N/A	0(0x0000)	WideCharToMultiByte	Not Bound
IP. T ACVAPUL DLL		N/A	0 (0 (0 0 0 0 0)	ReadFile	Not Bound		N/A	0(0:0000)	GetLastError	Not Sound
	10	N/A	0 (0:00000)	CloseHandle	Not Round		N/A	0 (0:00000)	lstronpA	Not Bound
OLENDER		NG	0.040000)	Watefile	Not Round		N/A	0(0:0000)	CreateToolheig125napshot	Not Bound
B- D SHIMMATOLI	12	NG	5 (5-6050)	helden 5	Med Record		N/A	0 (0:00000)	Process12First	Not 8ound
- URLMONDUL	12	NIC	0.0.00003	Cinhall ack	Sint Round		N/A	0(0:00000)	OpenProcess	Not Bound
(#)- USER32.DLL		8408	0.000000	Clab all all all	Area Devenia		54/A	0(0:00000)	Process32Next	Not Bound
E. T. UVERINUDU		CQ.M.	9 (200 0 0 0)	GebaOnick	not bound		N/A	0(0:0000)	GetModuleHandleA	Not Bound
TO DI WRITERIO		DU.A	0(040000)	LOCAPTER	Not Bound		N/A	0 (0:00000)	FindFirstFileA	Not Bound
		T4/A	0 (040020)	LocalAdoc	Not Bound	-	N/A	0(0:0000)	StrompiA.	Not Bound
E □ MOCKI2.DU		N/A	0(040000)	GetTickCount	Not Bound		N/GA	0(0:00000)	FindNextFileA	Not Sound
		N/A	0(0:0000)	httrcpyA	Net Bound	-	N/A	0.000000)	FindClose	Not Bound
		N/A	0(040000)	htrcatA	Not Bound		N/A	0 (0:00000)	GetVersionEsA	Not Bound
		N/A	0(0:0000)	GetFileAttributesA	Not Bound		N/A	0(0:0000)	GetLocalabeltoA	Not Bound
		NG	0.0x00000)	ExpandEnvironmentStringsA	Not Bound		N/A	0(0:0000)	GetSystemInto	Not Bound
		NA	0/0/00003	GetFileSpe	Not Bound		N/A	0(0:0000)	GetilVindowsDirectoryA	Not Bound
		NIA	0.000000	CrauteFdeManningA	Next Revend		N/A	0(0:0000)	SetCurrentDirectoryA	Not Bound
		NG	0.000001	Mariline Office	Net Round	-	N/A	0(0:0000)	GetPrivateProfileSectionNamesA	Not Bound
		ALC: N	0.0.0000	the second s	Alex Decent	-	N/A	0(0:0000)	GetPrivateProfileStringA	Not Bound
	12	and a	0(00000)	Comaption of the	Not Dound		N/A	0(0:00000)	GetPrivateProfileIntA	Not Bound
		P\$/m	0 (100 000)	Costacterarys	Not Bound	-	N/A	0(0:0000)	GetCurrentDirectoryA	Not Bound
		N/A	0 (040 000)	GetProcAddress	Not Bound		N/A	0(00000)	listrienW	Not Bound
		N/A	0 (040000)	GetTempPathA	Not Bound		N/A	0(0:00:00)	Sleep	Not Bound
	- I 💭	N/A	0(04000)	CreateDirectoryiA	Not Bound	-	N/A	0 (0:0000)	LCMap5bringA	Not Bound
		N/A	0(040000)	DeleteFileA	Not Bound		N/A	0(0:00000)	ExtProcess	Not Bound
		N/A	0 (0:0000)	GetCurrentProcess	Not Bound		N/A	0(0:00000)	SetUnhandledEsceptionFilter	Not Bound
		8478	0.00.00000	Weder hard all hilling	Mart Revend	A COLORED				

Figure 19 Dependent functions of kernel32.dll in Dependency Walker

8.8.2 ADVAPI32.DLL

Advapi32 (Advanced Application Programming Interface 32 bit) is the dll; which is used to get access on advanced functionalities. For example; computer restarting or shutting down; starting, creating or stopping a process; windows registry etc.

-	DC030778938B8B6F9823	PI	Ordinal ^	Hint	Function	Entry Point
	+ KERNEL32.DLL	C	N/A	0 (0x0000)	RegOpenKeyExA	Not Bound
	ADVAPB2.DLL	C	N/A	0 (0x0000)	RegQueryValueExA	Not Bound
	DIE32.DLL	C	N/A	0 (0x0000)	RegCloseKey	Not Bound
		C	N/A	(0x000x0)	RegOpenKeyA	Not Bound
		C	N/A	(0000x0)	RegEnumKeyExA	Not Bound
		C	N/A	0 (0x0000)	RegCreateKeyA	Not Bound
	H USER32.DLL	C	N/A	(0000k0)	RegSetValueExA	Not Bound
	USERENV.DLL	C	N/A	(0x00x0)	IsTextUnicode	Not Bound
	🕀 🔲 WININET.DLL	C	N/A	0 (0x0000)	RegOpenCurrentUser	Not Bound
	庄 🔲 WSOCK32.DLL		N/A	(0x00x0)	RegEnumValueA	Not Bound
		C	N/A	0 (0x0000)	GetUserNameA	Not Bound

Figure 20 Dependent functions of advapi32.dll

8.8.3 OLE32.DLL

Ole32.dll is a dll, which is used for Object Linking and Embedding in computer operating system. Object linking and embedding is a feature, which allows the user to create document in other application or modify them.

DC030778938B8B6F9823	PI Ordinal ^	Hint	Function	Entry Point
庄 🗌 KERNEL32.DLL	C N/A	(0000x0)	CreateStreamOnHGlobal	Not Bound
ADVAPB2.DLL	C N/A	0 (0x0000)	GetHGlobalFromStream	Not Bound
OLE32.0LL	C N/A	0 (0x0000)	CoCreateGuid	Not Bound
H SHI WAPLDI	C N/A	(0x00x0)	CoTaskMemFree	Not Bound
	C N/A	0 (0x0000)	CoCreateInstance	Not Bound
	C N/A	0 (0x0000)	OleInitialize	Not Bound
USERENV.DLL				
- WININET.DLL				
WSOCK32,DLL				

Figure 21 Dependent functions of ole32.dll

8.8.4 SHLWAPI.DLL

Shlwapi.dll (Shell Light Weight Utility Library) which manages important settings like; URL paths, registry settings etc.

E		DC030778938B8B6F9823	PI	Ordinal ^	Hint	Function	Entry Point
		KERNEL32.DLL ADVAPB2.DLL OLE32.DLL OLE32.DLL URLMON.DLL USER32.DLL USER32.DLL USERNV.DLL USERENV.DLL		N/A N/A N/A N/A N/A N/A	Hint 0 (0x0000) 0 (0x0000)	StrStrIA StrToIntA StrToIntA StrStrIW StrStrIW StrStrA	Not Bound Not Bound Not Bound Not Bound Not Bound
	÷-	WSOCK32.DLL			78.00		_
					- This are		

Figure 22 Dependent functions of shlwapi.dll

8.8.5 URLMON.DLL

It is used at the time of object linking and embedding operation.

DC030778938B8B6F9823	PI	Ordinal ^	Hint	Function	Entry Point
E KERNEL32.DLL		N/A	(0x00x0)	ObtainUserAgentString	Not Bound
ADVAPB2.DLL					
E OLE32.DLL					
HIWAPI.DLL					
URLMON.DLL					
USER32.DLL					
USERENV.DLL					
WININET.DLL					
wsock32.DLL					

Figure 23 Dependent functions of urlmon.dll

8.8.6 USER32.DLL

User32.dll is a dll file where graphical elements of windows like, windows, dialogue box are stored.

DC030778938B8B6F9823	PI	Ordinal ^	Hint	Function	Entry Point
E KERNEL32.DLL	C	N/A	0 (0x0000)	wsprintfA	Not Bound
- ADVAPIB2.DLL					
🛨 🔲 OLE32.DLL					
HIWAPI.DLL					
URLMON.DLL					
🖶 🔲 USER32.DLL					
USERENV.DLL					
WININET.DLL					
WSOCK32.DLL					

Figure 24 Dependent functions of user32.dll

8.8.7 USERENV.DLL

It is used for creating or managing user profile.

DC030778938B8B6F9823	PI	Ordinal ^	Hint	Function	Entry Point
E KERNEL32.DLL		N/A	0 (0x0000)	LoadUserProfileA	Not Bound
ADVAPB2.DLL		N/A	0 (0x0000)	UnloadUserProfile	Not Bound
E OLE32.DLL					
- SHLWAPI.DLL					
URLMON.DLL					
USER32.DLL					
USERENV.DLL					
WININET.DLL					
	1				

Figure 25 Dependent functions of userenv.dll

8.8.8 WININET.DLL

It is used to access internet using HTTP (Hypertext Transfer Protocol) or FTP (File Transfer Protocol).

DC030778938B8B6F9823	PI	Ordinal ^	Hint	Function	Entry Point
庄 🔲 KERNEL32.DLL	C	N/A	0 (0x0000)	InternetCrackUrlA	Not Bound
+ DVAPB2.DLL	C	N/A	(0000k0)	InternetCreateUrIA	Not Bound
- OLE32.DLL					
E SHLWAPI.DLL					
- URLMON.DLL					
⊕ USER32.DLL					
- USERENV.DLL					
+- WININET.DLL					
WSOCK32.DLL					

Figure 26 Dependent functions of wininet.dll

8.8.9 WSOCK32.DLL

Wsock32.dll is used at the time of TCP/IP network communication.

E DC030778938B8B6F9823	PI Ordina	al ^ Hint	Function	Entry Poin
+ KERNEL32.DLL	N/A	0 (0x0000)	inet_addr	Not Bound
ADVAPB2.DLL	C N/A	0 (0x000x0)	gethostbyname	Not Bound
DLE32.DLL	C N/A	0 (0x0000)	socket	Not Bound
H SHLWAPLDLL	C N/A	(0x000x0)	connect	Not Bound
	C N/A	0 (0x0000)	closesocket	Not Boun
	C N/A	0 (0x0000)	send	Not Boun
USER32.DLL	C N/A	0 (0x0000)	select	Not Boun
USERENV.DLL	C N/A	0 (0x0000)	recv	Not Boun
UNINET.DLL	C N/A	0 (0x0000)	setsockopt	Not Boun
庄 🔤 WSOCK32.DLL	C N/A	(0x00x0) 0	WSAStartup	Not Bound

Figure 27 Dependent functions of wsock32.dll

IX. CONCLUSION AND FUTURE WORK

In today's digital world, malware is the one of big threat. So, the malware analysis is the biggest part of cyber security. To protect important virtual data of everywhere, malware analysis is necessary. This research paper is written, based on various types of static analysis where the detailed information about analysis of file's maliciousness, identification of the malware and its characteristics are present. Knowledge about characteristics of malware prevents to get infected by malware. But malware authors are developing new types of malware and new strategy of cyber attack day by day. The malware researchers are trying to get more efficient way to prevent malware attack. This research will continue in future and malware analysis will be done using reverse engineering and dynamic approach.

X. ACKNOWLEDGMENT

My deep of gratitude and thanks to all the sir and madam of the department of Computer Science & Engineering of Supreme Knowledge Foundation Group of Institutions, for their generous guidance, continuous encouragement, and supervision during the preparation of this research paper. Their support helped me to write this paper successfully.

REFERENCES

- [1] Narender Solanki, Dr. Neetu Sharma, May 2019. Malware Analysis: Types & Tools. International Journal of Engineering Science and Computing, 9(5): 22664-22667.
- [2] Dolly Uppal, Vishakha Mehra and Vinod Verma, February 2014. Basic survey on Malware Analysis, Tools and Techniques. International Journal on Computational Sciences & Applications (IJCSA), 4(1): 103-112, DOI: 10.5121/ijcsa.2014.4110.
- [3] S Megira, A R Pangesti and F W Wibowo, December 2018. Malware Analysis and Detection Using Reverse Engineering Technique. Journal of Physics: Conference Series, 1140(1): 1-12, id.012042, DOI:10.1088/1742-6596/1140/1/012042.
- [4] Syarif Yusirwan S, Yudi Prayudi, Imam Riadi, May 2015. Implementation of Malware Analysis using Static and Dynamic Analysis Method. International Journal of Computer Applications, 117(6): 11-15, ISSN: 0975-8887.

www.ijcrt.org

- [5] Omer ASLAN, 25-26 November, 2017. Performance Comparison of Static Malware Analysis Tools Versus Antivirus Scanners To Detect Malware. International Multidisciplinary Studies Congress, Akdeniz University, Antalya/Turkey, 1-6.
- [6] Meet Parekh, Gaurav Kulkarni, Aug 2021. A Survey on "Malware Analysis Techniques, its Detection and Mitigation.". International Research Journal of Engineering and Technology (IRJET), 8(8): 512-514, e-ISSN: 2395-0056, p-ISSN: 2395-0072.
- [7] Aru Okereke Eze and Chiaghana Chukwunonso E., Jul-Aug 2018. Malware Analysis and Mitigation in Information Preservation. Journal of Computer Engineering (IOSR-JCE), 20(4): 53-62, e-ISSN: 2278-0661, p-ISSN: 2278-8727.
- [8] Swathi Edem, Jan-March 2019. A Study on the Malware Analysis with Machine Learning Methods. International Journal of Research and Analytical Reviews (IJRAR), 6(1): i564-i569, e-ISSN: 2348-1269, p-ISSN: 2349-5138.
- [9] Nirav Bhojani, October 2014. Malware Analysis. Conference: Ethical Hacking, Nirma University, DOI: 10.13140/2.1.4750.6889.
- [10] https://en.m.wikipedia.org
- [11] Aziz Makandar, Anita Patrot, 2015. Overview of Malware Analysis and Detection. International Journal of Computer Applications, National Conference of Knowledge, Innovation in Technology and Engineering (NCKITE), 35-40, ISSN: 0975-8887.
- [12] Felina Simon Menezes, Felomina Jancy, Hanan Saleem Baji, Ponica J, March 2022. Malware Detection and Analysis. International Journal of Advanced Research in Science, Communication and Technology (IJARSCT), 2(2): 220-225, DOI: 10.48175/568, ISSN (Online) 2581-9429.
- [13] Sundeep Varma, Jonnadula Narasimharao, June 2022. Malware Analysis with Machine Learning: Classifying Malware based on PE Header. International Journal for Research in Applied Science & Engineering Technology (IJRASET), 10(VI): 3583-3590, ISSN: 2321-9653.
- [14] https://handwiki.org/wiki/List of file signatures
- [15] https://learn.microsoft.com
- [16] https://gist.github.com
- [17] https://fileinfo.com/extension/crypt
- [18] https://resources.infosecinstitute.com/topic/windows-functions-in-malware-analysis-cheat-sheet-part-1/
- [19] https://www.silurian.com/inspect/imports.htm

