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Abstract – String matching has been implemented in the past using various algorithms in the past like Bloom Filter, Hamming 

Distance, Levenshtein Distance etc.. These algorithms work efficiently for few bytes of data but are of little use when it comes to 

detect similarity between medium sized files. To overcome this limitation, hashing algorithms are used to compress the files. 

Additionally we can add fuzziness i.e. tolerance for detecting similarity. In the past several Researchers have implemented Fuzzy 

hashing on software but there are only few hardware implementations. This paper presents the design and implementation of 

Fuzzy Hashing for lower end devices for detecting similarity between two files on FPGA. This work can be extended to introduce 

Fuzzy hashing for improved malware clusters detection in low end IoT devices. 
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I. INTRODUCTION 
Low end IoT devices should use sensor level crypto security and/or hardware level crypto processors to prevent attacks at 

the edge [1]. Computer forensic community use context triggered piecewise hashing (CTPH) [2], [3], [4] to enable examiners to 

compare files that previously were lost in vast quantities of data but can currently be a matter of investigation.  

Study of Fuzzy Hashing for detecting similarity between two text files requires Context triggered piece-wise hashing for 

generating signatures. This requires strong hashing algorithm like MD5, SH1 etc. Parallel implementation of Edit Distance 

algorithm to compare signatures requires large hardware [5], [6], [7]. In this paper the authors target to implement the scaled 

down MD5 from original algorithm for accuracy in similarity detection which will work on 128 bits message and will produce 32 

bits hash. 

The Edit Distance for similarity matching technique to detect data similar to a given pattern from the input data plays important 

role in Fuzzy Hashing [2]. Similarity detector can also be used for fingerprint matching, text retrieval in database, observing of 

DNA, protein sequences in bioinformatics etc. Algorithms for similarity detection between two files have been extensively 

studied to shorten its computation time. Unlike the software implementations, there are only few implementations on the 

hardware level. Benefits of utilizing fuzzy hashing calculations, as sdhash, mvHash, ssdeep, and mrsh v2 were discussed in 

distinguishing likenesses in Malware area [2]. Few FPGA based implementations of MD5 hash and approximate string matching 

have been discussed in the past [7], [8], [9], [10], [11]. 

Low end IoT devices (8 bit to 32 bit edge processors) are restricted in memory and computational resources. Standard 

encryption algorithms like AES, DES are not light weight to secure these devices. To enhance hardware level security of these 

low end IoT devices, the authors in this paper present the design and implementation of Fuzzy hashing algorithm. 

 

 

II. DESIGN OF ROLLING HASH FOR SEGMENTING 
Fuzzy hashing technique works on two input files and gives the result in terms of similarity or dissimilarity of two input 

files. This technique first of all takes the input byte by byte and divides the whole file into many different sized segments 

depending on the calculations used in the window of rolling hash. These segments are then passed to any traditional hashing 

algorithm so that each segment is represented by its unique signature. Similarly the signatures are generated for another input file 

and finally these signatures from two different files are compared through Edit distance algorithm (Levenshtein Distance). Rolling 

hash is an efficient way for segmenting the input file. According to current context in window of rolling hash segmenting of file is 

done. MD5 algorithm can be used for converting each segment into a fixed size unique identity or signature or hash value. 
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The minimum edit distance algorithm works efficiently for comparing small sized files. For comparing medium-sized 

files, we need a more efficient approach. This is where signature generation from rolling hash algorithm comes into play (also 

called as LSH) [4]. The signatures are the hash values generated by the traditional hashing algorithm. In this paper, the authors 

used modified MD5 hashing algorithm. The input to this MD5 hashing algorithm is the segment or slice of the input file. These 

segments are generated with rolling hash. This will divide the complete input file into segments, the length of each segment 

depends on the context of the input file. This rolling hash use a sliding window which moves over complete input file taking a 

byte at every clock cycle. In this paper window size is decided as 3 bytes long for maximum accuracy. The movement of sliding 

window is shown below: 

 

[“A”, “ ”,  “ ”] 

[“A”, “B”, “ ”] 

[“A”, “B”, “C”] 

[“B”, “C”, “D”] 

[“C”, “D”, “E”] 

[“D”, “E”, “F”] 

[“E”, “F”, “G”] 

Rolling hash for segmenting input file pays important role. This method is used to calculate reset points. These reset 

points or boundaries are used to determine the amount of a file need to segmented or sliced. It picks the boundaries based on input 

file content within the fixed windows size of the rolling hash. Rolling has is needed for this purpose as employed by spamsum and 

ssdeep, discussed in [2] and [3], to calculate values throughout the file and search for a fixed value. When this fixed value is 

reached, a boundary line is drawn and the content gets sliced or segmented. 

Rolling window would continue through the file, adding a new byte at each clock cycle and removing the oldest byte, in a FIFO 

style. This will be continue until the trigger or reset point is reached, once reset point is reached a boundary line is drawn and till 

this reset point all the bytes of data will constitute a segment or sliced or a block and again window start moving segmenting the 

files till the end of the file. The window performed some mathematical calculations for defining the reset point. 

RH = [P]*a + [Q]*b + [R]*c          (1) 

If    RH% p == m (reset value). 

Then slice the input fill. 

P, Q and R are the 8-bit registers to store the contents of window but actually this will be store the ASCII value of the respective 

characters. The implementation in Verilog is shown in the below Fig.1 

 
Fig. 1 Rolling Hash FSM 

In the above Fig.1 Rst is reset condition which initializes the reset conditions, this circuit takes the Input text file byte by byte the 

ASCII value of character. After Rst =1 for 1st time for 1st 3 clock 1st left shift block executes, then at each positive edge of clock 

a certain condition on P, Q, R is checked and the respective block executes and produce the output, output will be sequence of 

input byte. The function which works on P, Q and R and the window sizing decides the efficiency and limit of the size of each 

segment or slice of the given input text file. The register C shown in above Fig.1 keeps on storing the content byte by byte coming 

from window by shifting its data to left till the window reaches reset point. Once the reset point is reached, the content stored in 

register C will be a segment of input file and this segment will be the input to our modified MD5 algorithm. 
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Each and every block in Fig. 1 executes on each positive edge of clock with respect to given condition. 

For the text file given below the segments are shown in Fig.2. The File_1 is of 224 bytes including white spaces and newline 

character (\n). 224 bytes long file is converted to 7 segments, what every the size of segments, each segment is converted to 32 bit 

signature with modified MD5 algorithm. This is how compression is achieved. 

For the specific values of a, b, c, p and m, the slicing input file result is analyzed below are the images of input file and its sliced 

segments 

a = 13 

b = 169 

c = 255 

p = 33 

m = 32 

File_1 

To match the design needs with economic balance, hhrlhggvfmnbuiukjhiykmhtjiiuyrkndccxs,ptuyrtdis welding is used to achieve 

the high strength welding joints of dissimilar steel grades, tobe used in commercial vehicle. 

 

 
Fig.2 Segments for Input File_1 

If one of the characters is altered, deleted, or inserted then there will be chance in one segment or at most two segments. This each 

segment is fed to modified MD5 which results in a 32 bit (4 byte) signature, so there will be 7 signatures each of 4 byte, this is 

how we convert 224 bytes of file to (4 * 7 ) = 28 bytes of data. Design for modified MD5 is shown in next section. 

 

III. MODIFIED MD5 HASHING ALGORITHM 

The objective here was to implement a 32-bit hash generator using the MD-5 algorithm in Verilog HDL. For this 

purpose, instead of understanding and building the core with dependencies from scratch, a preliminary study was made into how 

MD5 algorithm works. This provided a solid foundation for further changes as required to scale the 512 bit architecture to 128 bit 

architecture.  

 
Fig.3 Combinational MD 5 block 
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For initial scaling down original architecture was required. This architecture was used as original MD5 core which was 

later scaled down. Now, the original algorithm computes in 4 blocks of 32 bit size each (A, B, C, D), giving a 128bit output. The 

original MD5 is very well explained in [5]. This was scaled down to 8bit so as to give a 32bit output. Similarly, the shifts and 

random additions also need to be down converted from 32bits to 8bits. This was achieved by taking modulo 4 of all previously 

given shifts and additions. This gave the values as required without much problems. However, the starting values for the registers 

A, B, C, D gave recurring values 0x01, 0x06, 0x01, 0x06, so the actual algorithm was looked at and the characteristics were 

studied and copied to 8bit values  0x56, 0xab, 0x65, 0xba. Thus all requirements were met, which then later led to a 32bit hash 

sum result. 

The output obtained from the Rolling hash will be a stream of byte of random sized but with a certain maximum limit 

defines bye constants and the calculations used in rolling hash. With the certain constants define in section II, an approximate 

limit of 1000 bits is decided. 

 Appended message is a 1024 bit long stored in  register from 0th to 999th will be the output from rolling hash and the bits 

from 1000th to 107th are the padded bits and the rest 16 bits use to represent the message size. 

In Fig. 3, M_1 to M_8 are 128 bit register, A, B, C and D are 8 bit each. 

1024 /128 = 8 

In this modified MD5 algorithm 8 MD5 cores or stages are required; each will process 128 bits inputs of the given appended 

message. 

Fig. 4 is showing the MD5 core, each MD5 core process the 128 bits in 4 rounds and each round uses a function. 

 
Fig. 4 MD 5 Core 

F  =>   {  {  [ X ]  & [ Y ]  }  |  {  [ ~X ] & [ Z ]  } }     (2) 

G  =>   { { [  X  ] & [ Z ]  }  |  {  [ Y ] &[ ~Z ] } }     (3) 

H  =>   {  [  X  ]  ^  [ Y ] ^ [ Z ] }          (4) 

I   =>   {  [  Y  ] ^ [  X  ]  |  [ ~Z ]  }        (5) 

Each round in MD5 core has 16 operations, each operation takes 8 bit input value of A, B, C and D. 8 bit stream out of 128 bit of 

total appended 1024 bit appended message, 8 bit add const. and 8 bit shift const. 
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Fig. 5 MD-5 (1 of 16 operation in each round) 

Note: Mi and Ki in the Fig. 5 are 8 bit input stream and add. Const. respectively, and <<<s is representing left shift by s number of 

bits. 

Each operation produce four 8 bit output which is input to next operation. For the very 1st operation the values of A, B, C and are 

initialized to 0x56, 0xab, 0x65, 0xba. 

 

 

IV. IMPLEMENTATION OF LEVENSHTEIN DISTANCE 

Minimum edit distance for approximate string matching is the core of any similarity detector. Rolling hash and the MD5 process 

two file and store the respective hash values in memory. Let say the input Hash_1 represents all the memory content of A and 

input Hash_2 represents all the memory content of B. the Fig. 6 below shows the overall view of any Edit distance algorithm, 

where it need both the memory content as input, on comparing the hash values or signature from both memory A and B it will 

generate the output determining the difference between A and B.  

 

 
Fig. 6    Edit Distance 

Depending on previous values, newvalue to each cell gets initialized. The formula for calculating the value of next cell is given as 

r [ i ] [ j ] = r [ i -1 ] [  j -1 ]          (6)                         // if Hash_1[ I ]=Hash_2[ j ]           (7) 

r [ i ] [ j ] = minimum ( r [ i -1] [ j -1] ,  r [ I ] [ j -1] , r [ i -1] [ j ] )        //else 

The last cell will be output value which gives the dissimilarity between Input Hash_1 and Input Hash_2. 

 

Fig. 7 Edit Distance algorithm [Levenshtein.net] 
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The Fig. 8 shows the implementation of Edit Distance for difference detector. This is the sequential circuit, works on 

predefined memory size which stores the hash values or signatures. In this circuit each block executes at every positive edge of 

clock according to given condition. This requires three counters two for tracing the memory content from A and B, and one for 

storing the value in next cell. Out of the two counter use for tracing memory one is counting columns and other is rows. 

Loading = 1 is the resetting condition, when Loading = 0 the actual working starts. When the Row counter reaches (N-

1)th count, output is ready. For Row counter less than N-1, if column counter reaches N-1, the next Row operation gets start else 

it will be finding the each cell value in that Row. This continues till Row counter reaches N. Total number of clock cycles require 

are N^2. 

 
 

Fig 8 Edit Distance FSM 

The Fig. 9 shows the interconnection of all three block. 

 
Fig. 9 Overview of complete fuzzy hashing 
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V. EXPERIMENTAL RESULTS 

 

File_1: 

Nowadays, with the rapid development of Internet, there are a huge number of documents in many different fields such as science, 

technology, medical, literature, businesses etc. Everyone can easily find documents they need. Checking Datasimilarity over a 

certainperiod of time is good. 

File_2: 

Nowadays, with the rapid development of Internet, there are a huge number of documents in many different fields such as science, 

technology, me corrupting the input data here etc.Everyone can easily find documents they need. Checking Data similarity over a 

certain period of time is good. 

   

Table 1: 32 bit hash values – signatures for file_1 and file_2 

File_1 File_2 

77d7271e 77d7271e 

9d64334c 9d64334c 

1e7d787e 1e7d787e 

36fb9670 36fb9670 

87de5e5a 87de5e5a 

036e871f 036e871f 

89167112 89167112 

35b04c33 bc223ef5 

7dbe9256 f8e25f50 

53c29bcf bbefba4b 

383db613 2d7cebff 

188dc613 f8311745 

70f62d41 383db613 

41b4e620 188dc613 

4f5b1281 70f62d41 

0ebf48ea 41b4e620 

d1b225c4 4f5b1281 

 0ebf48ea 

 d1b225c4 

 

Table 2: Timing report 

Minimum period 6.707ns (Max. Freq.: 

149.096MHz) 

Minimum input arrival time 

before clock 

1.781ns 

 

Maximum output required 

time after clock 

0.654ns 

Maximum combinational 

path delay 

0.280ns 

 

DEVICE UTILISATION SUMMARY: 

For Selected Device: 7a100tcsg324-3  

Table 3: Slice Logic Utilization 

No. of Slice Registers 1035 out of 1268000%   

No. of Slice LUTs 1021 out of 63400     1%   

No. used as Logic 1021 out of 63400     1%   

  

Table 4: Slice Logic Distribution 

No. of LUT Flip Flop pairs 

used 

1043 

No. with an unused Flip Flop 8 out of   1043     0%   

No. with an unused LUT 22 out of   1043     2%   

No. of fully used LUT-FF 

pairs 

1013 out of   1043    97%   

No. of unique control sets 5 

 

 

 

http://www.ijcrt.org/


www.ijcrt.org                                                             © 2023 IJCRT | Volume 11, Issue 5 May 2023 | ISSN: 2320-2882 

IJCRT2305717 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org f938 
 

Table 5: IO Utilization 

No. of IOs 1120 

No. of bonded IOBs 1120 out of    2210   51%   

IOB Flip Flops/Latches 8 

 

Table 6: Specific Feature Utilization 

No. of BUFG / 

BUFGCTRLs 

1 out of 323%   

No. of DSP48E1s 3 out of    240    

1%   

 

Table 1 shows the different signature generated for File_1 and File_2 input, Table 2 shows the Timing report generated, Table 3 

shows slice logic utilization, Table 4 shows slice logic distribution, Table 5 shows IO utilization and Table 6 shows specific 

feature utilization for the selected FPGA device 7a100tcsg324-3. Several such files were given as input to check the reliability of 

the code. Finally we could successfully test the signatures and using the edit distance algorithm, we could calculate the 

dissimilarity distance. Fig. 10 shows the simulation snippet from Xilinx ISE.  The distance i.e. difference between signatures of 

two files shown here is 14 for two sets of data. These values are used to generate trapezoidal Fuzzy hedges with hedges {less 

similarity, moderate similarity, high similarity}. 

 
Fig. 10 Simulation snippet from xiling ISE 
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VI. CONCLUSION 

Thus, the similarity detector is implemented successfully for low end IoT devices using Verilog HDL. This can further help in 

strengthening digital forensic of low end IoT devices with low computational resources and low power. The similarity detector 

has three major parts the rolling hash for segmenting the input text file, Hashing algorithm MD5 and the Edit Distance algorithm. 

All the major and minor parts of this design have been tested and appropriate results are verified. The rolling hash for segmenting 

input text file is the sequential circuit which takes ASCII value of single character as an input at every clock cycle, and generates 

the output upon reaching the reset point. The modified MD5 algorithm as a combinational circuit is successfully designed which 

will generate output once the rolling hash generates its output. The Edit Distance is implemented successfully as a sequential 

circuit and requires N*M clock cycles for final output. N represents number of 32 bit memory location for input file1. M 

represents number of 32 bit memory location for input file2. Output generated from Edit Distance is an integer value showing the 

difference between signatures of input file1 and input file2. With reference to the one of the file’s number of signatures generated 

we can calculate similarity. 
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