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Abstract—  The goal of this project prototype is to develop a 
reinforcement learning system that can successfully land an 
orbital rocket by observing and understanding its environment. 
In this project, an AI agent learns how to independently land a 
rocket and then selects the most efficient actions to achieve this 
objective. Initially, the agent performs random actions since it 
has no prior knowledge. However, by doing so, it gains insights 
into its environment and the ultimate goal of landing the 
rocket. Once the agent receives a reward for landing the rocket, 
it modifies its parameters based on the reward to enhance its 
output and increase the likelihood of success. The Unity ML-
Agents toolkit is used in this project. 

This project focuses on the multidisciplinary topic of 
reusable space systems, especially first stage rockets. The 
majority of rockets have two to three stages. The initial 
stages, which are largely done by boosters, carry the 
cargo, or spacecraft, high up in the sky. After the last 
stage, the rocket's main engine separates, descends back 
towards Earth, and either burns up due to friction in the 
Earth's atmosphere or crashes into the ocean, rendering 
future missions ineffective. The loss of the primary 
rocket engine is not only inefficient, but also expensive 
and time-consuming to develop. Reusable components 
dramatically reduce launch costs, decreasing the barrier 
to entry into space. 

 

 

 

 

 

 

 

 

I. INTRODUCTION 

 
Since the 1950s, numerous rockets, space station 
components, and satellites have been discarded in the 
Earth's oceans, leading to increased pollution and posing 
risks to marine life. The disposal of these objects can result 
in marine contamination due to potential spills of the 
highly hazardous rocket fuel hydrazine. Additionally, the 
impact on local seals, whales, bears, and walruses in areas 
such as the ice points off the coast of Greenland remains 
uncertain. It's important to note that ocean organisms and 
ecosystems play a vital role in our weather and climate, as 
the ocean absorbs approximately one-third of the carbon 
dioxide generated due to its thermodynamic properties. 

 

Reinforcement learning is an area of artificial intelligence 
that allows autonomous entities to learn through a trial-
and-error approach. In the context of rocket landing, the 
agent (the rocket) learns by interacting with its 
environment and receiving feedback based on its actions. 
This application of reinforcement learning is particularly 
intriguing as it involves training an algorithm to 
autonomously achieve the challenging task of rocket 
landing. 

 

To achieve this objective, deep reinforcement learning 
techniques are applied in the project. The program utilizes 
the Unity ML-Agents toolbox and employs a neural 
network-based algorithm. The system observes its 
surroundings and makes decisions to facilitate a successful 
rocket landing. Initially, the system selects actions 
randomly, but as training progresses, the agent is 
rewarded for successfully landing the rocket. The 
algorithm adjusts the settings of its neural network based 
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on the received inputs and the actions that led to success, 
increasing the likelihood of implementing successful 
actions. 

 

Figure.1 Brief Description of landing rocket 

 

The privately owned company SpaceX is actively 
supporting the development of reusable orbital launch 
technologies, akin to the concept of aircraft reuse. Over 
the years, they have made significant progress towards 
their goal of achieving full and rapid reusability of space 
launch vehicles. Their ambitious long-term plans involve 
swiftly retrieving the first stage of the launch vehicle to 
the launch site and realigning the second stage with the 
launch site within 24 hours after atmospheric re-entry. 
SpaceX is also aiming to design two stages of their orbital 
launch vehicle, enabling lunar spacecraft to be reused 
within a few hours after completing their missions. 

II. PROBLEM STATEMENT 

 
The problem statement for this project is to develop an 
artificial intelligence agent that is able to land an orbital 
class rocket, specifically the Starship, in a simulated 
environment using deep reinforcement learning 
algorithms. The AI agent will be trained using the Unity 
ML-Agents toolkit and will be able to make decisions and 
take actions based on its observations of the simulated 
environment. The agent's goal is to successfully land the 
rocket without any errors or crashes. The agent will be 
rewarded for achieving successful landings, and it will 
utilize this feedback to optimize the parameters of its 
neural network, enhancing the likelihood of executing 
actions that result in successful landings. The agent's 
performance will be evaluated based on the number of 
successful landings it is able to achieve within a set 
amount of time and number of attempts. 

 

III.  LITERATURE REVIEW 

In this project, we have created a 3D environment using 
Unity to simulate rocket landing. The rocket model is 
specifically designed for this purpose. We are utilizing 
the ML Agent toolkit, along with Machine Learning, 
Deep Learning, and TensorFlow algorithms, to train and 
simulate the rocket's behavior. Real-world parameters 
such as rocket speed, gravity, maximum landing speed, 
and the position of the landing base are taken into 
account. These parameters are integrated into a Neural 
Network for RL training. Initially, the rocket performs 
random operations. As training progresses, the rocket or 
the code is rewarded for successfully completing the 
landing task, such as landing the rocket on the platform. 
Based on these rewards, adjustments are made to the 
neural network settings to encourage behaviors that lead 
to higher success rates. Through iterative trial and error, 

we aim to develop a machine learning system capable of 
achieving precise rocket landings on the platform. 

 

We created a simulation environment using Tensorflow, 
taking into account real-life parameters like speed, gravity, 
rocket speed, and so on, during landing. We successfully 
landed spacecraft or rockets after constructing the 
simulated environment with Python. 

 

SpaceX has recently employed a convex optimization 
technique to identify the optimal landing path for their 
rockets, leveraging real-time computer vision data. This 
approach enables them to dynamically replan the landing 
trajectory, ensuring precise landings even in the presence 
of significant variations in the rocket's initial state. As 
future flights acquire fresh data during the mission, there 
will be a growing need for rapid planning methods that can 
effectively address real-time demands. 

 

The complexity of planning landing trajectories arises 
from nonlinear dynamics, nonconvex constraints on states 
and controls, posing a real-time challenge for existing 
nonconvex optimization methods. However, a study 
suggests that employing convex optimization techniques 
can significantly enhance the performance in addressing 
rapid trajectory optimization problems. 

 

The approach is based on the universal approximation 
theorem, assuming there is an ANN that approximates the 
dynamical function with a known approximation error. 
The training set's input-output pairs are effectively stacked 
vectors of system states and control vectors for the input. 

 

The ultimate result is a neural network model that includes 
all of the dynamics and may be used to predict future 
states. The usage of recurrent neural networks improves 
dynamics reconstruction when just artificial neural 
networks are used. neural networks instead of more basic 
feedforward networks In the literature, recurrent neural 
networks are utilized to carry out the job, despite their 
typically poor quality. 

 

IV. METHODOLOGY 

 

About the Rocket landing and Reinforcement 
Learning- 

In the simulation, the rocket is randomly spawned at a 
distance of 5-6 kilometers from the target, facing a random 
direction and positioned randomly. The center of mass of 
a rocket is commonly positioned at two-thirds of its length. 
It is worth noting that the majority of the rocket's mass is 
concentrated within this two-thirds length. The objective 
for the rocket is to successfully land on the ground with a 
speed ranging between 4 m/s to 5 m/s. 

 

Despite variations in the simulation, the agents 
consistently adopt the suicide burn landing strategy. This 
strategy entails igniting the main engine at the very last 
moment to decelerate the rocket and achieve a successful 
landing. Although this approach is considered risky, it is 
the most fuel-efficient method in terms of consumption. 
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The simulation results demonstrate that the agents have 
learned to optimize their fuel usage by consistently 
implementing the suicide burn strategy, irrespective of 
the initial conditions or random factors involved. 

 

On getting a successful landing the agent is provided a 
reward, by which the agent tries to get the best possible 
output for every time step.  On successfully landing the 
rocket gets a reward of +1 which makes the agent give a 
better output than before. 

 

In this project we are not considering atmospheric 
conditions as one of the factors and the agent has only a 
single throttle level, the Reinforcement Learning 
problem can be characterized as having a finite set of 
possible actions. This means that the agent's movements 
are restricted to a discrete set of options, rather than a 
continuous range of possibilities. The most effective 
landing strategy at full speed is to approach at an angle, 
which is why this option is available to the agent. To 
achieve this, the agent employs Thrust vector control and 
Reaction control system to steer the Starship towards a 
seven-degree angle in both directions 

 

To maintain the rocket's orientation, the agent controls 
the three main engines and four Reaction Control System 
Thrusters. This combination of Thrust vector control and 
Reaction control system controls the roll and pitch of the 
rocket. 

 

This project has a limitation as we are not considering 
atmospheric conditions. Thus the velocity of the rocket 
and the trajectory of the rocket differs by a little to real-
life circumstances. The other limitation is the rocket in 
this simulation is allowed to switch between the 3 
engines and make them switch on and switch off, which 
is not similar to real-life circumstances. The real-life 
engines are complex to start and is a time-consuming 
process so it doesn’t switch on and off frequently. 

 

The agent receives a total of 11 observations, where each 
observation is represented by a floating-point number 
indicating the rocket's position, rotation, and speed. 

 

Those 11 observations are- Hight, initial angle roll, initial 
angle pitch, x offset, z offset, z speed, tvc, thrust engine, 
thrust rcs thrust, collision speed 

 

So the total number of possible actions are 162 at each 
time step. The agent only has control over the throttle 
level and the TVC on X axis and Z axis and there roll and 
pitch of RSV of the main engine  

 

 

Figure.1 Training Area 

 

The reward system is simple: the agent receives a reward 
of +1 for successfully landing the rocket. However, it is 
unlikely that the agent will achieve a positive reward by 
randomly selecting actions at the beginning of the training 
process. 

 

To expedite the learning process, we employed two 
techniques: curriculum learning and imitation learning. 
By initially teaching the agent a less challenging task, such 
as launching the rocket from a lower height, it can progress 
towards the landing state and improve its chances of 
receiving rewards. Additionally, imitation learning 
involved providing the agent with examples to learn from, 
such as successfully recorded rocket launches. In 
summary, these techniques were utilized in the Starship 
Landing Support to enhance the learning process. 

 

In summary, the Starship landing reinforcement learning 
problem is challenging. However, by utilizing curriculum 
and imitation learning techniques, we can facilitate more 
efficient learning and enhance the agent's chances of 
successfully landing the rocket. 

 

 

Figure.1 Training area with performed process 

 

This approach is often considered suboptimal as it 
influences the agent's learning with potentially suboptimal 
examples. While the agent was trained with my 
demonstrations during only 0.0025% of its training, I 
would not classify it as imitation learning since it was only 
utilized at the initial stages and then disregarded. The 
agent was able to learn the optimal sequence of operations 
without relying on my demonstrations. 

To facilitate the learning process, the agent initially relied 
on human examples to guide its actions and experience 
rewarding outcomes. This approach can be seen as an 
exploration strategy, where the agent explores the 
environment by taking actions that are similar to those 
leading to rewards, rather than relying solely on random 
actions. This combined approach, along with curriculum 
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learning, proves to be effective when the reward function 
is limited. However, it's worth noting that this imitation 
learning technique may not be applicable in all scenarios 
and could even pose challenges in simpler tasks. 

 

    Random initialization was a crucial aspect utilized 
extensively during the entire training process to ensure 
that the agents could effectively adapt to different 
conditions. This approach aimed to enhance the agents' 
ability to generalize their learning. Notably, this 
approach proved beneficial when gradually increasing 
the altitude during training, from 500m to 5km. Despite 
significant changes in the initial conditions, the agents 
demonstrated robust performance. Even when the 
spawning altitude was considerably altered (e.g., from 
900m to 1.5km), the decline in performance was less 
than expected. This observation indicates that the agents 
developed a higher level of resilience and adaptability to 
handle variations in the initial conditions. 

 

    In practice, the project is implemented in Unity, 
utilizing the Unity ML Agents toolkit. This toolkit 
provides a seamless integration between Python and the 
Unity environment, which is highly beneficial as Python 
is a widely used language for machine learning and 
reinforcement learning. Moreover, Unity ML Agents 
allows for the concurrent training of multiple agents 
within a single environment, resulting in significant 
speedup in the training process. This is why you can 
observe 32 Starships landing in close proximity to each 
other, as they are undergoing simultaneous training. The 
PPO (Proximal Policy Optimization) algorithm was 
utilized in its original form without any modifications to 
align with the desired behavior. This fact is worth 
mentioning and can be further explored in the Results 
section for more detailed information. 

 

V.  BLOCK DIAGRAM DESCRIPTION 

block diagram for this project would likely include the 
following components: 

 

Figure.1 Block diagram of suggested methodology 

 

The simulated environment, which could be created 
using the Unity game engine and would include a 
representation of the rocket and the landing site. 

 

Deep reinforcement learning methods would be used to 
train the AI agent. It would observe the simulated setting 
and decide what steps to take to safely land the rocket. 

 

The neural network, which would be used by the AI agent 
to make decisions and take actions. It would be trained 
using the data from the simulated environment and the 
rewards received for successful landings. 

The components for the agent neural network are  Height, 
roll angle, angle pitch angle, offset, speed, tvc angle, engine 
thrust, rcs thrust, collision speed 

 

The reward system, which would provide feedback to the 
AI agent on its performance. The agent would receive 
rewards for successful landings and use this feedback to 
adjust the parameters of its neural network. 

 

The evaluation system, which would be used to measure 
the agent's performance and determine if it has 
successfully learned to land the rocket. This could include 
metrics such as the number of successful landings within a 
set amount of time and the number of attempts. 

 

The Unity ML-Agents toolkit, would be used to train the 
agent and also will be used to provide the interface 
between the agent and the 3D environment. 

 

 The block diagram would depict the interaction between 
these different components, with the simulated 
environment providing input to the AI agent, which uses 
its neural network to make judgements and take actions. 
The agent receives rewards for successful landings, which 
are used to adjust the parameters of the neural network, 
and the agent's performance is evaluated by the evaluation 
system. 

 

Unity ML-Agents 

The Unity ML-Agents plugin, developed by Unity 
Technologies, is a valuable addition to the Unity game 
engine that allows us to create or utilize pre-made 
environments for training our agents. This plugin has 
gained popularity among developers of AAA games, 
including titles like Firewatch, Gone Home, Cuphead, and 
more. It provides a powerful framework for integrating 
machine learning and artificial intelligence into game 
development processes. 

 

To gain a better understanding of the RL process, let's 
examine it as a loop, as shown in the suggested 
methodology block diagram in Figure 1. 

 

Suppose we have an agent who is learning to play a 
platform game.  

 

1. The environment gives our agent access to the game's 
S0 beginning state. 

2. Based on the state S0, our agent moves to the right in 
response to action A0. 

3. The surroundings transition into a new state, S1. 
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4. We provide our agent a positive reward of R1 (+1) 
since it is still alive. 

5. A state, action, and reward sequence are produced by 
this RL loop. To maximize the anticipated cumulative 
benefit is the agent's goal. 

 

VI. RESULT 

 

The neural network used in this project has 
approximately 40,000 parameters. To train the 
algorithm, we used a Ryzen 7 5800U processor and a 
GTX 1660ti, completing around 200 million training 
steps. The training process took about 26 hours. After 
training, the agent achieved successful Starship landings 
around 95% of the time, as indicated by an average 
reward of approximately 0.92. It was possible to 
complete the training in under 20 hours with a success 
rate of 93%, but for real-time implementation of the 
project, we aim for maximum efficiency, equivalent to 
100%. 

The neural network has roughly 40k parameters in total. 
The algorithm was trained on a Ryzen 7 5800U processor 
and GTX 1660ti for a total of roughly 200 million 
timesteps. About 26 hours were needed to complete the 
agent’s training. After training, the agent successfully 
lands Starship around 98% of the time, as indicated by 
the final trained agent's mean reward of around 0.92. 
Even though I could have finished training much earlier 
than 20 hours and still achieved a good score (>95%), 
even a 98% performance is obviously insufficient for 
practical application. additional practice and effective 
hyperparameter tuning 

Performance could be significantly higher, the "black 
box" effect once more makes the practical application of 
RL for this purpose essential. Three-layer neural 
networks with a learning rate of 3.0E-4, a batch size of 
64, and later 128 are the parameters used. 

 

 

Figure.1 Rocket 

 

In comparison, DeepMind's popular Deep Q-learning 
(DQN) implementation for Atari games has fewer than 
10,000 parameters and is trained using a CNN neural 
network for a total of 10 million steps. This means that 
the agent observes game screenshots, similar to how 
humans perceive the game. The difference in the number 
of learning steps can be attributed to two factors. Firstly, 
I developed this project individually over a few weeks. 
Secondly, while both this project and DQN utilize deep 
reinforcement learning, they employ fundamentally 
different algorithms. DQN is utilized by Google 

DeepMind. The advantage of DQN lies in its high data 
efficiency, enabling it to learn effectively from experiences 
at any point during training. 

The biggest challenge in creating this project was choosing 
the appropriate reward function. I initially tried a denser 
reward function that may instruct the agent on how to do 
the task. But because the agent maximized them in odd 
ways, they were incredibly difficult to employ. For 
instance, if you punish the agent for hitting the ground too 
quickly, it won't hit the ground at all and won't receive a 
penalty. In general there is a requirement of a reward 
function that instructs the agent what to do rather than 
how to do it, allowing the agent to act anyway it sees fit in 
order to accomplish your goals. 
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