
www.ijcrt.org © 2023 IJCRT | Volume 11, Issue 5 May 2023 | ISSN: 2320-2882

IJCRT2305685 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org f682

ROCKET LANDING USING
REINFORCEMENT LEARNING IN

SIMULATION

Ashwinikumar Rathod
Information and Technology

G.H Raisoni College of Engineering
Nagpur, India

Hardik Bopche
Information and Technology

G.H Raisoni College of Engineering
Nagpur, India

 Ankit Sayane
Information and Technology

G.H Raisoni College of Engineering
Nagpur, India

Chaitanya Shidurkar
Information and Technology

G.H Raisoni College of Engineering
Nagpur, India

 Chetan Galhat
Information and Technology

G.H Raisoni College of Engineering
Nagpur, India

Dr. Vinay Keswani
Professor

G.H Raisoni College of Engineering
Nagpur, India

Abstract— The goal of this project prototype is to develop a
reinforcement learning system that can successfully land an
orbital rocket by observing and understanding its environment.
In this project, an AI agent learns how to independently land a
rocket and then selects the most efficient actions to achieve this
objective. Initially, the agent performs random actions since it
has no prior knowledge. However, by doing so, it gains insights
into its environment and the ultimate goal of landing the
rocket. Once the agent receives a reward for landing the rocket,
it modifies its parameters based on the reward to enhance its
output and increase the likelihood of success. The Unity ML-
Agents toolkit is used in this project.

This project focuses on the multidisciplinary topic of
reusable space systems, especially first stage rockets. The
majority of rockets have two to three stages. The initial
stages, which are largely done by boosters, carry the
cargo, or spacecraft, high up in the sky. After the last
stage, the rocket's main engine separates, descends back
towards Earth, and either burns up due to friction in the
Earth's atmosphere or crashes into the ocean, rendering
future missions ineffective. The loss of the primary
rocket engine is not only inefficient, but also expensive
and time-consuming to develop. Reusable components
dramatically reduce launch costs, decreasing the barrier
to entry into space.

I. INTRODUCTION

Since the 1950s, numerous rockets, space station
components, and satellites have been discarded in the
Earth's oceans, leading to increased pollution and posing
risks to marine life. The disposal of these objects can result
in marine contamination due to potential spills of the
highly hazardous rocket fuel hydrazine. Additionally, the
impact on local seals, whales, bears, and walruses in areas
such as the ice points off the coast of Greenland remains
uncertain. It's important to note that ocean organisms and
ecosystems play a vital role in our weather and climate, as
the ocean absorbs approximately one-third of the carbon
dioxide generated due to its thermodynamic properties.

Reinforcement learning is an area of artificial intelligence
that allows autonomous entities to learn through a trial-
and-error approach. In the context of rocket landing, the
agent (the rocket) learns by interacting with its
environment and receiving feedback based on its actions.
This application of reinforcement learning is particularly
intriguing as it involves training an algorithm to
autonomously achieve the challenging task of rocket
landing.

To achieve this objective, deep reinforcement learning
techniques are applied in the project. The program utilizes
the Unity ML-Agents toolbox and employs a neural
network-based algorithm. The system observes its
surroundings and makes decisions to facilitate a successful
rocket landing. Initially, the system selects actions
randomly, but as training progresses, the agent is
rewarded for successfully landing the rocket. The
algorithm adjusts the settings of its neural network based

http://www.ijcrt.org/

www.ijcrt.org © 2023 IJCRT | Volume 11, Issue 5 May 2023 | ISSN: 2320-2882

IJCRT2305685 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org f683

on the received inputs and the actions that led to success,
increasing the likelihood of implementing successful
actions.

Figure.1 Brief Description of landing rocket

The privately owned company SpaceX is actively
supporting the development of reusable orbital launch
technologies, akin to the concept of aircraft reuse. Over
the years, they have made significant progress towards
their goal of achieving full and rapid reusability of space
launch vehicles. Their ambitious long-term plans involve
swiftly retrieving the first stage of the launch vehicle to
the launch site and realigning the second stage with the
launch site within 24 hours after atmospheric re-entry.
SpaceX is also aiming to design two stages of their orbital
launch vehicle, enabling lunar spacecraft to be reused
within a few hours after completing their missions.

II. PROBLEM STATEMENT

The problem statement for this project is to develop an
artificial intelligence agent that is able to land an orbital
class rocket, specifically the Starship, in a simulated
environment using deep reinforcement learning
algorithms. The AI agent will be trained using the Unity
ML-Agents toolkit and will be able to make decisions and
take actions based on its observations of the simulated
environment. The agent's goal is to successfully land the
rocket without any errors or crashes. The agent will be
rewarded for achieving successful landings, and it will
utilize this feedback to optimize the parameters of its
neural network, enhancing the likelihood of executing
actions that result in successful landings. The agent's
performance will be evaluated based on the number of
successful landings it is able to achieve within a set
amount of time and number of attempts.

III. LITERATURE REVIEW

In this project, we have created a 3D environment using
Unity to simulate rocket landing. The rocket model is
specifically designed for this purpose. We are utilizing
the ML Agent toolkit, along with Machine Learning,
Deep Learning, and TensorFlow algorithms, to train and
simulate the rocket's behavior. Real-world parameters
such as rocket speed, gravity, maximum landing speed,
and the position of the landing base are taken into
account. These parameters are integrated into a Neural
Network for RL training. Initially, the rocket performs
random operations. As training progresses, the rocket or
the code is rewarded for successfully completing the
landing task, such as landing the rocket on the platform.
Based on these rewards, adjustments are made to the
neural network settings to encourage behaviors that lead
to higher success rates. Through iterative trial and error,

we aim to develop a machine learning system capable of
achieving precise rocket landings on the platform.

We created a simulation environment using Tensorflow,
taking into account real-life parameters like speed, gravity,
rocket speed, and so on, during landing. We successfully
landed spacecraft or rockets after constructing the
simulated environment with Python.

SpaceX has recently employed a convex optimization
technique to identify the optimal landing path for their
rockets, leveraging real-time computer vision data. This
approach enables them to dynamically replan the landing
trajectory, ensuring precise landings even in the presence
of significant variations in the rocket's initial state. As
future flights acquire fresh data during the mission, there
will be a growing need for rapid planning methods that can
effectively address real-time demands.

The complexity of planning landing trajectories arises
from nonlinear dynamics, nonconvex constraints on states
and controls, posing a real-time challenge for existing
nonconvex optimization methods. However, a study
suggests that employing convex optimization techniques
can significantly enhance the performance in addressing
rapid trajectory optimization problems.

The approach is based on the universal approximation
theorem, assuming there is an ANN that approximates the
dynamical function with a known approximation error.
The training set's input-output pairs are effectively stacked
vectors of system states and control vectors for the input.

The ultimate result is a neural network model that includes
all of the dynamics and may be used to predict future
states. The usage of recurrent neural networks improves
dynamics reconstruction when just artificial neural
networks are used. neural networks instead of more basic
feedforward networks In the literature, recurrent neural
networks are utilized to carry out the job, despite their
typically poor quality.

IV. METHODOLOGY

About the Rocket landing and Reinforcement
Learning-

In the simulation, the rocket is randomly spawned at a
distance of 5-6 kilometers from the target, facing a random
direction and positioned randomly. The center of mass of
a rocket is commonly positioned at two-thirds of its length.
It is worth noting that the majority of the rocket's mass is
concentrated within this two-thirds length. The objective
for the rocket is to successfully land on the ground with a
speed ranging between 4 m/s to 5 m/s.

Despite variations in the simulation, the agents
consistently adopt the suicide burn landing strategy. This
strategy entails igniting the main engine at the very last
moment to decelerate the rocket and achieve a successful
landing. Although this approach is considered risky, it is
the most fuel-efficient method in terms of consumption.

http://www.ijcrt.org/

www.ijcrt.org © 2023 IJCRT | Volume 11, Issue 5 May 2023 | ISSN: 2320-2882

IJCRT2305685 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org f684

The simulation results demonstrate that the agents have
learned to optimize their fuel usage by consistently
implementing the suicide burn strategy, irrespective of
the initial conditions or random factors involved.

On getting a successful landing the agent is provided a
reward, by which the agent tries to get the best possible
output for every time step. On successfully landing the
rocket gets a reward of +1 which makes the agent give a
better output than before.

In this project we are not considering atmospheric
conditions as one of the factors and the agent has only a
single throttle level, the Reinforcement Learning
problem can be characterized as having a finite set of
possible actions. This means that the agent's movements
are restricted to a discrete set of options, rather than a
continuous range of possibilities. The most effective
landing strategy at full speed is to approach at an angle,
which is why this option is available to the agent. To
achieve this, the agent employs Thrust vector control and
Reaction control system to steer the Starship towards a
seven-degree angle in both directions

To maintain the rocket's orientation, the agent controls
the three main engines and four Reaction Control System
Thrusters. This combination of Thrust vector control and
Reaction control system controls the roll and pitch of the
rocket.

This project has a limitation as we are not considering
atmospheric conditions. Thus the velocity of the rocket
and the trajectory of the rocket differs by a little to real-
life circumstances. The other limitation is the rocket in
this simulation is allowed to switch between the 3
engines and make them switch on and switch off, which
is not similar to real-life circumstances. The real-life
engines are complex to start and is a time-consuming
process so it doesn’t switch on and off frequently.

The agent receives a total of 11 observations, where each
observation is represented by a floating-point number
indicating the rocket's position, rotation, and speed.

Those 11 observations are- Hight, initial angle roll, initial
angle pitch, x offset, z offset, z speed, tvc, thrust engine,
thrust rcs thrust, collision speed

So the total number of possible actions are 162 at each
time step. The agent only has control over the throttle
level and the TVC on X axis and Z axis and there roll and
pitch of RSV of the main engine

Figure.1 Training Area

The reward system is simple: the agent receives a reward
of +1 for successfully landing the rocket. However, it is
unlikely that the agent will achieve a positive reward by
randomly selecting actions at the beginning of the training
process.

To expedite the learning process, we employed two
techniques: curriculum learning and imitation learning.
By initially teaching the agent a less challenging task, such
as launching the rocket from a lower height, it can progress
towards the landing state and improve its chances of
receiving rewards. Additionally, imitation learning
involved providing the agent with examples to learn from,
such as successfully recorded rocket launches. In
summary, these techniques were utilized in the Starship
Landing Support to enhance the learning process.

In summary, the Starship landing reinforcement learning
problem is challenging. However, by utilizing curriculum
and imitation learning techniques, we can facilitate more
efficient learning and enhance the agent's chances of
successfully landing the rocket.

Figure.1 Training area with performed process

This approach is often considered suboptimal as it
influences the agent's learning with potentially suboptimal
examples. While the agent was trained with my
demonstrations during only 0.0025% of its training, I
would not classify it as imitation learning since it was only
utilized at the initial stages and then disregarded. The
agent was able to learn the optimal sequence of operations
without relying on my demonstrations.

To facilitate the learning process, the agent initially relied
on human examples to guide its actions and experience
rewarding outcomes. This approach can be seen as an
exploration strategy, where the agent explores the
environment by taking actions that are similar to those
leading to rewards, rather than relying solely on random
actions. This combined approach, along with curriculum

http://www.ijcrt.org/

www.ijcrt.org © 2023 IJCRT | Volume 11, Issue 5 May 2023 | ISSN: 2320-2882

IJCRT2305685 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org f685

learning, proves to be effective when the reward function
is limited. However, it's worth noting that this imitation
learning technique may not be applicable in all scenarios
and could even pose challenges in simpler tasks.

 Random initialization was a crucial aspect utilized
extensively during the entire training process to ensure
that the agents could effectively adapt to different
conditions. This approach aimed to enhance the agents'
ability to generalize their learning. Notably, this
approach proved beneficial when gradually increasing
the altitude during training, from 500m to 5km. Despite
significant changes in the initial conditions, the agents
demonstrated robust performance. Even when the
spawning altitude was considerably altered (e.g., from
900m to 1.5km), the decline in performance was less
than expected. This observation indicates that the agents
developed a higher level of resilience and adaptability to
handle variations in the initial conditions.

 In practice, the project is implemented in Unity,
utilizing the Unity ML Agents toolkit. This toolkit
provides a seamless integration between Python and the
Unity environment, which is highly beneficial as Python
is a widely used language for machine learning and
reinforcement learning. Moreover, Unity ML Agents
allows for the concurrent training of multiple agents
within a single environment, resulting in significant
speedup in the training process. This is why you can
observe 32 Starships landing in close proximity to each
other, as they are undergoing simultaneous training. The
PPO (Proximal Policy Optimization) algorithm was
utilized in its original form without any modifications to
align with the desired behavior. This fact is worth
mentioning and can be further explored in the Results
section for more detailed information.

V. BLOCK DIAGRAM DESCRIPTION

block diagram for this project would likely include the
following components:

Figure.1 Block diagram of suggested methodology

The simulated environment, which could be created
using the Unity game engine and would include a
representation of the rocket and the landing site.

Deep reinforcement learning methods would be used to
train the AI agent. It would observe the simulated setting
and decide what steps to take to safely land the rocket.

The neural network, which would be used by the AI agent
to make decisions and take actions. It would be trained
using the data from the simulated environment and the
rewards received for successful landings.

The components for the agent neural network are Height,
roll angle, angle pitch angle, offset, speed, tvc angle, engine
thrust, rcs thrust, collision speed

The reward system, which would provide feedback to the
AI agent on its performance. The agent would receive
rewards for successful landings and use this feedback to
adjust the parameters of its neural network.

The evaluation system, which would be used to measure
the agent's performance and determine if it has
successfully learned to land the rocket. This could include
metrics such as the number of successful landings within a
set amount of time and the number of attempts.

The Unity ML-Agents toolkit, would be used to train the
agent and also will be used to provide the interface
between the agent and the 3D environment.

 The block diagram would depict the interaction between
these different components, with the simulated
environment providing input to the AI agent, which uses
its neural network to make judgements and take actions.
The agent receives rewards for successful landings, which
are used to adjust the parameters of the neural network,
and the agent's performance is evaluated by the evaluation
system.

Unity ML-Agents

The Unity ML-Agents plugin, developed by Unity
Technologies, is a valuable addition to the Unity game
engine that allows us to create or utilize pre-made
environments for training our agents. This plugin has
gained popularity among developers of AAA games,
including titles like Firewatch, Gone Home, Cuphead, and
more. It provides a powerful framework for integrating
machine learning and artificial intelligence into game
development processes.

To gain a better understanding of the RL process, let's
examine it as a loop, as shown in the suggested
methodology block diagram in Figure 1.

Suppose we have an agent who is learning to play a
platform game.

1. The environment gives our agent access to the game's
S0 beginning state.

2. Based on the state S0, our agent moves to the right in
response to action A0.

3. The surroundings transition into a new state, S1.

http://www.ijcrt.org/

www.ijcrt.org © 2023 IJCRT | Volume 11, Issue 5 May 2023 | ISSN: 2320-2882

IJCRT2305685 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org f686

4. We provide our agent a positive reward of R1 (+1)
since it is still alive.

5. A state, action, and reward sequence are produced by
this RL loop. To maximize the anticipated cumulative
benefit is the agent's goal.

VI. RESULT

The neural network used in this project has
approximately 40,000 parameters. To train the
algorithm, we used a Ryzen 7 5800U processor and a
GTX 1660ti, completing around 200 million training
steps. The training process took about 26 hours. After
training, the agent achieved successful Starship landings
around 95% of the time, as indicated by an average
reward of approximately 0.92. It was possible to
complete the training in under 20 hours with a success
rate of 93%, but for real-time implementation of the
project, we aim for maximum efficiency, equivalent to
100%.

The neural network has roughly 40k parameters in total.
The algorithm was trained on a Ryzen 7 5800U processor
and GTX 1660ti for a total of roughly 200 million
timesteps. About 26 hours were needed to complete the
agent’s training. After training, the agent successfully
lands Starship around 98% of the time, as indicated by
the final trained agent's mean reward of around 0.92.
Even though I could have finished training much earlier
than 20 hours and still achieved a good score (>95%),
even a 98% performance is obviously insufficient for
practical application. additional practice and effective
hyperparameter tuning

Performance could be significantly higher, the "black
box" effect once more makes the practical application of
RL for this purpose essential. Three-layer neural
networks with a learning rate of 3.0E-4, a batch size of
64, and later 128 are the parameters used.

Figure.1 Rocket

In comparison, DeepMind's popular Deep Q-learning
(DQN) implementation for Atari games has fewer than
10,000 parameters and is trained using a CNN neural
network for a total of 10 million steps. This means that
the agent observes game screenshots, similar to how
humans perceive the game. The difference in the number
of learning steps can be attributed to two factors. Firstly,
I developed this project individually over a few weeks.
Secondly, while both this project and DQN utilize deep
reinforcement learning, they employ fundamentally
different algorithms. DQN is utilized by Google

DeepMind. The advantage of DQN lies in its high data
efficiency, enabling it to learn effectively from experiences
at any point during training.

The biggest challenge in creating this project was choosing
the appropriate reward function. I initially tried a denser
reward function that may instruct the agent on how to do
the task. But because the agent maximized them in odd
ways, they were incredibly difficult to employ. For
instance, if you punish the agent for hitting the ground too
quickly, it won't hit the ground at all and won't receive a
penalty. In general there is a requirement of a reward
function that instructs the agent what to do rather than
how to do it, allowing the agent to act anyway it sees fit in
order to accomplish your goals.

VII. REFERENCES

[1] R. S. Sutton and A. G. Barto, “Temporal Differencing,” in
Reinforcement Learning: An Introduction, 2013, pp. 132–163.

[2] A. Wolf, B. Acikmese, Y. Cheng, J. Casoliva, J. M. Carson and
M. C. Ivanov, "Toward improved landing precision on Mars," Aerospace
Conference, 2011 IEEE, Big Sky, MT, 2011, pp. 1-8.

[3] J. Gardi and J. Ross, “An Illustrated Guide to SpaceX’s Launch
Vehicle Reusability Plans.” [Online]. Available:
http://www.justatinker.com/Future/.

[4] K. J. Kloesel, J. B. Pickrel, E. L. Sayles, M. Wright, and D.
Marriott, “First Stage of a Highly Reliable Reusable Launch System,”
AIAA Sp. 2009 Conf., no. September, pp. 1–17, 2009.

[5] SpaceX, “SES-10 Mission,” no. March, pp. 9–10, 2017

[6] “Blue Origin | Our Approach to Technology.” [Online].
Available: https://www.blueorigin.com/technolog. [Accessed: 07-Apr-
2017].

[7] G. Sutton and O. Biblarz, “Thrust Vector Control System,” in
Rocket Propulsion Elements, 7th ed., vol. 17, no. 5, 1980, pp. 407–412.

[8] K. Lauer, “Box2D.” [Online]. Available:
https://pypi.python.org/pypi/Box2D/2.0.2b1

[9] SpaceX, “Falcon User’s Guide,” p. 69, 2015.

[10] M. M. Ragab et al., “Launch Vehicle Recovery and Reuse,” Am.
Inst.

Aeronaut. Astronaut., pp. 1–10.

[11] NASA, “Gimbaled Thrust,” Beginner’s Guide to Rockets, Public
Domain Source. [Online]. Available:

https://spaceflightsystems.grc.nasa.gov/education/rocket/gimbaled.ht
ml. [Accessed: 07-Apr-2017].

[12] J. J. Isaac and C. Rajashekar, “Fluidic Thrust Vectoring
Nozzles,” no. April, 2014

[13] SpaceX, “Launch Manifest.” [Online]. Available:

http://www.spacex.com/missions. [Accessed: 07-Apr-2017].

[14] N. Chris Bergin, “SpaceX’s Autonomous Spaceport Drone Ship
ready for action.” [Online]. Available:

https://www.nasaspaceflight.com/2014/11/spacex-autonomous-
spaceportdrone-ship/. [Accessed: 07-Apr-2017].

http://www.ijcrt.org/

