
www.ijcrt.org                                                          © 2023 IJCRT | Volume 11, Issue 5 May 2023 | ISSN: 2320-2882 

IJCRT2305529 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org e196 
 

Deep Neural Network-Based Electricity Theft 

Detection in Smart Grids 
 

Amaresh kori                                                                                             Dr P. Sumalatha 

Central University of Andhra Pradesh                                                      Assistant Prof. 

Anantpuramu (Andhra Pradesh)                                                               Department of Artificial 

amareshkori427@gmail.com                                                                     Intelligence and Data Science 

 

 
Abstract—Electricity theft is a widespread issue that has a 

detrimental impact on both power customers and utility 

businesses. It impairs utility companies' ability to grow 

economically, creates electric risks, and has an effect on 

consumers' high energy costs. The development of smart grids is 

crucial for the identification of power theft since these systems 

create enormous amounts of data, including information on 

client use, which may be used in machine learning and deep 

learning methods to identify electricity theft. This research offers 

a method for detecting theft that use deep neural networks to 

classify data using extensive characteristics in the time and 

frequency domains. We use data interpolation and synthetic data 

creation techniques to overcome dataset flaws including missing 

data and class imbalance issues. We evaluate and contrast the 

influence of characteristics from perform experiments using 

principal component analysis in both the time and frequency 

domains, run experiments in combined and reduced feature 

space, and then apply the minimum redundancy maximum 

relevance approach for confirming the most crucial features. By 

utilizing a Bayesian optimizer to optimize hyperparameters, we 

may increase the performance of power theft detection. We also 

use an adaptive moment estimation optimizer to run tests with 

various values of critical parameters to find the settings that 

produce the greatest accuracy. Finally, we demonstrate our 

method's competitiveness against other approaches assessed on 

the same dataset. On validation, we obtained 91.8% accuracy, 

which is the second-best on the benchmark, and 97% area under 

the curve (AUC), which is 1% higher than the best AUC in 

existing works. 

 

Keywords: Deep neural network, electricity theft, machine 

learning, minimum redundancy maximum relevance, principal 

component analysis, smart grids. 

I.    INTRODUCTION 

Utility companies all across the world struggle with the 

issue of electricity theft. Electricity theft is the main cause of 

Non-Technical Losses (NTLs), which cost utility companies 

globally more than $96 billion annually [1]. According to the 

World Bank [2], 50 percent of the energy produced in sub-

Saharan Africa is stolen. 

The ultimate objective of energy thieves is to use energy 

without being charged by utility providers [3] or to pay bills 

that are less than the quantity of energy used [4]. As a result of 

power theft, utility companies lose a lot of money. According 

to [5], Russia lost $5.1 billion, Brazil lost $10.5 billion, and 

India lost $16.2 billion in 2015. 

According to estimates, energy theft costs South Africa 

(via Eskom) some $1.31 billion (R20 billion) in lost income 

per year [2]. 

The stability and dependability of power systems are 

directly impacted by electricity theft, in addition to the income 

lost [3]. Electrical surges, overloaded electrical systems, and 

dangers to public safety including electric shocks can result 

[4]. It directly affects all customers' energy tariff increases as 

well [3]. The implementation of smart grids offers several 

chances to address the issue of power theft [4]. Traditional 

electricity grids, smart meters, sensors, computer capabilities 

to monitor and regulate grids, etc. are often included in smart 

grids and are all connected via a communication network [6]. 

Smart Data on power use, grid health, electricity pricing, and 

other topics are gathered through meters and sensors [6]. 

Many Utilities looked at how their meters were installed 

and configured, tested to see if the power line was bypassed, 

and other methods to reduce electricity theft in traditional 

grids [4]. These techniques are costly, ineffective, and unable 

to identify cyberattacks [4], [7]. Using freely available data 

from smart meters and machine learning classification 

techniques, researchers have recently attempted to identify 

power theft. These methods of theft detection have proven to 

be relatively less expensive [8]. However, the performance of 

existing classification techniques is constrained because they 

only take into account time-domain features and ignore 

frequency-domain features. 

Even though there is significant continuing research on the 

detection of electricity theft, the issue still exists. The main 

reason for the delay in resolving this issue might be that clever 

While developing nations lag behind, grid deployment is 

taking place in developed countries [9]. The absence of 

connectivity infrastructure and consumers' privacy concerns 

regarding the data supplied by the smart meters are two 

obstacles to the deployment of smart grids [10]. However, 

according to [10], many developed and developing nations are 

considering using smart meters to address NTLs. According to 

[11], the worldwide market for smart grids will quadruple in 

size between 2017 and 2023, with the following main regions 
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dominating the development of smart grids: Asia, Europe, and 

North America. 

In this study, we describe a technique for detecting 

electricity theft that is based on Deep Neural Network (DNN)-

based classification and uses carefully extracted and chosen 

Performance of classification is improved by features alone. 

The State Grid Corporation of China (SGCC) developed a 

realistic power usage dataset, which is available at [12]. Data 

on power use from January 2014 to October 2016 make up the 

dataset. The following are the key contributions: 

• Using extensive time-domain characteristics and a unique 

DNN classification-based algorithm, we suggest a strategy for 

detecting electricity theft that is based on the literature. 

Additionally, we suggest utilizing frequency-domain features 

to improve performance. 

• To interpret the results and make future training easier, 

we use Principal Component Analysis (PCA) to perform 

classification with a smaller feature space and compare the 

results with classification performed with all input features. 

• To further identify and validate the most important features, 

we employ the Minimum Redundancy Maximal Relevance 

(mRMR) scheme. Characteristics. We demonstrate that using 

frequency-domain characteristics rather than time-domain. 

  

The rest of this essay is structured as follows. The literature 

that has been used to address the issue of power theft is 

covered in Section II. We briefly introduce the strategies 

employed in this work in Section III. Section IV describes the 

step-by-step process used in this study, including dataset 

analysis, efforts done to enhance its quality, and analysis of 

customer load profiles that resulted in feature extraction and 

categorization. We present and discuss the findings in Section 

V. Finally, Section VI brings the paper to a close. 

 

 

II.  RELATED WORK 

 

Many researchers have been drawn to the study of 

electricity theft detection in smart grids to develop techniques 

that reduce electricity theft. The three main types of 

approaches found in the literature are hardware-based, 

combined hardware and data-based detection methods, and 

data-driven methods. 

Methods based on hardware [13]– [19] typically call for 

the installation of hardware components on power distribution 

lines, such as specialized microcontrollers, sensors, and 

circuits. These techniques are often intended to catch power 

theft committed by physically interfering with components of 

the distribution system, such as electricity meters and 

distribution lines. They are unable to recognize cyberattacks. 

power cyber-attack is a type of power theft in which the 

electricity meters are hacked to alter data on energy use [7]. 

For example, in [13], a power meter redesign was made. It 

made use of a microprocessor, a GSM (Global System for 

Mobile Communications) module, and an EEPROM 

(Electrically Erasable Programmable Read-Only Memory). A 

simulation revealed that the meter could, by-passing the meter, 

send a Short Message Service (SMS) if an inelegant load was 

attached. limited to identifying power theft committed by 

physically altering distribution components like electricity 

meters and wires. The GSM module, ARM-cortex M3 

processor, and other hardware elements were used by the 

authors of [16] to address the issue of electricity theft, which 

was manifested in the four ways of bypassing the phase line, 

the meter, disconnecting the neutral line, and tampering with 

the meter to make unauthorized modifications. To test all four, 

a prototype was created. possibilities. For each stolen 

incidence, the GSM module was able to send an SMS 

notification. 

Authors in [17] created the ADE7953 chip-based smart 

meter, which is sensitive to mechanical tempering in addition 

to current and voltage tempering. The ADE7953 was used to 

identify abnormalities in voltage and current, such as 

overvoltage, falling voltage, overcurrent, the absence of a load, 

and others. It informed the Microcontroller Unit (MCU) of an 

interrupt, which possibilities. Every theft reportable tampering 

status could be notified by the GSM module via SMS. By 

attaching a tampering switch to the IO ports of the MCU, 

which may transmit warning signals to the MCU when 

interfered with, mechanical tampering was defeated. The 

concept was put to the test using tampering scenarios such 

joining the phase and neutral lines, connecting the input and 

output of the meter in reverse and connecting the phase line 

directly to the load. The likelihood of a failed detection was 

2.13%. 

Authors in [15] designed a circuitry to detect power theft 

by comparing forward current on the main phase line with 

reverse current on the neutral line using a step-down 

transformer, voltage divider circuit, microprocessor, and other 

hardware components. The circuitry was already fitted ahead 

of the meter. Both real hardware and Proteus software were 

used to test the concept. The issue was discovered, and an 

alert went off when the meter was bypassed. [14] describes the 

design of a circuit to identify power theft committed by meter-

bypassing. Used hardware included transformers, rectifiers, a 

microcontroller, a GSM module, and other items. When the 

meter was tampered with, the GSM controller sent an SMS 

notification to the operator. 

The authors of [18] suggested attaching Radio Frequency 

Identification (RFID) tags to ammeters in order to record 

specific information about each ammeter. Real-time tracking 

and management of ammeters was required. Theft of 

electricity had to be investigated on site. A substantial 

likelihood of an electricity theft exists if a tag is damaged, 

removed, or has information different from the original. 

Evaluation based on a study of deployment costs. Return 

on Investment (ROI) for a utility firm in China was 

determined to be more than 1. [19] describes the construction 

of an Arduino-based real-time power theft detector. The 

hardware components Arduino Uno, GSM module, current 

sensors, and LCD were employed. Current sensors, one on the 

secondary side of the transformer and the other on the electric 

service cap, sent measurements to the Arduino Uno. The 

message would be transmitted to the operator via a GSM 

module if the difference between the measurements of the 

present sensors exceeded a certain threshold. The prototype 

was created using hardware that, when tested, was able to 

notify theft incidents, and the simulation was carried out using 

Proteus 8 software. These techniques are costly since they 

need specialized hardware deployment and upkeep, which 

makes them ineffective at stopping cyberattacks. To address 

the issue of energy theft, combined hardware and data-based 

detection solutions [20]– [22] make use of hardware, machine 

learning, and/or deep learning techniques. These approaches 

also present the difficulty of being expensive to deploy and 

maintain due to hardware constraints. 

[20] suggested a method for calculating a neighborhood's 

overall consumption and comparing the findings to the usage 

that neighborhood's smart meters indicated. Smart meters and 
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transformer measurements would diverge noticeably, which 

would indicate the neighborhood is home to dishonest clients. 

In order to identify the dishonest clients in the area, the writers. 

recommended utilizing a classifier based on a Support 

Vector Machine (SVM). A dataset of 5000 (all devoted) 

customers served as the classifier's test subjects. It was 

possible to attain a maximum detection rate of 94% and a 

minimum false positive rate of 11%. 

A prediction model was created by authors in [22] to calculate 

TLs. The entire distribution network losses would be deducted 

from TLs to obtain NTL. A smart meter simulator was used to 

produce data for 30 consumers in 30-minute intervals over the 

course of six days based on the premise that distribution 

transformers and smart meters share data to the utility after 

every 30 minutes. Unfaithful users on the simulator stole 

electricity by avoiding the meter. The amount of electricity 

that was stolen ranged from 1% to 10% of the overall use. 

stolen energy worth more than. 

    When one or more metres are suspected of having been 

tampered with, a solution was suggested in [21] that would 

utilize an observer metre that would be mounted on a pole far 

from residences and record the total quantity of power 

provided to n houses. To prevent tampering, cameras would 

be placed around the observer metre. A mathematical 

technique was created to identify a smart metre that has been 

tampered with using information from observer metres and 

smart metres. By boosting the consumption of some metres 

that were randomly selected, a mathematical approach was 

evaluated using a dataset of actual consumption. The system 

was effective in identifying metres with changed consumption. 

      Many researchers work in the aforementioned areas 

because of the high cost of demand. on data-driven solutions 

to the issue of power theft. For instance, the authors of [3] 

developed a system for detecting power theft by using three 

pipelined algorithms: SVM, Kernel function and Principal 

Component Analysis (KPCA), and Synthetic Minority Over-

sampling Technique (SMOTE). In order to balance an 

unbalanced dataset, they employed SMOTE to create fictitious 

data, KPCA to extract features, and SVM to do classification. 

On validation, they attained the highest possible overall 

classifier quality, as indicated by an Area Under the Curve 

(AUC) of 89%. 

Wide and deep Convolutional Neural Networks (CNN) 

models were employed by the authors of [4] to identify 

electricity theft. Wide was to learn numerous co-occurrences 

of features for 1-D series based on the fact that regular power 

usage is periodic whereas data on stolen electricity 

consumption is not periodic. although deep, data Data was 

aligned in a 2-D fashion by weeks and CNN was used to 

capture periodicity. To get a maximum AUC value of 79%, 

they changed the ratios of training and validation data. The 

strategy we provide in this research produces AUC scores 

exceeding 90% on both validation and testing by using the 

same dataset used in [3] and [4]. 

In [23], Principal Component Analysis (PCA) was used to 

extract Principal Components (PCs) from the original high-

dimensional consumption data while retaining the necessary 

variance. The introduction of an anomaly score parameter 

with a defined range between lowest and maximum values. 

For The anomaly score parameter was determined for each 

test sample. 

The sample would subsequently be viewed as malicious if 

the result did not fall within the predetermined thresholds. The 

method's evaluation was based on the true positive rate (TPR), 

which reached the highest figure ever recorded of 90.9%. 

One-Class SVM (O-SVM), Cost-Sensitive SVM (CS-SVM), 

Optimum Path Forest (OPF), and C4.5 tree were utilized by 

the authors in [24]. distinct characteristics were chosen from 

consumer consumption data, and the performance of each 

classifier was examined independently on a distinct set of 

features. All classifiers were then combined for the best 

outcomes. With 86.2% accuracy, the best results were 

obtained when all classifiers were merged. 

Long Short-Term Memory (LSTM) recurrent neural 

networks and CNNs were used in conjunction by the authors 

of [25]. We employed hidden layers, of which CNN and 

LSTM each used four and three, respectively. This approach 

depended on CNN's capability to automatically extract 

features from a given dataset. 1-D time-series data were used 

to extract features. The highest accuracy on model validation 

was 89%. To identify energy theft, the authors in [26] used the 

Local Outlier Factor (LOF) with k-means clustering. 

Customers' load proles were analyzed using k-means 

clustering, and customers whose load proles were far from 

their cluster centers had their anomaly degrees calculated 

using LOF. They were able to evaluate the approach with an 

AUC of 81.5%. Our model has a maximum accuracy score of 

91.8% and a validation score of 97%. 

[27] Two energy theft incidents There were created models. 

The first model is based on the classier Light Gradient 

Boosting (LGB). The dataset was balanced using a mix of 

SMOTE and Edited Nearest Neighbor (ENN). Alex Net was 

used for feature extraction, and LGB for classification. The 

suggested model was given the acronym SALM 

(SMOTEENN-Alex Net-LGB). The second model is more 

sophisticated and is based on adaptive boosting. To balance 

the data of the imbalanced classes, synthetic data that 

approximated the minority class data was produced using the 

Conditional Wasserstein Generative Adversarial Network with 

Gradient Penalty (CWGAN-GP). Utilizing Google Net for 

feature extraction, classification by AdaBoost was done next. 

The suggested model was given the moniker GAN-NET Boost. 

The SGCC data utilized in this work were used to assess the 

models. 90% accuracy was reached with SALM and GAN-Net 

Boost, and 95%, and an AUC on validation of 90.6% and 96%, 

respectively. 

Although these models were able to provide excellent 

results, their performance was constrained by the fact that they 

only took time-domain data into account. Our technique 

demonstrates that performance of classification is enhanced by 

adding frequency-domain characteristics on top of time-

domain features. 

 

                              III   PRELIMINARIES 

The three primary methods—Deep Neural Networks 

(DNNs), Principal Component Analysis (PCA), and Minimum 

Redundancy Maximum Relevance (mRMR)—are summarised 

in this section. 

A. Deep neural networks 

Artificial neural networks (ANNs) are a family of machine 

learning methods created to mimic the biological workings of 

the human brain [28, 29]. They are frequently applied to 

extract patterns or spot trends that are challenging to identify 

using other machine learning approaches [30]. 

They are made up of several layers of nodes or neurons 

coupled to further layers [29]. The fundamental building block 

of a neural network is a neuron, which derives from the 

McCulloch-Pitts neuron, a simplified model of a neuron in the 
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human brain [31]. The model diagram of a neuron is shown in 

Figure 1. that includes a layer that comes after the ANN's 

input. 

 

 
FIGURE 1. First hidden layer neuron model. 
 

Research on ANNs is where the idea for Deep Neural 

Networks (DNNs) first emerged [32]. Two or more hidden 

layers are a defining characteristic of DNNs [28]. Compared 

to shallow ANNs, they can learn characteristics that are more 

complicated and abstract [33]. The output layer of 

classification problems is frequently constructed so that one 

neuron stands in for each class [29]. 

All levels of the neural network, with the exception of the 

output layer that classifies using the learned features, are 

employed to filter and learn the complex features [29], [34]. 

Prior to the creation of DNNs, the majority of machine 

learning approaches investigated shallow structural topologies, 

which typically include just one layer of non-linear 

transformation [32]. SVMs, logistic regression, and ANNs 

with a single hidden layer are a few examples of these designs. 

DNNs use a variety of architectures, such are employed to 

address various issues. Convolutional, recurrent, and feed-

forward DNN architectures are a few examples of DNN 

architectures. 

A fully linked feed-forward model is used in this research 

effort. 

 

 
FIGURE 2. Fully connected feed-forward DNN general architecture. 
 

It was DNN. Figure 2 depicts the standard layout of a fully 

linked feed forward DNN. 

The following are the main components of the DNN 

shown in Figure: 

• Layer that contains the characteristics or 

representation of input data (x). 

• Weights of the connections between a DNN's 

input layer and first hidden layer are known as 

input weights (wi). 

• concealed layers 

the neuronal layers that lie between the input and 

output layers. They are applied to investigate how 

the input and output signals interact [30]. 

• Weights of hidden neurons ([wh1……….whk]) 

linkages between the unseen layers that weigh 

more. 

• Weights of the output (wo) 

weights between the output layer and the final 

hidden layer. 

• The output layer (y) is DNN’s last layer. It 

provides the results of the 

 

     Computation in a feed-forward architecture is a series of 

operations performed on a preceding layer's output. The 

output is produced by the last procedures. The output for a 

particular input remains constant; it is independent of the prior 

network input [33]. 

1) DNNs' HISTORY OF DEVELOPMENT 

 

 According to [33], research on DNNs began in the 1960s, 

whereas ANNs were first suggested in the 1940s. For reading 

handwritten numbers, the LeNet network, which made use of 

several digital neurons, was developed in 1989. Beyond 2010, 

significant advancements were made, with examples being 

Alex Net’s picture recognition and Microsoft's speech 

recognition systems. 

 

recognition system, as well as DNN accelerator research from 

Neuron and DianNao. 

According to [30], [32], and [33], the following factors have 

been crucial to the development of DNNs: 

improvements in computer design and semiconductor 

technology that enable parallel computation and decrease 

hardware prices. 

Large datasets are created by the enormous quantity of 

data that cloud providers and other companies collect, 

successfully training DNNs. 

Research advancements in signal/information processing 

and machine learning have led to the development of 

strategies to increase accuracy and widen the application 

domain for DNNs. 

DNNs can contain more than a thousand layers, as long as 

the technology allows it [33]. 

 

2)  DNN TRAINING 

 

The two main prerequisites for training the DNN are a 

huge dataset and strong computing capabilities. given that 

weight adjustments demand several iterations [33]. The 

weights between the neurons are adjusted during the DNN 

training process [30]. 

The DNN gains knowledge from the data during the 

training phase. There are four main ways to learn: supervised, 

semi-supervised, unsupervised, or by reinforcement [33][36]. 

Supervised learning was applied in this study. According 

to [28], [34], the standard process for supervised learning in 

DNNs is as follows: 

 Appropriate starting values are used to initialize 

the weights W D [wi; wh1…..whk;wo]. 

 The input layer of the network receives input 

signal x. 
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 In order to decrease error, output error is 

determined and weights are then changed. 

 For all training data, repeat steps 2 and 3. 

 

3)  BACKPROPAGATION 

 

      Weights from subsequent layers between the input 

and output layers make up the loss function of a multi-

layered ANN [36]. Chain rule is used in backpropagation 

to calculate the gradient of the loss function as the sum of 

local gradient products over various node connections 

between input and output layers [28], [29], [36]. 

Backpropagation methods often adjust the neural network 

parameters on each layer using gradient-based 

optimisation techniques [37]. 

 

4)  ACTIVATION FUNCTION 

By replicating the action of a biological neuron, an 

activation function converts an input signal into an output 

signal that might be an input to another neuron [38, 39]. 

There are several activation functions, and they may be 

broadly categorized into two categories: linear activation 

functions and non-linear activation functions. The form 

 

                                   g =f (z)                                        (2) 

 

5) FUNCTIONS FOR LINEAR ACTIVATION 

Typically, the activation of a linear activation 

function is directly proportional to the input. Equation (3) 

can be used to represent them. 

f(z) = c(z)                                                                  (3) 

C is a constant 

                                                               

The derivative of the linear activation function is f 

0(z) D C, and its output falls within the range (1;1). The 

application of a gradient cannot reduce an error since it is 

unrelated to the input [40]. Regression issues often 

employ this activation function [41]. 

 

6) NON-LINEAR FUNCTIONS FOR ACTIVATION 

      Because they can adjust to changes in the input and 

distinguish between outputs, non-linear activation 

functions are frequently utilised in DNNs [40]. The most 

well-liked non-linear activation functions among the 

numerous that have been created are 

 Sigmoid activation function 

                              Sigmoid activation function is given by 

Equation 

 

 
 

 B   Principle component Analysis 

From a data table of inter-correlated features/variables 

that represent observations, PCA [42] is used to extract 

crucial information. Principal Components (PCs), a new 

collection of orthogonal variables, are used to represent 

this extracted data. The Singular Value Decomposition 

(SVD) method [43], which is used in this study, operates 

in the following way: The SVD divides the input feature 

matrix X into three matrices, namely, X D PQRt, 

 P is the normalized eigen vectors of the matrix XXT, 

_ Q D E1 

 2 where E is a diagonal matrix of eigen values of 

matrix XXT, and 

 _ R is the normalized eigen vectors of matrix XTX 

 

 so that V D1 are produced and are sorted in decreasing 

order of variance [23]. A PC is given by for position p. 

 

 

IV   DNN-BASED ELECTRICITY THEFT DETECTION 

METHOD 

The three phases that make up the approach for detecting 

electricity theft in this section are as follows: Feature 

Extraction, Data Analysis and Pre-processing. 

 

 

FIGURE 3. Electricity theft detection workflow diagram. 

 

A. DATA ANALYSIS AND PRE-PROCESSING 

We describe the dataset used in this subsection and how we 

improved its quality by locating and eliminating occurrences 

without consumption data. An observation in this study 

refers to a single instance or record from the dataset that was 

used for the duration of consumption measurement. I.e., 

given dataset A of size N, ai A, where ai is the ith 

observation of A and 1 i N.  

We display a study of consumer load profiles. We also 

provide information on data interpolation and the creation of 

fake data. 

1) DATASET ANALYSIS AND PREPARATION 

As mentioned in Section I, we used a real-world power 

consumption dataset made available by SGCC and found at 

[12]. The dataset is made up of daily power use information 

collected between January 2014 and October 2016, which is 

presented in Table 1. Every client receives the same sample 

rate of one measurement each day, which corresponds to 

their daily average power usage. The utilised dataset has 

42372 observations total, 3615 of which are power 

consumption data of dishonest customers while the 

remaining observations are electricity consumption data of 

loyal customers. 
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TABLE 1. Dataset summary table. 

 

 

Data, like many datasets used in the literature, has a 

significant amount of inaccuracies brought on by difficulties 

with smart metres, data storage, data transfer, and unplanned 

system maintenance, among other things [4]. This study's 

dataset is not an exception. It is made up of remnants of non-

numerical or empty values. Using data analysis techniques, we 

discovered that throughout the whole 1034-day period, around 

5.45% of the observations in this dataset were zeroes, just null 

values, or a mix of the two. These observations were thought 

to be meaningless. Specifically, if ai 0 or ai / R for any ai a, an 

observation is said to be empty. Since these observations do 

not contain any properties that distinguish the classes, they 

cannot be used to any electricity consumption report that is 

more than 0 kWh. These observations were eliminated in 

order to enhance the dataset's quality. They were rejected 

because, while being labelled with either class, they could not 

be assigned to either class. Table 1's third column displays a 

list of the observations that are still present after empty 

observations have been eliminated. 

Figure 4 displays line plots of three-month consumption data 

for a faithful client and an unfaithful customer versus 

consumption days. In contrast to the consumption behaviour 

of the electrical thief, which takes on various shapes and is 

unpredictable, the consumption behaviour of the honest client 

is largely uniform and has a predictable trajectory. We also 

conducted histogram analysis for the two classes. of clients, as 

seen in Figure 5. 

We can see from the shown histograms that, when compared 

to dishonest consumer consumption statistics, statistical 

metrics mean, mode, and median are often closer to the 

histogram centre. We conducted a similar study for several 

clients and discovered that the observation made here holds 

true for the majority of the dataset. Based on these findings, 

we claim that by designating outliers 

 

 

 

 

FIGURE 4. Faithful and unfaithful customers’ consumption plots. 

as values beyond three Median Absolute Deviations (MAD), 

honest customers can be characterized as having fewer out- 

liers percentage in a given data, than unfaithful customers. 

 

1) DATA INTERPOLATION 

 
Data were interpolated for all observations including a 

mix of null or non-numerical values and actual 

consumption values. In order to preserve consumption 

patterns during data interpolation, piecewise Cubic 

Hermite Interpolating Polynomial (PCHIP) [46] was 

employed to fill in missing data. 

A cubic Hermite interpolating polynomial H (x) is a 

shape-preserving interpolant that applies to a sub-interval 

of xi x xi 1 and maintains data monotonicity. The raw 

data mean was assessed without accounting for NaN 

values and then put as the first vector element for the data 

consumption vector that had NaN values at the beginning. 

PCHIP was used to complete the remaining components. 

This kept usage in check and stopped outliers from being 

added to the data. 
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FIGURE 5. Faithful and unfaithful customers’ consumption histograms. 

 
Figure 6 depicts a sample of one observation that was taken at 

random and then interpolated. For the sake of clarity, a 

consumption period of 200 days surrounding days with 

incomplete consumption data is displayed. As illustrated in 

Figure 6b, interpolated data points form a smooth curve that 

sits between the lowest and maximum near points without 

overshooting. The consumption data is protected in this way 

from the insertion of outliers and data points that may cause 

the interpolated data pattern to match the dishonest customer's 

consumption pattern of the minority class of unfaithful 

customers, as illustrated in Figure 4b. 

 

1) SYNTHETIC DATA GENERATION 
 

We performed the initial classification after removing empty 

observations and interpolating data. Using the dataset as-is for 

testing, we found that the classifier satisfactorily identified 

loyal customers but struggled to identify dishonest ones 

because of a class imbalance issue [20], [25]. A class 

imbalance problem arises when there are significantly more 

observations in one class than in another. 

 

 

 

 
FIGURE 6. Plots of consumption data before and after interpolation 

 

 
the quantity of observations made in the opposite class. In a 

class-balanced task, classification models accurately classify 

the majority class on a dataset while misclassifying the 

minority class [25]. In the dataset utilised for this study, the 

number of faithful customers is significantly higher than the 

number of unfaithful customers. 

This method of producing synthetic data is quick and 

inexpensive to implement since it makes use of the class of 

faithful customers' existing data to produce data for the 

opposite class. It just requires multiplying the observed data 

by a matrix of randomly generated integers, which is a single 

action on the recorded data. The obtained data was added to 

the initial dataset and assigned the consumption class of 

dishonest consumers. A overview of the observations made 

following the development of synthetic data is included in 

Table 1's fourth column. 

 

B. FEATURE EXTRACTION 

 

Electricity consumption data used in this project is univari- 

ate time-series data. A univariate measurement is a single 

measurement frequently taken over time [47]. For solving 

classification problems, data can be represented by its fea- 

tures (properties), which can then be fed as input to the 

classifier, as is the case in [29], [34] and [48]. Data is clas- 

stifled based on the similarity between features [47] given a 

dataset of different samples. In this work, time-domain and 

frequency-domain features were extracted and used as input 

to a deep neural network for classification. Classification 

performance comparison between time-domain, frequency- 
domain and combined features from both domains was car- 

ried out. 

1) TIME-DOMAIN FEATURE EXTRACTION 

According to line plots and histogram graphs, faithful and 

unfaithful consumers' consumption data clearly 
differentiates by a pattern of consumption, as seen in IV-A. 

Based on this knowledge, the time-domain traits listed in 

Table 2 may be utilised collectively to distinguish between 

the two client segments. Aside from the finding that the 

consumption statistics of loyal customers generally follow a 

pattern. 
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i = 

3 

TABLE 2. Time-domain and frequency-domain features table. 

 

 

 

 
 

 

 
 

 
Unfaithful consumers' consumption patterns are not 

predictable; as seen in Figure 4, they do not use the same 

quantity of energy throughout any given period of time. Due 

to several factors, including the number of appliances utilised, 

the kind of appliances in each household, the size of the 

household, etc., each customer's energy consumption may 

vary. All observations are made to fit inside the same axes in 

order to increase the classification accuracy. This is 

accomplished by utilising the Min-Max approach [49] from 

Equation (17) to normalise the data for each observation. The 

Min-max approach maintains the initial consumption pattern 

while shrinking the data between 0 and 1. 

 

                     
f (x )=

  xi − min(x)  

max(x) − min(x) 

 

1) FREQUENCY-DOMAIN FEATURE EXTRACTION 

 
   According to the Fourier theorem, a periodic signal x(t) may 

be represented as the sum of complex sinusoidal signals 

whose frequencies are integer multiples of the fundamental 

frequency fT [50]. The consumption data graphs in IV-A may 

be seen as a time series signal that can be translated into the 

frequency-domain using the Fourier transform, according to 

the Fourier theorem. We retrieved frequency-domain 

characteristics from each observation that were represented in 

the frequency-domain. Using Equation (17), features were 

normalised after being extracted so that they could be 

provided as input to the classifier since neural networks are 

sensitive to a variety of input data. Feature extracts from both 

domains are displayed in Table 2. 

 
 

A. CLASSIFICATION 

1) NETWORK ARCHITECTURE 
 

     A fully connected feed-forward DNN architecture shown 

in Figure 7 was used for the classification process. 

In order to avoid network underfitting and overfitting [35], 

the following rule of thumb methods [35], [51] were consid- 

ered in the design of hidden layers of a deep neural network 

classifier shown in Figure 7:. 

• Number of hidden neurons should be between the size 
of the input layer and size of the output layer, 

• Number of hidden neurons should be approximated to 

the summation of 2 size of input layer and size of the 

output layer. 

• Number of hidden neurons should be less than twice the 

size of the input layer. 

Rectified Linear unit (ReLU) activation function was used 

in the hidden neurons because of its better convergence prop- 

erty in comparison to other activation functions [28]. 

2) TRAINING 

The classification approach was divided into four parts, 

the first of which used only time-domain features for 

classification, the second of which used only frequency-

domain features, the third of which included combined 

features from both domains, and the fourth of which used 

PCA to perform classification in a smaller feature space. The 

maximum number of training iterations was set at 1000. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 7. DNN classifier architecture. 

 

 

 

Table 1.  Font sizes for papers. Table caption with more than one line must be 

Title. 

As a general rule, 80% of the total data was used for training 

and validation in all methods, and 20% of the total data was 

utilised for testing. This is known as the holdout validation 

scheme. 80% of the training data and 20% of the validation 

data were taken from the training set. When employing the k-

fold cross-validation procedure with k 5, similar results were 

achieved. [52] provides an example of how to use a k-fold 

cross-validation strategy with k 5. 

 

3) PERFORMANCE METRICS 
 
We evaluated the performance of the classifier using the 

true positives (TP), true negatives (TN), false positives 

(FP), and false negatives (FN) derived from a confusion 

matrix [41]. Precision/Positive Predictive Value (PPV), 

F1-Score [55], Matthews Correlation Coefficient (MCC) 

[25], Accuracy and Area Under the Curve of Receiver 

Operator Characteristic (AUC-ROC) curve [56] are some 

of the metrics used to measure recall and true positive 

rates. We briefly introduce the following performance 

measurements. 

The percentage of properly labelled positive instances, or 

recall or true positive rate (TPR), is measured.  
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4)  HYPERPARAMETERS OPTIMIZATION 
 
We tuned the following hyperparameters using the 

Bayesian optimisation approach [57] to get the best 

classification performance in a reasonable amount of time: 

the number of hidden layers, the size of each layer, the 

regularisation strength, and the activation function. The 

Bayes theorem, which stipulates that for occurrences A 

and B, the probability of each. 

 

P(A B)=
P(B|A)P(A) 

. 
 

P(B) 
 

By assuming that an optimisation function follows the 

Gaussian distribution, this optimisation technique 

determines the distribution of hyperparameters. One 

hundred optimisation steps were taken to find the ideal set 

of hyperparameters. Similar to the network in Figure 7, 

the resulting optimised network was trained and evaluated. 

 

5) IMPACT OF KEY PARAMETERS INVESTIGATION 

 
Initial learning rate, mini- batch size, and l2-

regularization parameter effects on the optimised network 

were investigated using adaptive moment estimation 

(Adam) optimizer [58]. Both training and validation data 

were separated into separate categories. 

The amount of training, validation, and test data is crucial 

to the success of the categorization. Less data is required 

for training the more strongly the input characteristics 

correlate with the class label [59]. However, it is not 

advised to use less than 50% of a dataset as training data 

because the test results would suffer [59]. In light of this, 

we evaluated the influence of factors using various 

training data percentages. 
TABLE 3. Investigated parameters table. 

 

 

 

 

 

 

 

 

We carried out the following procedure for 60%, 70% and 

80% training data portions. For each parameter, its impact was 

investigated by determining training and validation accuracies 

with varied parameter values. Parameters were loga- 

rithmically varied in 100 steps between the initial and final 

values. For each step, the number of training epochs was 

limited to 30. The other parameters were held at fixed values 

while adjusting a parameter under study. Table 3 shows inves- 

tigated parameters’ initial values, step values, final values as 

well as fixed values. 

 

V.  RESULTS AND DISCUSSION 

 

We provide and discuss the experimental findings in this 

section. Results that were acquired prior to the creation of 

synthetic data are presented in Section V-A. In Section V-B, 

we compare classification performance when employing 

characteristics from the frequency-domain, time-domain, and 

both domains together as inputs to the classifier. In Section V-

C, we analyse the effect of PCA dimensionality reduction on 

experimental outcomes. In Section V-D, we give the best 

Bayesian optimisation findings in addition to the results 

obtained using optimised classifiers. In Section V-E, we give a 

study of the ideal parameter settings for the best classification 

performance by adjusting various parameters using the Adam 

optimizer. Finally, in Section V-F, we compare our technique 

to data-based power theft detection systems that have been 

developed in the literature. 

 

A. VALIDATION RESULTS BEFORE SYNTHETIC DATA 

GENERATION 

As was said in Section IV, the classifier did 

poorly on the class with the significantly less 

observations when there was an imbalance in the 

number of observations between the two classes. 

The classifier displayed in Figure 7 was trained 

using characteristics taken from an actual dataset 

without the addition of any additional synthetic 

data. 20% of the data was utilised for validation, 

while the remaining 80% was used for training. 

The validation findings are displayed in Table 4's 

third column. Results of validation are 

substantially better for the faithful customers class 

than for the unfaithful customers class. This is 

demonstrated by comparing the recall, precision, 

and F1- score between loyal and disloyal 

consumers. 

There was no improvement in validation outcomes in 

combined domains prior to PCA. Since the difference in the 

corresponding values was within a 1% margin, there was a 

substantial shift in the recall, accuracy, and F1-score for the 

class of devoted customers. But for the dishonest class 
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 FIGURE 8. Performance metrics graphs. 

 

 

 

Prior to balancing the classes, validation results for the 

minority class, which measured recall, accuracy, and F1-score, 

were quite poor. After balancing the classes, a noticeable 

improvement was made. This demonstrates that the classifier's 

sensitivity to the minority class was inferior to its sensitivity to 

the dominant class. 

The findings that were achieved after adding synthetic data 

to the original dataset to balance classes are shown in the 

following subsections. 

 

B.  DIFFERENT DOMAINS FEATURES’ 

CONTRIBUTION ANALYSIS 

 

We give experimental findings based on well recognised 

performance indicators, which are compiled in Table 4, to 

demonstrate the dependability and robustness of the 

technology introduced in this study. Analysis is made easier 

by comparing categorization accuracy between Figure 8 

shows a visual representation of time-domain, frequency-

domain, and integrated information from both domains. 

As can be seen from Table 4 and Figure 8, the 

classification technique when combined with time-domain 

characteristics produced remarkable validation and test results 

for both groups of faithful and unfaithful customers. An 

experiment using only frequency-domain characteristics 

produced better outcomes. When all of the characteristics 

from both domains were integrated, the best results were 

attained. For instance, when the experiment was conducted 

using time-domain features, frequency-domain features, and 

all characteristics from both domains, respectively, accuracy 

on validation was 87.5%, then improved to 89.9%, and 

eventually increased to 91.1%. The red trend line in Figure 8 

graphs shows a notable improvement in the outcomes of tests 

using time-domain and frequency-domain characteristics. 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
FIGURE 9. Features presented in order of their prominence. 
 

Figure 9 is a bar chart created by the mRMR scheme that 

displays the predictors in order of their significance. 

 

 

 

 

 

 

 

 

 

 

 

 

 

The bar chart in Figure 9 demonstrates that more frequency-

domain variables—those with the highest scores—are 

located to the left of the bar chart than time-domain data, 

with mean frequency receiving the greatest predictor score. 

By performing classification tasks utilising the top 3, middle 

3, and bottom 3 features on the same network in Figure 7, we 

validated the accuracy of the features' ranking using the 

mRMR scheme. The classification accuracy and AUC-ROC 

findings are displayed in Figure 10's bar graph. 

Figure 10's findings were compared, and we found that 

accuracy and AUC-ROC performed best for the top three 

characteristics and worst for the bottom three. as anticipated 

features. When all characteristics were merged in the 

previous experiment, MCC was calculated. On validation 

and test, it had values of 0.84 and 0.75, respectively, which 

are nearer to 1 than 0. On the validation and test runs, the 

AUC-ROC values were found to be 97% and 93%, 

respectively. These outcomes show a successful 

categorization task in its entirety. 

 

C...ANALYSIS OF COMPONENTS REDUCTION WITH PCA 

Seven components were still present after PCA was used 

using the component reduction criterion of leaving enough 

components to account for 95% of the variance. 

 

Contributions to the overall variation in percentage terms 

were made by 35.84%, 27.02%, 15.55%, 7.69%, 4.87%, 

3.30%, and 1.81%. Figure 11 displays 2-D biplots of the 

original feature contributions to each of the primary 

component space components. 

Time-domain characteristics are denoted with a 't' suffix, 

whereas frequency-domain features are denoted with an's'. 

The vector direction and length of each feature indicate how 

much that feature contributes to the major component. Figure 

11 shows that frequency-domain characteristics contributed 

more to the major components than time-domain features. 

This was further supported by a study of the features 

importance scores presented by 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 10. Classification results comparison of features ordered by 
mRMR scheme. 
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FIGURE 11. Graphical display of original features’ contribution to 
principal components. 

 

Based on the mRMR system, Figure 9. Table 4's last 
two columns display the test and validation findings 

that were attained after the components were reduced 
using PCA. We found that by using only seven main 
components, we could attain outcomes that were 

almost identical to those obtained when no feature 
reduction criterion was applied. 

 

 

D. HYPERPARAMETERS OPTIMIZATION RESULTS 

 

In accordance with the hyperparameters optimisation 

process outlined in Section IV-C4, Figure 12 plots the 

observed values of the objective function against the various 

stages of optimisation. 

The optimal combination of hyperparameters was 

discovered at the 26th optimisation phase and stayed constant 

through the 100th step. Table 5 displays their values. 

Maximum validation and test accuracies of 91.8% and 88.1%, 

respectively, were attained using an enhanced classification 

network architecture built with optimised hyperparameters, 

which is 0.7% and 0.8% higher than an unoptimized design. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
FIGURE 12. Objective function value vs optimization steps 
 
TABLE 5. Optimized hyperparameter values. 

 

 

architecture. The classifier's AUC-ROC score peaked at 97%. 

 

A. KEY PARAMETERS’ IMPACT ANALYSIS 

1) IMPACT OF INITIAL LEARNING RATE 
 

The starting learning rate was changed between 105 and 102 

in 100 steps to examine the effects it had on training and 

validation accuracies. Figure 13 displays findings scatter plots 

with fitted curves to streamline analysis. 

The lowest initial learning rates for all examined training data 

sections resulted in training and validation accuracy values 

with reported values less than 90%. For initial learning rate 

values between 105 and 104, there was a noticeable 

improvement in both accuracies. Low levels of accuracy were 

achieved in this range because greater training iterations and 

longer training times are needed for models with lower 

learning rates to converge to satisfactory results. As a 

consequence, accuracy was primarily constrained by the 

number of epochs permitted. the network to be trained. 

Average training and validation accuracies increased over 90% 

after the initial learning rate of 104. The best accuracy values 

were found for initial learning rates in the range [103.7, 102.5] 

for all training data segments. As the initial learning rate got 

close to 102, both accuracies began to decline. An initial 

learning rate in the range [103.7, 102.5] is advised for 

optimum accuracy in order to achieve the best outcomes. 
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2) IMPACT OF MINIBATCH SIZE 
     

   The minibatch size was changed between 101 and 105 in 

100 steps to assess the effect it had on accuracy. Accuracy vs 

training and validation data is presented. 

 

 

 

 

 

 

 

 

     

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 FIGURE 13. Impact of varying initial learning rate on accuracy at 
different training ratios. 

 

 

Figure 14 shows the minibatch size parameter charts. The 

training and validation accuracy averages for all examined 

training data sections were marginally greater than 90% for 

minibatch size values below 103. The training accuracy 

fluctuated dramatically between 80% and 100% for each 

training task for minibatch sizes closer to 101, however this 

had no effect on validation because the validation accuracy 

remained constant at little about 90%. As minibatch size 

exceeded 104, both training and validation accuracy rapidly 

decreased. This is so that the model could learn from larger 

amounts of data as the value of the minibatch size grew, which 

led to poor generalisation. However, training a model took a 

long time for smaller minibatch size values. a smaller 

minibatch size. 

 
3) IMPACT OF L2-REGULARIZATION PARAMETER 

 

For the purpose of evaluating the L2-regularization 
parameter's effect on validation accuracy, 

 

 
 

FIGURE 15. Impact of varying l2-regularization parameter on accuracy at 
different training ratios. 

 

the model, the more effective it is in spotting electricity theft. 

 

 

F. COMPARISON WITH EXISTING DATA-

BASED ELECTRICITY THEFT 

DETECTION METHODS 

 

Different data-driven approaches have been employed to 

address the issue of power theft based on information about 

electricity users' consumption. Many approaches have been 

tested on various unusual datasets due to the dearth of datasets 

comprising consumption data from both loyal and dishonest 

clients. We analyse the differences between our study and 

recent literature in Table 6 and show them. Details about the 

dataset are provided for each work. We examine the 

approaches and/or algorithms applied as well as the 

characteristics that were taken from the data in each method. 

We compare the findings in terms of AUC and accuracy 

percentages for the four approaches that employed the same 

dataset as ours (References [3], [4], and [27]). We obtained an 

AUC. 
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TABLE 6. Comparison with existing data-based electricity theft detection m 

 

AUC that is 1% better than the benchmark's best and 

accuracy that is second-best. The findings demonstrate how 

well our work stacks up against other recent methodologies. 

 

 

VI.   CONCLUSION 

In this study, a DNN-based classification strategy was 

used to examine how to identify power theft in smart grids 

utilising time-domain and frequency-domain data. On the 

same DNN network, separate classification tasks based on 

time-domain, frequency-domain, and mixed domain features 

were examined. The model's performance was assessed using 

commonly used performance metrics including recall, 

precision, F1-score, accuracy, AUC-ROC, and MCC. We 

found that classification using features from the frequency 

domain outperforms classification using features from the 

time domain, which in turn beats classification using features 

from both domains. 

When put to the test, the classifier managed to attain 87.3% 

accuracy and 93% AUC-ROC. To reduce features, we utilised 

PCA. Using 7 of the 20 components, the classifier was 

successful in attain 92% AUC-ROC and 85.8% accuracy 

when tested. We then examined how different characteristics 

contributed to the classification job and used the mRMR 

method to demonstrate the superiority of frequency-domain.  

  

 

 

 

optimise hyperparameters, which saw an improvement in 

accuracy of about 1%, during validation. The Adam optimizer 

was implemented, and the best values for important 

parameters were investigated. 

We attained 97% AUC, which is 1% better than the best AUC 

in previous studies, and 91.8% accuracy, which is the second 

highest on the benchmark, when compared to other data-

driven algorithms assessed on the same dataset. The approach 

here makes advantage of consumption data trends. It may be 

utilised in applications for anomaly detection in any area, in 

addition to its usage in power distribution networks. We only 

make a modest dent in correctly detecting energy theft since 

we only catch theft that happened gradually. Future plans 

include for expanding our approach to catch power theft in 

real time. Since a technique to stop power theft in real time in 

the future. This approach may be further verified against 

datasets from various places to guarantee its applicability 

elsewhere because it was assessed based on consumption 

habits of SGCC consumers. 
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