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ABSTRACT: Observer is used to estimates the state of system which are difficult to measure are often unpredictable due to some 

limitation or constraint under which system is subjected. Conventional observer is less robust against matched and mismatched 

uncertainty. While sliding mode observer is more robust as compared to conventional observer. But sliding mode observer needs filter 

to estimate the states of system which leads to complexity from design point of view. Higher order sliding mode observer removes all 

problems and provide robust response against matching and mismatching disturbances are presented in next paper. The most recent 

research in control theory indicates that a system is referred to as a state observer when it estimates the internal state of a particular 

actual system by measuring its inputs and outputs. With the assistance of computers, it is frequently implemented, and it is the basis 

for many useful applications. Many control theory problems can be solved by knowing the state of the system, such as stabilizing a 

system with state feedback. Most of the time, it is not possible to determine a system's state directly by observing its physical condition. 

As a result, it is possible to observe indirect repercussions of the system's current internal state through its outputs. It is possible to 

monitor the rates and speeds at which vehicles enter and exit the tunnel directly, but only educated guesses can be made about the 

conditions inside. Please consider this simple illustration. The state observer can rebuild a system's state based on measurements of 

its output if the system is observable. The system must be observable in order for this to be possible.  

 

Keywords: Observer Based Sliding Mode Control, Nonlinear Systems, Uncertain Systems, Mathematical Modeling, Observer 

Design, Sliding Mode Control, Stability Analysis, Integration. 

 

 

1. INTRODUCTION 

 

The challenge of load frequency control, sometimes referred to as LFC, is faced by many power networks. The LFC is 

aimed at balancing load demand parameters like frequency variation and tie lines with degeneration. Many control zones 

that are distinguished by a multi-area power system approach zero in terms of power deviation [33–36]. In this work, the 

random load perturbation was modelled as Gaussian white noise. With the aid of the delta correlated autocorrelation 

function (37), white noise can be characterized. A variety of reasons, including the wide range of applications, are driving 

research into the control of uncertain nonlinear systems. In [38-41]. As energy is exchanged over link lines in a power 

system serving multiple areas, frequency management becomes more difficult. Since it only requires the state information 

of the local region to reduce frequency difference, a decentralised LFC technique is more useful for everyday situations 

than a centralised one.  

     As a result of various uncertainties, various control strategies have been put forth to address frequent issues. In order 

to address load frequency control (LFC) issues in connected power systems, both traditional and novel approaches have 

been used [42–48]. A linearized model based on fixed PI parameters is the basis for designing loading frequency 

controllers. The first step toward solving LF concerns was research on PI control. It is typical for traditional PI controllers 
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to have permanent and constant structures, and to configure their settings according to operational conditions [43][44]. 

LFC typically uses an integrated surface. Having a large integral gain can negatively impact the performance of a system, 

causing oscillations and instability. By keeping the gain low, this can be avoided. Due to this, the integral gain must be 

calibrated to achieve the desired level of transient recovery while maintaining a low level of overshoot. The processes 

that can be used to modify the gain of the integrated controller have been outlined in [36] and [37]. PI control strategy, 

on the other hand, produces larger transient responses as well as a much longer stabilization period. As well, the PI control 

algorithm does not produce the required response until the system is very close to the point where it is intended to operate.  

            As a result, they cannot function properly in the presence of numerous load disturbance fluctuations and parameter 

uncertainties associated with multi-area power systems. In order to optimise PI controller parameters in the presence of 

parameter uncertainty and load disturbances, resilient and clever solutions have been put forth. The effectiveness of the 

system as a whole has increased as a result of these techniques. 48 and 50. The appearance of terminating transmissions, 

the stochastic process, the jitter, and packet loss are common characteristics of signal transmission in network 

communications, especially shared communications, which can degrade performance. These problems are more frequent 

in shared communications, in particular. Power system instability is present [51]. SMC [52] asserts that a number of 

application systems, including uncertain systems, are becoming more and more common. A standard LFC controller can 

only function in close proximity to the nominal point and is built with fixed settings [44]. According to M. Yang, the only 

time that an SMLFC demonstrates the best improved response is when a compatible system is also present, as well as 

unmatched uncertainties, stepwise load disruption, system non-linearity, and stochastic perturbations [28]. 

2. Multi-area power system model with stochastic perturbation 

 

Despite the dynamic and nonlinear nature of the power system model, the linearized model can still be used to control the 

charge frequency. During normal operation, load variations are only modest [28]. A power system serving multiple 

locations requires, in addition to additional control actions in the extra control operations in the secondary loop after the 

primary speed control loop. Therefore, despite being a complex non-linear system, the power network can be 

conceptualised as linearized for the purposes of the study. The real plant will always differ from its mathematical model 

when it comes to formulating real control problems. The reason for this is that there are many different types of uncertain 

load disturbances, both internal and external. Thus, the dynamic equations of the linked power system model require the 

following adjustments in order to account for this: 

On the probability space (F, P), include the following uncertain stochastic perturbation: 

(4.1) 

         (4.2) 

where  denotes the state vector,  is the control input, is the neighboring state vector 

of , is The unpredictable and fluctuating load disturbance is an exogenous disturbance input that is 

L2 [0, +∞), and  is a nonlinear function satisfying:  
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where and are recognised constants, and only one of them may equal zero.. , ,

, , and are known system matrices.
 
Stands for a one-dimensional Brownian 

motion satisfying and on the probability space (F, P), where and represent the observed output. It is assumed that the pairs 

(Ai, Bi) and (Ai, Ci) are respectively observable and controllable, and that the system matrix Bi is of full column rank, 

i.e. rank (Bi) = mi.  refers to the time-varying system uncertainty, which takes the following form: 

(4.4) 

where and are constant matrices, and is a time-varying matrix satisfying, 

                            
(4.5) 

In which and are known constants that means it is a diagonal matrix. Here, 

 
is said to be admissible if equation (4.4) and (4.5) are satisfied simultaneously for all the study model of the 

ith area of multi-area interconnected power system model with stochastic perturbation as shown in Fig. 4.1. 

The integral formula of Itô is used to solve the stochastic differential equation [56].
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Fig. 4.1 The ith area power system's block diagram with stochastic disturbance
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Variables , , , , and 
 
a regarding the alterations in frequency, power output, the 

location of the governor valve, integral control, and rotor angle deviation, respectively; The time constants for the 

governor, turbine, and power system are TG, TTi, and TPi, respectively. The power system gain, speed regulation 

coefficient, integral control gain, and frequency bias factor are KPi, Ri, KEi, and KBi, respectively. The connectivity gain 

between areas i and j is called KSij. If the exchange power between areas i and j is zero, then KSij=0. The multi-area 

power system dynamic model with matrices representing parameter uncertainty. 

(4.11) 

where , , and are uncertainty parameters. For simplification 

uncertainty is not considered in Brownian white noise and interconnection term Eij. 

Let 

  

is the aggregated uncertainty, (4.11) becomes as: 

(4.12) 

To guarantee the sliding surface's asymptotic stability, the following presumptions are made; these relate to both the 

overall system and the proposed controller: 

Assumption 1: The pairs (Ai , Bi) and (Ai , Ci) are fully controllable and observable, respectively. 

Assumption 2: The matching condition is true given as: 

                                                            
           

(4.13)
 

where,  .
  

Assumption 3: The aggregated disturbance bounded, such that , where is matrix norm and is 

known scalar. 
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Parameters values of three area system model given as [28]: 

Table 4.1 System parameter values of three area system model 

Area TPi KPi TTi TGi Ri KEi KBi KSij 

1 21 125 0.4 0.09 3.2 11 0.45 0.66 

2 24 145.32 0.44 0.0785 2.7 8 0.38 0.67 

3 21 151 0.35 0.07 2.6 7.5 0.4 0.56 

 

2.1. Design of observer based sliding mode controller 

Without the stochastic disturbance , A system's state will eventually return to its initial state asymptotically. 

Disturbances cause the states of a system to wander erratically, but still remain confined by a region that is close to their 

origin. Using the information, we have about the disturbance; we aim to design a sliding surface that will lessen its impact 

on the disturbance . For the sake of simplicity, we assume the following and consider the disturbance to be a 

stochastic process. 

Assumption 1: The disturbance is bounded, i.e. Where , is a positive real number and . 

Assumption 2:  is a stationary, distribution of  is independent on time 

t. 

Assumption 3: both are independent. 

2.2. higher order sliding mode observer design 

In the process of establishing control laws terms have the advantage of avoiding conventional low pass filters. They also 

have the disadvantage of making the output dependent on the integrator output. The system will be adversely affected if 

noise levels are reduced. In [58] and [59], Theorem 8 proved that the observation error can be reduced to zero in a finite 

amount of time. By performing a coordinate transformation on the system, it is possible to represent the observer as a 

matrix; 

(4.14) 

where is the correction term [58]. 
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An additional source that can be used for the development of a higher order sliding mode observer is [58]. An asymptotic 

estimate of the states can be made by a higher order sliding mode observer.  in the system and satisfies the following 

condition as: 

(4.16) 

(4.17) 

 

2.3. Design of sliding surface and formulation of control law 

This paragraph discussed how an integrated sliding surface might be used for an unexpected power system. Control 

techniques such as sliding mode control, often referred to as SMC, have been proven to be reliable and effective for 

managing unpredictable nonlinear systems [60–64]. A discontinuous system control is used by SMC in order to move the 

system state trajectory to a predetermined sliding surface. On these surfaces, the system possesses the desirable 

characteristics of stability, the capacity to reject shocks, and the ability to track. The sliding surface is one of the relatively 

independent components of the classic SMC design, and it also has an equivalent control scheme for the intended 

performance and a controller law to drive the system trajectory to the surface and maintain forward motion on the sliding 

surface. 

(4.18) 

where and are known constant matrices.  a well-known gain. The pole placement 

technique is used to construct the matrix controller gain so that the matrix's Eigen values are negative. The matrix is 

chosen in a such that. Because the solution, which can be determined from [65], is likewise a semi-martingale, it can be 

seen that the sliding surface is a semi-martingale. The sliding surface function meets the following condition as the 

dynamic trajectory approaches the sliding mode condition, which is as follows:   And 

        

      
 

 

Taking one times derivative of equation (4.14) and two times derivative of equation (4.18) we get, 
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where  is the correction term of higher order sliding mode observer [58]. 
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(4.21) 

 

New sliding surface is offered for second order integral sliding mode control as, 

 

(4.22) 

 

where, it is considered that 

 

On differentiating equation (4.19) we get, 

 

(4.23) 

 

Now, substitute the value of equation (4.19) in equation (4.21), 
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The sliding motion given in (4.26) is analyzed for its robustness and stochastic stability in the following subsection, and 

some adequate conditions are derived using the linear matrix inequality approach. Since the dynamics of the observer 

state are related to the dynamics of the sliding motion (4.21), the stability of the total system, which includes the states 

and, is being studied rather than the stability of the observer (4.15) alone. In (4.27), an examination of the total closed-

loop system that was produced is offered. 

3. Stability analysis of overall closed-loop system 

 

The stability study of the entire closed-loop system is covered in this section. The following augmented system can be 

formulated from (4.1) and (4.15) as follows: 
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Proof. The Lyapunov functional candidate is selected as [35]:  

(4.31)
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The parameters' average values are chosen in.The following are the nominal system models for the three areas: 
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Area 3: 

 

 

 

The three-scenario based on uncertain load disturbances, exogenous, stochastic perturbation, systems non-linearity and 

validation of observer have been investigated while utilising the suggested controller as: 

Study 1: In this scenario, the frequency deviation and control signal with step load disturbances with, ,

 and  is demonstrated with traditional SMC. It has been noted that each area's frequency 

variation is accompanied by considerable overshoot and settling down the system till 6 second. The high frequency 

switching control (chattering) causes the mechanical stress in practical implementation which is reduced with the proposed 

controller and also deviation in frequency settles down till 0.2 second. It also provides minimum undershoot and overshoot 

as compared to traditional SMC. Further tie-line power deviation and robustness property of controller is validated under 

step load disturbance with stochastic perturbation. All results for study 1 as shown in Fig. 4.2. 

 

Fig. 4.2 Step load disturbance 

 

Fig. 4.3 Area 1 of frequency deviation for traditional SMC, SO-ISMC and ISMC 
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Fig. 4.4 Area 2 of frequency deviation for traditional SMC, SO-ISMC and ISMC 

 

 

Fig. 4.5 region 3 of the frequency deviation for traditional SMC, SO-ISMC and ISMC 

 

 

Fig. 4.6 Control signal area 1 for traditional SMC, SO-ISMC and ISMC 

 

 

Fig. 4.7 Area 1 of the tie-line power deviation for traditional SMC, SO-ISMC and ISMC 
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Fig. 4.8 Response for robustness of SO-ISMC under step load 

 

 

Fig. 4.9 Frequency deviation under step load with stochastic perturbation 

 

 

Fig. 4.10 Tie-line power deviation Using step load and stochastic perturbation 
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Fig. 4.11 Disturbance for area 3 under step load 

 

Fig. 4.12 Stochastic disturbance for area 3 under step load 

A composite SMC with the following form is tested for robustness using nominal parameters with an uncertain load 

disturbance and the same time-varying matched parameter uncertainty [56]. Thus, robustness can be assessed. 

 

 

The without and with the parameter uncertainty and uncertain varying load disturbance where the suggested 

controller compensates for the matching uncertainty, validating its robustness and causing it to stabilise fast. The proposed 

controller considerably reduces the frequency deviation. In light of this, the suggested controller achieves strong 

performance against uncertainties. With the suggested controller, the tie-line power variations are also reduced under a 

variety of disturbances and stabilise for up to 2 seconds. 

JG(t)M(t)A
~



  ,J
T

15000   ,M 51000 (t) .G(t) sin10

(t)Δf i
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Fig. 4.13 Varying step load disturbance 

 

         Fig. 4.14 Response for robustness of controller under varying step disturbance  

Study 2: This subsection is discussed with inclusion of systems nonlinearities a generation rate limitation (GRC), for 

instance. having its limits [28]. Another non-linearity dead  

The governor operation introduces a band with a 0.06pu limit [54]. Below is a depiction of the frequency deviation 

achieved using the suggested control approach with dead band and GRC. This one shows how the proposed controller 

performs satisfactorily, leading the frequency deviation profile to be established quickly. 

 

Fig. 4.15 Area 1 of frequency variation using GRC and GDB 
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Fig. 4.16 Area 2 of the frequency variation with GRC and GDB 

 

Fig. 4.17 Area of frequency deviation 3 with GRC and GDB 

 

 

Fig. 4.18 region 1 of the tie-line power deviation GRC and GDB 

http://www.ijcrt.org/


www.ijcrt.org                                                               © 2023 IJCRT | Volume 11, Issue 5 May 2023 | ISSN: 2320-2882 

IJCRT2305514 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org e107 
 

 

Fig. 4.19 Area 2 of the tie-line power deviation GRC and GDB 

 

Fig. 4.20 Area 3 of the tie-line power deviation with GRC and GDB 

 

Study 3: The deterministic dynamic network model combined with the stochastic load fluctuation model is considered to 

reduce  the discrepancy between actual plant and its approximated mathematical model. The proposed controller provides 

the improved performance for this practical plant. 

 

Fig. 4.21 Stochastic disturbance for area 1 
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Fig. 4.22 Stochastic disturbance for area 2 

 

 

 

Fig. 4.23 Stochastic disturbance for area 3 
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Fig. 4.24 Disturbance for area 1 

 

 

 

Fig. 4.25 Zoom plot of Fig. 4.24 
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Fig. 4.26 Disturbance for area 2 

 

 

 

Fig. 4.27 Zoom plot of Fig. 4.26 
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Fig. 4.28 Disturbance for area 3 

 

 

Fig. 4.29 Zoom plot of Fig. 4.28 
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Fig. 4.30 Frequency deviation area 1 with stochastic perturbation 

 

 

Fig. 4.31 Frequency deviation area 2 with stochastic perturbation 
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Fig. 4.32 Frequency deviation area 3 with stochastic perturbation 

 

 

 

 

 

5. Conclusion 

 

In this conclusion we develop higher order sliding mode controls for uncertain systems that are susceptible to external 

disturbances, stochastic perturbations, load disturbances, and parameter uncertainties. The aforementioned factors can 

make it difficult to control these types of systems. The research begins with an introduction to variable structure control, 

specifically sliding mode control. It is a nonlinear control approach with a high degree of dependability. Traditionally, 

sliding mode control is hampered by unwanted chattering in the control signal, which limits its applicability to real-world 

applications and affects its efficiency. Almost always, chattering in the control signal results in poor control accuracy, 

increased wear and tear on moving mechanical components, and increased heat accumulation in power circuits. There are 

several functions that can be used to approximate a discontinuous control signal's signum function, including saturation, 

sigmoid, tanh, etc. We discuss some preliminary concepts and ideas that inspired us to create sliding mode control in this 

paper We compare the resilience of a linear approximation sliding mode controller with that of a sigmoid approximation 

sliding mode controller. Here, a higher order sliding mode controller is used to eliminate the chattering present in the 

control signal. As a result, the controller's robustness property is maintained. We develop a higher order sliding mode 

observer in this article using sensors to estimate the highly unpredictable states of the system. Unlike sliding mode 

observers, higher order sliding mode observers do not require filters. Using a higher order sliding mode controller, a 

chatter-free control signal is provided in this research. Using the controller, the case study deals with load frequency 

difficulties for multiple region power systems. In this study we evaluate the proposed controller's ability to withstand 

disturbances of various kinds, such as load disturbances, external disturbances, unclear parameter values, stochastic 

Brownian noise, etc. Observer-based higher order sliding mode control for load frequency difficulties is tested using 

generation rate constant (GRC) and governor dead band system nonlinearities as test subjects. 
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5.1. Scope for Future Work 

 

 Design of observer based integral higher order sliding mode control with input saturation nonlinearity to trace the 

nonlinear control signal.  

 in future work will address nonlinear signal tracing and actuator saturation flight control 

 The proposed method would be applied for multi-input and multi-output system with input saturation nonlinearity. 
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