© 2023 IJCRT | Volume 11, Issue 5 May 2023 | ISSN: 2320-2882

IJCRT.ORG

ISSN : 2320-2882

INTERNATIONAL JOURNAL OF CREATIVE RESEARCH THOUGHTS (IJCRT)

An International Open Access, Peer-reviewed, Refereed Journal

User Engagement Analytics

Shivam Pandey, Sahitya Uniyal, Shashank Sahu, Yash Gahlot, Ankita Singh

Student, Student, Student, Assistant Professor Computer Science Engineering, SRM Institute of Science and Technology, Ghaziabad, India

Abstract: A web app that takes data from users regarding the time they spent on various activities throughout the day. This data is collected on a regular basis and is used to analyze user behavior and predict various trends. Behavior analysis can be used by the user to change unwanted habits to more productive habits. Data can also be used by ML prediction models to predict various trends and to analyze market situations for certain products. Additionally, it can also be made available to the public with the help of an API service.

Index Terms - Application Programing Interface, User Engagement, Machine Learning

I. INTRODUCTION

User Engagement is the all-inclusive term for the various interactions the users have with the activities in their daily life. User engagement is also a prime way to analyze how users interact with entities around them, be it positive or negative. It helps in analyzing whether one's actions or activities throughout the day are aligned in the direction of the desired result or is it leading to something not desired. With time the users are spending more of their time on online activities than outdoor activities. According to a survey people like to spend more of their time on mobile phones rather than doing outdoor activities and they also report being online 'almost constantly'. Fast changes like these always spark fears about possible negative impact on our health.

In this project, we propose a web app that collects data from users every day to create a trend graph/analysis after the end of every week. The goal of this project is to help users shape their interactions with daily activities. The app will use data collected through the survey to analyze the user's interaction pattern with different activities. Initially, the survey will take key user information like name, age, nationality, etc., for building the user's profile and classifying the data more efficiently. Collected data will be segregated into several different categories, the primary one being Mobile, Indoor, and Outdoor. Additionally, we will be developing a database that will be used for achieving the above-mentioned goal. To achieve this goal, we will be analyzing the data and providing the results from several viewpoints. Users can access the generalized data and results from the analysis of the database. Or access personal data through their profile, this data will show changes in the user's interaction over time. Users can then decide whether the changes made were positive or negative, and what steps should be taken moving forward. The database also has scope across several different fields like entertainment, machine learning, targeted ads, app/ web development, etc., just to name a few. Through this project, we aim to provide people with an opportunity to improve or change themselves.

This project will contribute towards mental health, physical fitness and the rise in the addiction of technology. It will make people more aware of these things.

II. LITERATURE SURVEY

In this literature review, we rigorously screened and analyzed previously published papers on the topic. The literature review gave us many insights into user engagement, user behavior and digital wellbeing. The table below contains some of the articles and documents published about user engagement.

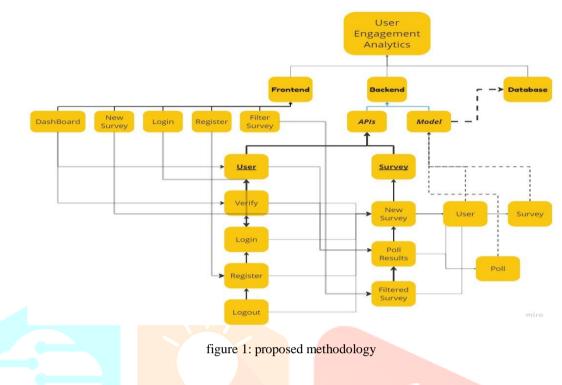
Author (Year)	Title of Paper	Methodology	Dataset Used	Limitations
"Heather L.	"What is User	"Participants,	"Strauss Corbin,	The research findings are
		1 ,	-	0
O'Brien, Elaine	Engagement? A	Interview	McCarthy and	limited to a specific
G. Toms"	Conceptual	Protocol,	Wright's,	sample and time, so they
	Framework for	Procedure, Data	Strauss'	are not conclusive, but
(2008)	Defining User	Analysis"	grounded	they align with previous
	Engagement		theory,	research and may have
	with		Merriam-	potential for
	Technology"		Webster	generalization
	[1]		Online"	

Table 1: Tabular summary of Literature Review

© 2023 IJCRT | Volume 11, Issue 5 May 2023 | ISSN: 2320-2882

U	y		© 2023 k		, issue 5 May 2025 155h
	"Iryna Susha,	"Organizational	"It reviewed	"Evans and	This research relies on
	Åke Grönlund,	measures to	literature on the	Campos,	generic theoretical
	Marijn Janssen"	stimulate user	problem of poor	Gurstein,	recommendations that
		engagement	data usage and	Davies and	may change over time.
	(2015)	with open data"	conducted four	Bawa,	There is also a lack of
		<u>[2]</u>	case studies in	Zuiderwijk et	evidence of actual
			different	al, Zuiderwijk	output.
			organizations	and Janssen"	_
			and countries"		
Γ	"Alberto Monge	"The race	"ParseHub2(we	"Reviews done	Potential bias in user
	Roffarello,	towards digital	b scraping tool),	in different	reviews, a smaller
	Luigi De Russis"	wellbeing:	within-subject	years:	number of participants,
	-	Issues and	experiments"	3% in 2015, 8%	and a lack of
	(2019)	opportunities"	-	in 2016, 25% in	consideration for
		[3]		2017, 64% in	overuse of other
				2018"	technology devices.
F	"Zhuojun Gu,	"Measuring the	"Thomas JS	"Field	Narrow focuses on
	Ravi Bapna,	Impact of	(2001)'s	experiment on	fundamental aspects of
	Jason Chan, Alok	Crowdsourcing	methodology	different users,	crowdsourcing and the
	Gupta"	Features on	for linking	manipulating	potential for bias due to
	-	Mobile App	customer	tests for users,	examining only a casual
	(2022)	User	acquisition to	different	context. The limited
		Engagement	customer	records."	time frame raises
		and Retention:	retention, Field		questions about the long-
		A Randomized	experiment on a		term impact.
		Field	"Catchphrase"		
		Experiment"	game app"		
		<u>[4]</u>			
	"Abdulsalam	"User	"Data were	"Surveys done	Recall bias in the
	Mustafa Salihu,	Engagement	coded based on	over the period	checkpoint assessments,
	Nor'ashikin Ali,	and	themes and	of September	a lack of identification
	Jaspaljeet Singh	Abandonment	analyzed	2020 to January	of the theories applied in
	Dhillon,	of mHealth: A	accordingly,	2021, 17-item	the mHealth apps, and
	Gamal Alkawsi,	Cross-Sectional	categorizing the	survey"	the absence of
	Yahia Baashar"	Survey"	data		demographic
		[5]	accordingly"		information on
	(2022)				respondents' nationality,
					race, or profession.
	"Mohamed Basel	"Digital	"SPACE and	"Google Play	Lack of research on
	Almourad,	wellbeing tools	GDW, were	and Apple Store	users' perceptions of
	Amen Alrobai,	through users'	selected and	sites, the	digital well-being
	Tiffany Skinner,	lens"	extensively	application	applications, including
	Mohammed	<u>[6]</u>	investigated to	website, the	their self-regulation
	Hussain,		collect evidence	total extract	features.
			of their	covers 350	
	Raian Ali"			• ••	
			capabilities,	reviews"	
	(2021)			reviews"	

The literature review we conducted for our project proved to be valuable in several ways. We gained insight into how to collect highly organized and effective data through the research papers and articles examined in the review. The literature review highlighted several limitations. These limitations include the quality and quantity of data used, and difficulty in interpreting complex results. The things learned clarified user engagement and how it is used in digital well-being and how companies make use of it to retain users.


III. PROPOSED METHODOLOGY

In today's world, handling large amounts of data presents a formidable challenge that requires careful planning, organization, and execution. To overcome this obstacle, it is crucial to focus our efforts on establishing clear goals and objectives for our analytical models while considering possible limitations or restrictions. Following this, we must collect data from different sources while undertaking various pre-processing steps such as data cleaning, integration techniques followed by transformative measures aimed at ensuring our dataset is clean, rationalized and properly structured for analysis. Analytical methods including clustering, classification and visualization algorithms are then applied efficiently with customized strategies built around requirements set forth by clients. To maximize performance whilst optimizing storage space needs, normalization coupled with indexing have been employed as time tested techniques proven to be extremely effective towards these ends.

© 2023 IJCRT | Volume 11, Issue 5 May 2023 | ISSN: 2320-2882

Indexing methods specifically have demonstrated improved information retrieval with quick searches ensured through creating search trees or hash tables that systematically organize large datasets helping to optimize analysis time.

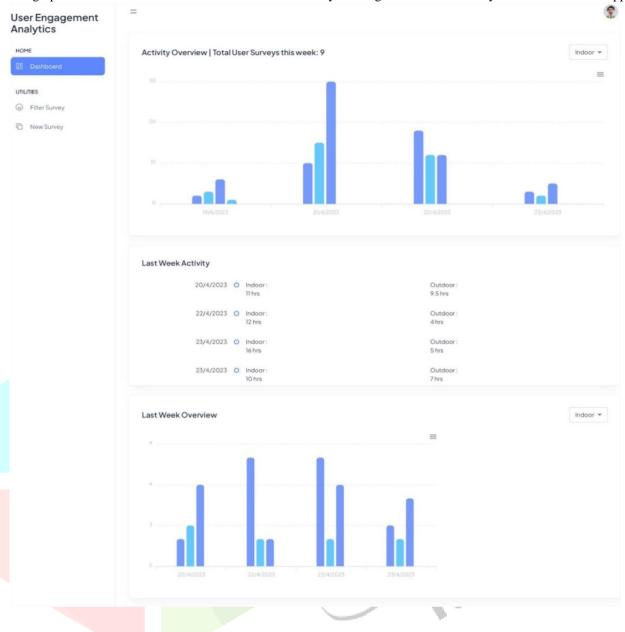
In order to present personalized recommendations that cater to specific user groups or individual users themselves advanced techniques like data visualization along with clustering strategies have been put into place in order identify unique emerging patterns within each dataset whilst also providing customized recommendations based on specific goals. Utilizing methods like performance measurement, user feedback gathering, and continuous improvement efforts are essential for maximizing outcomes while minimizing potential inefficiencies.

IV. EXISTING PROBLEMS AND PROPOSED SOLUTION

One of the most significant challenges is the data required to do an analysis. In addition to the issue related to data quantity there are also issues regarding data quality, variation in data user community and user privacy. With large amounts of data, indexing or clustering on various attributes is required, which is performance-intensive when changes or edits are made. The right authentication and authorization methods will be utilized to boost security and after a predetermined period, the user will be logged out to increase the security of the session. And to preserve data integrity, no user may alter the data of another user. For the issue of data clustering in case of adding more categories/attributes we will be using normalization on the data/table.

V. SYSTEM ARCHITECTURE

The system architecture includes MongoDB, which is a source-available document-oriented database program. It is classified as a NoSQL database and uses JSON-like documents with optional schemas. MongoDB supports ad-hoc queries, indexing for efficient data retrieval, and aggregation using the aggregation pipeline, map-reduce function, and single-purpose aggregation methods. It also allows server-side JavaScript execution for queries and aggregation functions.


In addition to MongoDB, the architecture includes Express.js, a back-end web application framework for building RESTful APIs with Node.js. Express.js is known for its simplicity, performance, and flexibility. It is used for building dynamic websites, developing RESTful APIs, and handling server-side tasks such as processing data and managing database connections. Express.js has a lightweight architecture that can handle large amounts of traffic and can be easily integrated with other technologies and frameworks.

VI. SYSTEM SPECIFICATION

table 2: sys	stem specification
Description	Type/Version
Processor (CPU)	Intel(R) Core (TM) i7-10750H
GPU	Intel(R) UHD Graphics
Disk	512 GB SSD
Memory	16 GB DDR4
External Components	Keyboard and Mouse
Operating System	Windows 11
MongoDB	6.0 / 2022

VII. RESULT AND ANALYSIS

Aim of the project was to create a webapp to collect the data from the users on their daily activities to analyze and provide a common graph and a personalized graph on various activities. Below are the results of analysis along with some of the key functions of the webapp.

figure 2: Dashboard

Image 2 shows the dashboard of the profile section. It shows the personalized graph analyzed based on user's activities. It also has options to track activities of previous week. Personalized graphs help users by helping them to focus on habits they wish to change and track their progress when doing so.

ILITIES Filter Survey O	OME	New Survey	/ Hours Left to fill: 24
LITIES Filter Survey O New Survey Sleep O Work O	Dashboard		
Filter Survey Gym 0 New Survey Sleep 0 Work 0		1obili O	\$
New Survey Sleep 0 0	TILITIES		
Work O	Filter Survey	Gym 0	\$
O 🗘) New Survey	Sleep	\$
ſrave O			\$
			٥
Submit			Submit

Image 3 shows a form that takes number of hours on different activities. The form takes time for popular activities, new activities can be added by admin. This is then analyzed and converted into visualized format, in this case graph.

Image 4 below shows filter survey function through which users can find their graphs according to their preference by providing some criteria as per user's requirement.

Dashboard		tal User Count: 7					Indoor ·
UTILITIES	90						-
Filter Survey							
C New Survey	60						
			-			-	
	20/4/20	123	21/4/2023	22/4/20	23	23/4/2023	23/4/2023
	Country State	Country* India					
		Uttar Pradesh					
	Min. Age	13	0	lax. Age	30 0	Date (last 7 days)	04/23/2023 🛱
				Submit	1		

VIII. CONCLUSION And Limitations

The project has successfully collected data from users and generated usage graphs that optimize their daily routines and identify trends in user behavior for companies. This has allowed users to analyze their activities and make informed decisions to improve their lives, while also helping companies better understand their customers and develop products and services to meet their needs. However, the reliance on manual user input for data collection can be time-consuming and error-prone, and with the increasing volume of user data, effective analysis requires more advanced techniques. Additionally, as the database expands, robust security measures are necessary to prevent data breaches. While collaboration and integration with other organizations may present opportunities, technical and logistical challenges arise in establishing APIs and partnerships for data sharing. Improvements in data analysis speed, accuracy, storage, and retrieval methods become necessary as the user base and data volume grow, requiring continuous enhancements and resource allocation to ensure efficient and timely access to data for users and organizations.

REFERENCES

[1] H. L. O'Brien and E. G Toms, (2008). "What is user engagement? a conceptual frame- work for defining user engagement with technology." Journal of the American society for Information Science and Technology, 59(6), 938–955.

[2] Susha I., Grönlund Å., and Janssen M. (2015). "Organizational measures to stimulate user engagement with open data." Transforming Government: People, Process and Policy, 9(2), 181–206.

[3] A. Monge Roffarello and L. De Russis, (2019). "The race towards digital wellbeing: Issues and opportunities." Proceedings of the 2019 CHI conference on human factors in computing systems. 1–14.

[4] Z. Gu, R. Bapna, J. Chan, and A. Gupta, (2022). "Measuring the impact of crowdsourcing features on mobile app user engagement and retention: A randomized field experiment." Management Science, 68(2), 1297–1329.

[5] A. S. Mustafa, N. Ali, J. S. Dhillon, G. Alkawsi, and Y. Baashar, (2022). "User engagement and abandonment of mHealth: a cross-sectional survey." Healthcare, Vol. 10, MDPI. 221.

[6] M. B. Almourad, A. Alrobai, T. Skinner, M. Hussain and R. Ali, (2021). "Digital wellbeing tools through users' lens." Technology in Society, 67, 101778.

[7] H Buabbas, Ali Jasem, A.-M. M. A. A.-T. B. A. B. M. A. (2020). "Responding to the threat of chronic diseases in india." BMC Pediatrics, 20.