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ABSTRACT  

Delay differential equation refers to an ordinary differential equation (ODE) with a delay parameter. The term "advanced 

differential equation" is used to describe an ODE with a forward parameter. The term "differential-difference equation" 

is used to refer to an ODE that includes both delay and advance parameters. Similar to the usage of "advance" and 

"delay" words, "positive shift" and "negative shift" appear in the literature. When the highest order derivative is 

multiplied by a small parameter, the boundary layer phenomenon appears in the solution of the differential-difference 

equation. The boundary layer is an area where the answer is constantly evolving. These issues are typically addressed 

by means of perturbation techniques, such as the matched asymptotic expansions and WKB approach. Skill, insight, 

and experimentation are needed for these asymptotic expansions. As a result, scientists have begun to rely on numerical 

approaches. Due to the presence of the boundary layer, oscillatory/unsatisfactory solutions are obtained if we apply the 

existing numerical methods with the step-size greater than the perturbation parameter. In addition, the solution is 

graphically represented so that the effects of the delay and complex factors may be comprehended. It is noticed from 

the tables and figures that our quantitative approaches produce very good approximation to the exact solution. In 

addition to being theoretically simpler and easier to use, these quantitative approaches are also easily adaptable for 

computer implementation with only a small amount of computing effort. 

Keywords: Ordinary differential equation (ODE), boundary layer, delay parameter. 

1. INTRODUCTION 

1.1. Differential-difference equations 

An ODE with a delay parameter is often referred to as a 

"delay differential equation." If you take an ordinary 

differential equation (ODE) and add a third parameter, 

it becomes a differential equation (DDE) with 

additional complexity.  Delay and advance parameters 

in an ODE are represented by the terms differential and 

difference. The phrases "advance" and "delay" can also 

be found in the literature under the names "positive 

shift" and "negative shift," respectively. When the 

highest-order derivative of the differential-difference 

equation is multiplied by a small parameter, the 

boundary layer phenomenon occurs. The boundary 

layer is defined as the region where the solution evolves 

at an extremely quick rate. These issues are typically 

addressed by means of perturbation techniques, such as 

matched asymptotic expansions and WKB methods. 

1.2. Differential-difference equation models 

Most general model of the differential-difference 

equation having boundary layers is given by: 

𝜀𝑤"(𝑠) + 𝑎(𝑠)𝑤 ′(𝑠) + 𝑏(𝑠)𝑤 ′(𝑠 − 𝛿) + 𝑐(𝑠)𝑤(𝑠)

+ 𝑑(𝑠)𝑤(𝑠 − 𝛿) + 𝑒(𝑠)𝑤(𝑠 + 𝜂)

= 𝑓(𝑠)(1) 

depending on parameters 

𝑤(𝑠) = 𝛼(𝑠), −𝛿 ≤ 𝑠 ≤ 0 (2) 

𝑤(𝑠) = 𝛽(𝑠), 1 ≤ 𝑠 ≤ 1 + 𝜂 (3) 
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where a(s), b(s), c(s), d(s), e(s), f(s),  (s),  (s) are 

considered to be smooth on (0, 1); 0 1 is the small 

perturbation parameter. 

1.3 Need of study  

Perturbation methods like: matched asymptotic 

expansions and WKB methods have been extensively 

used to solve these problems. But these perturbation 

methods demand/require skill, insight and 

experimentation. As a result, researchers have begun to 

rely on numerical approaches. However, if we use the 

existing numerical methods with a step size larger than 

the perturbation parameter, we obtain 

oscillatory/unsatisfactory solutions due to the presence 

of the boundary layer. But if the step size is equal or less 

than the perturbation parameter then only the existing 

numerical methods will give better results. This takes a 

long time and a lot of money. Therefore, there is a high 

need for innovative approaches that can function with a 

practical step size to address these issues. 

2. LITERATURE REVIEW 

The Duressa Gemechis File, Year 2023 Singularly 

perturbed differential difference equations are 

researched in relation to their computational solution 

under both negative and positive changes to a spatial 

variable. Solving single perturbation equations that 

arise from modeling brain activity is the focus of this 

review, which covers the years 2012 through 2022. We 

considered ordinary differential equations with singular 

perturbations and small or large negative shifts, partial 

differential equations with singular perturbations and 

small or large negative shifts, and mixed-type partial 

differential-difference equations with singular 

perturbations. The primary objective of this survey is to 

identify recent advances in numerical and asymptotic 

methods for addressing these kinds of issues. In 

addition, it hopes to inspire researchers to create novel, 

effective approaches to resolving related classes of 

issues. 

Elika Kurniadi, (2022), Since 1970, there has been a 

proliferation of studies devoted to the Ordinary 

Differential Equation (ODE). As a result, a number of 

publications published in various journals are available. 

In this article, we will review the existing research on 

the topic of how differential equations are presented and 

learned in higher education. We will use the top five 

findings from Scopus Q1 according to the SJR provided 

by Scimago Journal & Country Rank to conduct a 

Systematic Literature Review (SLR) of the greatest 

scholarly articles in the field of education published in 

the first three months of 2017. In this study, it is 

essential to consider both the proposed ODE learning 

approach and the presentation and debate of the ODE 

topic in the academic literature. The comprehensive 

literature review identified four routes to ODE mastery: 

active learning, mathematical modeling, information 

and technology communication, and geometric and 

qualitative solutions. 

Ordinary differential equations (ODEs) consist of the 

derivatives of a set of functions with only one 

independent variable. It is a foundational field of 

mathematics with applications across the natural 

sciences (Rasmussen & Keene, 2019) and beyond.  

The active learning pedagogic approach and the use of 

technology in the classroom have had significant 

modern impacts on how ODE is taught and learned. The 

development of helpful tools for solving the differential 

equation and gaining an understanding of some of its 

aspects has been made possible by technological 

progress (Hoyles, 2018; Quinn & Aaro, 2020). The 

development of technology has enhanced the learning 

environment in the classroom. 

Evidence for ODE instruction in higher education is the 

goal of this research. Particular areas of interest include 

design-based learning, student reactions to different 

ODE pedagogical approaches, the efficacy of 

innovation, and the centrality of mathematical concepts 

in ODE. The best way to learn from this study's findings 

is to first do a literature review (Xiao & Watson, 2019). 

Meanwhile, those reports lack a thorough literature 

review. In other words, there is room for further 

research into how ODE is taught and learned. This 

research may take the form of a literature review aimed 

at locating and analyzing existing studies on the subject. 

3. LIOUVILLE GREEN TRANSFORMATION OR 

SOLVING DIFFERENTIAL-DIFFERENCE 

EQUATIONS 

3.1 Introduction 

Liouville Green Transformation is used to solve: (i) 

delay differential equations having boundary layers and 

(ii) Boundary-layer differential-difference equations. In 

both the cases, using Taylor series, the given problems 

are approximated by singular perturbation problems. 

Liouville Green Transformation is used to solve these 

problems. Two model instances are used to test the 

provided method, and our results are compared to those 

of the literature, including both exact and approximate 

solutions. The answers are visualized so that the effects 

of the delay and complex parameters can be 

comprehended. 
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3.2 Description of the method 

3.2.1 Case-I: Boundary layer differential equations 

with a delay 

Consider a problem: 

𝜀𝑤"(𝑠) + 𝑎(𝑠)𝑤 ′(𝑠 − 𝛿) + 𝑏(𝑠)𝑤(𝑠) = 0, 0 ≤ 𝑠

≤ 1 (4) 

with boundary conditions 

𝑤(0) = 𝛼, −𝛿 ≤ 𝑠 ≤ 0 (5) 

𝑤(1) = 𝛽 (6) 

Expansion of the Taylor series provides us 

𝑤 ′(𝑠 − 𝛿) ≈ 𝑤 ′(𝑠) − 𝛿𝑤"(𝑠)(7) 

3.2.2 Case-II: Differential-Difference Equation 

having boundary layers 

Now consider: 

𝜀𝑤"(𝑠) + 𝑎(𝑠)𝑤 ′(𝑠) + 𝑏(𝑠)𝑤(𝑠 − 𝛿) + 𝑐(𝑠)𝑤(𝑠)

+ 𝑑(𝑠)𝑤(𝑠 + 𝜂) = 0 (8) 

for 0   s1 and subject to the conditions 

𝑤(𝑠) = 𝛼(𝑠), −𝛿 ≤ 𝑠 ≤ 0 (9) 

𝑤(𝑠) = 𝛽(𝑠), 1 ≤ 𝑠 ≤ 1 + 𝜂 (10) 

3.3 Liouville Green Transformation: 

Consider the Eqn 

−𝜀𝑤"(𝑠) + 𝑓(𝑠)𝑤 ′(𝑠) + 𝑔(𝑠)𝑤(𝑠) = 0, 𝑠𝜖[0,1] (11) 

This gives rise to the Liouville-Green transition. 

𝑧 = 𝜑(𝑠) =
1

𝜀
∫ 𝑓(𝑠)𝑑𝑠  (12) 

𝜙(𝑠) = 𝜑′(𝑠) =
1

𝜀
𝑓(𝑠) (13) 

𝑣(𝑧) =  𝜙(𝑠)𝑤(𝑠)  (14) 

According to Eqn above we have 

𝑑𝑤

𝑑𝑠
=

1

𝜙(𝑠)

𝑑𝑣

𝑑𝑧
𝑧′(𝑠) −

𝜙′(𝑠)

𝜙2(𝑠)
𝑣(𝑧)

=  
𝜙′(𝑠)

𝜙(𝑠)

𝑑𝑣

𝑑𝑧
−

𝜙′(𝑠)

𝜙2(𝑠)
𝑣(𝑧)  (15) 

𝑑2𝑤

𝑑𝑠2
=  

1

𝜙(𝑠)
((𝜙2(𝑠)

𝑑2𝑣

𝑑𝑧2

+ (𝜙" −
2𝜑′(𝑠)𝜙′(𝑠)

𝜙(𝑠)
)

𝑑𝑣

𝑑𝑧
) −

𝜙"(𝑠)

𝜙(𝑠)

−
2𝜑′2

(𝑠)

𝜙2(𝑠)
𝑣 ) (16)

 

Table 3.1. The largest possible errors in Problem 𝜀 =3.1 for a given grid size N and a given value of 
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Table 3.2. Maximum mistakes in solving Problem 3.2 with 𝜀= 0.01 for various values of and grid sizes N 

 

 

 

Figure 3.1. Solution to problem 3.1 with and without δ= 0.01. 
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Figure 3.2. Problem 3.1, solved for δ = 0.001 and other values 

 

Figure 3.3 Calculation of the solution to Issue 3.2 with a parameter value of = 0.001 and variable δ. 
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Figure 3.4. The solution to Issue 3.2 with = 0.001 and various values of δ. 

 

Figure. 3.5. Problem 3.3, solved for = 0.01 and other values of δ. 

4. FOURTH ORDER FINITE DIFFERENCE 

METHOD FOR SOLVING DELAY 

DIFFERENTIAL EQUATIONS 

4.1 Introduction 

Using Taylor's method, we can amplify the 

delay/deviating term, transforming the original delay 

differential equation into a single perturbed two-point 

boundary value issue. The next step could be to use the 

Liouville Green transformation to convert the problem 

into a periodic perturbation of a two-point boundary 

value problem. The fourth-order finite difference 

method provides an effective solution to the problem. 

Following the steps outlined here, we apply them to four 

model problems with varying values of and then 

evaluate our results against both issued solutions and 

exact solutions. The answer is also illustrated 

graphically to aid in comprehending the effect of the 

factors. 

4.2 Description of the method 

Consider the problem: 

𝜀𝑤"(𝑠) + 𝑎(𝑠)𝑤 ′(𝑠 − 𝛿) + 𝑏(𝑠)𝑤(𝑠) = 0, 0 ≤ 𝑠

≤ 1 (17) 

with boundary conditions 

𝑤(0) = 𝛼, −𝛿 ≤ 𝑠 ≤ 0 (18) 

𝑤(1) = 𝛽 (19) 
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Taylor series expansion gives us 

𝑤 ′(𝑠 − 𝛿) ≈ 𝑤 ′(𝑠) − 𝛿𝑤"(𝑠)(20) 

 

4.3 Liouville Green Transformation: 

−𝜀𝑤"(𝑠) + 𝑓(𝑠)𝑤 ′(𝑠) + 𝑔(𝑠)𝑤(𝑠) = 0, 𝑠𝜖[0,1] (21) 

This gives rise to the Liouville-Green transition. 

𝑧 = 𝜑(𝑠) =
1

𝜀
∫ 𝑓(𝑠)𝑑𝑠  (22) 

𝜙(𝑠) = 𝜑′(𝑠) =
1

𝜀
𝑓(𝑠) (23) 

𝑣(𝑧) =  𝜙(𝑠)𝑤(𝑠)  (24) 

According to Eqn above we have 

𝑑𝑤

𝑑𝑠
=

1

𝜙(𝑠)

𝑑𝑣

𝑑𝑧
𝑧′(𝑠) −

𝜙′(𝑠)

𝜙2(𝑠)
𝑣(𝑧)

=  
𝜙′(𝑠)

𝜙(𝑠)

𝑑𝑣

𝑑𝑧
−

𝜙′(𝑠)

𝜙2(𝑠)
𝑣(𝑧)  (25) 

𝑑2𝑤

𝑑𝑠2 =  
1

𝜙(𝑠)
((𝜙2(𝑠)

𝑑2𝑣

𝑑𝑧2

+ (𝜙" −
2𝜑′(𝑠)𝜙′(𝑠)

𝜙(𝑠)
)

𝑑𝑣

𝑑𝑧
) −

𝜙"(𝑠)

𝜙(𝑠)

−
2𝜑′2

(𝑠)

𝜙2(𝑠)
𝑣 ) (26)

Table 4.1: Maximum absolute errors of Problem 4.1 for  =10-3 

 

Table 4.2: Maximum absolute errors of Problem 4.1 for  =10-5 

 

 

Figure. 4.1. Solution the problem 4.1 with = 0.1 and varying values δ of o(𝜀). 
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Figure. 4.2. Solution the problem 4.1 with = 0.01 and varying values δ of o(𝜀). 

 

Figure. 4.3. Solution the problem 4.2 with = 0.1 and varying values δ of o(𝜀). 

http://www.ijcrt.org/


www.ijcrt.org                                                           © 2023 IJCRT | Volume 11, Issue 5 May 2023 | ISSN: 2320-2882 

IJCRT2305039 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org a267 
 

 

Figure 4.4. Solution the problem 4.2 with = 0.01 and varying values δ of o(𝜀). 

 

Figure 4.5. Solution the problem 4.3 with = 0.1 and varying values  δ of o(𝜀). 

CONCLUSIONS 

In a nut shell, the quantitative approaches described in 

this study to solve differential-difference equations 

having boundary layers are simpler and easier than the 

conventional methods. In fact, the proposed methods 

are non-asymptotic and do not depend upon any lengthy 

series expansions. All of the quantitative methods 

discussed here are tested by applying them to a variety 

of model situations with varying delays, advances, and 

perturbation parameters. We tabulate and compare our 

answers to those found in the literature and/or exact 

solutions. The answer is also presented graphically to 

aid in comprehending the effects of the delay and 

complex parameters. It is noticed from the tables that 

our quantitative approaches produce very good 

approximation to the exact solution. In addition to being 

theoretically simpler and easier to use, these 

quantitative approaches are also easily adaptable for 

computer implementation with only a small amount of 

computing effort. 
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