INTERNATIONAL JOURNAL OF CREATIVE RESEARCH THOUGHTS (IJCRT) An International Dpen Access, Peer-reviewed, Refereed Journal

AVAILABILITY FORECAST FOR A REDUNDANT COMPLEX SYSTEM WITH WAITING

Aurisha Bhatnagar
Research Scholar, Department of Mathematics, DKNMU, Newai, Rajasthan
Dr Avneesh Kumar
Astt. Prof., Dept. of Mathematics, DKNMU, Newai, Rajasthan

Abstract

In this modern society, systems are complex enough and are designed to be operative for a specified period. This specified period is called the mission time. Our aim is to get improvement in this mission time. Availability analysis of each unit of equipment under given operating conditions is helpful to design the units for a minimum failure and to develop a plan in advance for scheduled maintenance or preventive maintenance. the authors have considered in this paper, a multi - component redundant complex system for evaluation of various reliability parameters. Supplementary variable technique and Laplace transform have used to formulate and solve the mathematical model. Laplace transform of various state probabilities, reliability, availability and M.T.T.F. of the system have obtained. Some particular cases and steady-state behaviour of the system are also given at the end. A numerical example with graphical illustration has also been mentioned in last to highlight the important results. We may utilize this general approach to the similar systems used in any industry or elsewhere.

Key Words: Non-Markovian system, supplementary variables technique, Laplace transform, asymptotic behaviour etc.

1. INTRODUCTION

There should be no failure in any unit or part of unit of considered equipment, under specified operating conditions during the whole period. This whole period consists of operating period, administrative period and repair period. We may also increase the availability of any equipment by introducing redundancy at design stage. This redundancy is generally of two type as standby and parallel redundancy.

Keeping all the above facts in view, the authors have considered in this paper, a multi - component redundant complex system for evaluation of various reliability parameters. The whole system comprises of two subsystems namely A and B, connected in series. The subsystem A consists of n-identical units in series and a similar set of nidentical units in standby redundancy. On failure of 1 A -set of units we may change over the 2A-set of units on line with the help of an imperfect switching device. This subsystem A is of 1-out-of-n: F nature.

The subsystem B has two identical units in parallel redundancy and on failure of any one unit, the system works in reduced efficiency state. The whole system can fail due to failure of either subsystem, due to critical human-error and due to environmental reasons. If we are repairing both the units of subsystem B, the system has to wait for repair. On the other hand, in repair of any single unit (from A or B) the repair facilities are always available. Head-of-line policy has been used for repair purpose. This policy is nothing but the "first come first served" policy. All the failures, waiting and switching follow exponential time distribution whereas all the repairs follow general time distribution.

2. ASSUMPTIONS

The following assumptions have been associated with this chapter:

1. Initially, all the units are good.
2. In one step only one change can take place.
3. Failures are statistically independent.
4. All repairs follow general time distribution whereas all failures and waiting follow exponential time distribution.
5. The switching device used, is imperfect.
6. The whole system can fail due to environmental failure and critical human - error.
7. The head-of-line policy has been used to repair purpose.
8. The system has to wait for repair, in case, both the units of subsystem B are failed.
9. Repair has given only if the system is either in degraded state or in failed state.
10. After repair, system works like a new and never damages anything.

3. NOTATIONS

The following notations have been used throughout this chapter:

$\operatorname{Pe}(\mathrm{u}, \mathrm{t}) \Delta / \mathrm{Ph}(\mathrm{v}, \mathrm{t}) \Delta$
: The probability that at time ' t ', the system is in failed state
due to environmental reasons / human-error and elapsed repair time lies in the interval $(\mathrm{u}, \mathrm{u}+\Delta) /(\mathrm{v}, \mathrm{v}+\Delta)$.
$\mathrm{P}_{2}(\mathrm{x}, \mathrm{t}) \Delta / \mathrm{P}_{9}(\mathrm{y}, \mathrm{t}) \Delta \quad:$ The probability that at time ' t ', the system is in failed state due to failure of subsystem A / subsystem A and 1 B unit. The elapsed repair time lies in the interval $(x, x+\Delta) /(y$, $y+\Delta)$.
$P_{4}(y, t) \Delta / P_{7}(t) \quad:$ The probability that at time ' t ', the system is in degraded state due to failure of 1 B unit $/ 1 \mathrm{~B}$ and 1 A -set of unit and elapsed repair time lies in the interval $(\mathrm{y}, \mathrm{y}+\Delta)$.
: The probability that at time ' t ', the system is in failed state due to failure of subsystem B and is waiting / ready for repair. The elapsed repair time lies in the interval $(\mathrm{z}, \mathrm{z}+\Delta)$. : The probability that at time ' t ', the system is in failed state due to failure of subsystem B and $1 \mathrm{~A}-$ set of units. The elapsed repair time lies in the interval ($\mathrm{x}, \mathrm{x}+\Delta$). : Laplace transform variable.
$\mathrm{A}(s)$: Laplace transform of function A (t).

6.4 FORMULATION OF MATHEMATICAL MODEL:

Using continuity argument, we obtain the following set of difference-differential equations governing the behaviour of the model under consideration:-

$$
\left[\frac{d}{d t}+n \alpha \lambda+2 \beta+\gamma_{e_{1}}+\gamma_{h_{1}}\right] P_{0}(t)=\int_{0}^{\infty} P_{e}(u, t) \mu_{C}(u) d u+\int_{0}^{\infty} P_{4}(y, t) \xi(y) d y
$$

$$
\begin{align*}
& +\int_{0}^{\infty} P_{h}(v, t) \mu_{h}(v) d v+\int_{0}^{\infty} P_{2}(x, t) \mu_{2}(x) d x \\
& +\int_{0}^{\infty} P_{6}(z, t) \xi_{1}(z) d z \tag{1}
\end{align*}
$$

$$
\begin{equation*}
\left[\frac{d}{d t}+n \alpha+2 \beta+\gamma_{e_{2}}+\gamma_{h_{2}}+(1-\lambda)\right] P_{1}(t)=n \alpha \lambda P_{0}(t)+\int_{0}^{\infty} P_{3}(r, t) \eta(r) d r \tag{2}
\end{equation*}
$$

$\left[\frac{\partial}{\partial x}+\frac{\partial}{\partial t}+\mu_{2}(x)\right] P_{2}(x, t)=0$
$\left[\frac{\partial}{\partial r}+\frac{\partial}{\partial t}+\eta(r)\right] P_{3}(r, t)=0$

Symbols :

TRANSITION - STATE DIAGRAM
Fig
$\left[\frac{\partial}{\partial y}+\frac{\partial}{\partial t}+\xi(y)+n \alpha \lambda+\beta\right] P_{4}(y, t)=0$

$$
\begin{equation*}
\left[\frac{\partial}{\partial t}+w\right] P_{5}(t)=\beta P_{4}(t)+\int_{0}^{\infty} P_{10}(x, t) \mu_{1}(x) d x \tag{6}
\end{equation*}
$$

$$
\begin{equation*}
\left[\frac{\partial}{\partial z}+\frac{\partial}{\partial t}+\xi_{1}(z)\right] P_{6}(z, t)=0 \tag{7}
\end{equation*}
$$

$$
\begin{equation*}
\left[\frac{\partial}{\partial t}+(1-\lambda)+n \alpha+\beta\right] P_{7}(t)=2 \beta P_{1}(t)+n \alpha \lambda P_{4}(t)+\int_{0}^{\infty} P_{8}(r, t) \eta(r) d r \tag{8}
\end{equation*}
$$

$$
\begin{equation*}
\left[\frac{\partial}{\partial r}+\frac{\partial}{\partial t}+\eta(r)\right] P_{8}(r, t)=0 \tag{9}
\end{equation*}
$$

$$
\begin{equation*}
\left[\frac{\partial}{\partial y}+\frac{\partial}{\partial t}+\xi(y)\right] P_{9}(y, t)=0 \tag{10}
\end{equation*}
$$

$$
\begin{equation*}
\left[\frac{\partial}{\partial x}+\frac{\partial}{\partial t}+\mu_{1}(x)\right] P_{10}(x, t)=0 \tag{11}
\end{equation*}
$$

$$
\begin{equation*}
\left[\frac{\partial}{\partial u}+\frac{\partial}{\partial t}+\mu_{e}(u)\right] P_{e}(u, t)=0 \tag{12}
\end{equation*}
$$

$$
\left[\frac{\partial}{\partial v}+\frac{\partial}{\partial t}+\mu_{h}(v)\right] P_{h}(v, t)=0
$$

Boundary conditions are:

$$
\begin{equation*}
P_{2}(0, t)=n \alpha P_{1}(t)+\int_{0}^{\infty} P_{9}(y, t) \cdot \xi(y) d y \tag{14}
\end{equation*}
$$

$P_{3}(0, t)=(1-\lambda) P_{1}(t)$
$P_{4}(0, t)=2 \beta \quad P_{0}(t)$
$\mathrm{P}_{6}(0, \mathrm{t})=\mathrm{w} \quad \mathrm{P}_{5}(\mathrm{t})$
$P_{8}(0, t)=(1-\lambda) \quad P_{7}(t)$
$\mathrm{P}_{9}(0, \mathrm{t})=\mathrm{n} \alpha \mathrm{P}_{7}(\mathrm{t})$
$\mathrm{P}_{10}(0, \mathrm{t})=\beta \quad \mathrm{P}_{7}(\mathrm{t})$
$P_{e}(0, t)=\gamma_{\mathrm{e} 1} \mathrm{P}_{0}(\mathrm{t})+\gamma_{\mathrm{e} 2} \mathrm{P}_{1}(\mathrm{t})$
$\mathrm{P}_{\mathrm{h}}(0, \mathrm{t})=\gamma_{\mathrm{h} 1} \mathrm{P}_{0}(\mathrm{t})+\gamma_{\mathrm{h} 2} \mathrm{P}_{1}(\mathrm{t})$
Initial conditions are:
$P_{0}(0)=1$ and other state probabilities at $t=0$ are zero

6.5 SOLUTION OF THE MODEL:

Taking Laplace transforms of equations (1) through (22) by making use of initial conditions (23), we may obtain:

$$
\begin{align*}
{\left[s+n \alpha \lambda+2 \beta+\gamma_{e_{1}}+\gamma_{h_{1}}\right] \bar{P}_{0}(s)=} & 1+\int_{0}^{\infty} \bar{P}_{e}(u, s) \mu_{e}(u) d u \\
& +\int_{0}^{\infty} \bar{P}_{4}(y, s) \xi(y) d y+\int_{0}^{\infty} \bar{P}_{h}(v, s) \mu_{h}(v) d v \\
& +\int_{0}^{\infty} \bar{P}_{2}(x, s) \mu_{2}(x) d x+\int_{0}^{\infty} \bar{P}_{6}(z, s) \xi_{1}(z) d z \tag{24}
\end{align*}
$$

$$
\begin{equation*}
\left[s+n \alpha+2 \beta+\gamma_{e_{2}}+\gamma_{h_{2}}+1-\lambda\right] \bar{P}_{1}(s)=n \alpha \lambda \bar{P}_{0}(s)+\int_{0}^{\infty} \bar{P}_{3}(r, s) \eta(r) d r \tag{25}
\end{equation*}
$$

$$
\begin{equation*}
\left[\frac{\partial}{\partial x}+s+\mu_{2}(x)\right] \bar{P}_{2}(x, s)=0 \tag{26}
\end{equation*}
$$

$$
\begin{equation*}
\left[\frac{\partial}{\partial y}+s+\xi(y)+n \alpha \lambda+\beta\right] \bar{P}_{4}(y, s)=0 \tag{28}
\end{equation*}
$$

$$
\begin{equation*}
[s+w] \bar{P}_{5}(s)=\beta \bar{P}_{4}(s)+\int_{0}^{\infty} \bar{P}_{10}(x, s) \mu_{1}(x) d x \tag{29}
\end{equation*}
$$

$$
\begin{equation*}
\left[\frac{\partial}{\partial z}+s+\xi_{1}(z)\right] \bar{P}_{6}(z, s)=0 \tag{30}
\end{equation*}
$$

$[s+1-\lambda+n \alpha+\beta] \bar{P}_{7}(s)=2 \beta \bar{P}_{1}(s)+n \alpha \lambda \bar{P}_{4}(s)+\int_{0}^{\infty} \bar{P}_{8}(r, s) \eta(r) d r$
$\left[\frac{\partial}{\partial r}+s+\eta(r)\right] \bar{P}_{8}(r, s)=0$
$\left[\frac{\partial}{\partial y}+s+\xi(y)\right] \bar{P}_{9}(y, s)=0$

$$
\left[\frac{\partial}{\partial x}+s+\mu_{1}(x)\right] \bar{P}_{10}(x, s)=0
$$

$$
\begin{equation*}
\left[\frac{\partial}{\partial u}+s+\mu_{e}(u)\right] \bar{P}_{e}(u, s)=0 \tag{35}
\end{equation*}
$$

$$
\left[\frac{\partial}{\partial v}+s+\mu_{h}(v)\right] \bar{P}_{h}(v, s)=0
$$

$$
\begin{equation*}
\bar{P}_{2}(0, s)=n \alpha \bar{P}_{1}(s) \quad+\int_{0}^{\infty} \bar{P}_{9}(y, s) \xi(y) d y \tag{37}
\end{equation*}
$$

$$
\begin{equation*}
\bar{P}_{3}(0, s)=(1-\lambda) \bar{P}_{1}(s) \tag{38}
\end{equation*}
$$

$$
\begin{equation*}
\bar{P}_{4}(0, s)=2 \beta \bar{P}_{0}(s) \tag{39}
\end{equation*}
$$

$$
\begin{equation*}
\bar{P}_{6}(0, s)=w \bar{P}_{5}(s) \tag{40}
\end{equation*}
$$

$$
\begin{equation*}
\bar{P}_{8}(0, s)=(1-\lambda) \bar{P}_{7}(s) \tag{41}
\end{equation*}
$$

$$
\begin{equation*}
\bar{P}_{9}(0, s)=n \alpha \bar{P}_{7}(s) \tag{42}
\end{equation*}
$$

$$
\begin{equation*}
\bar{P}_{10}(0, s)=\beta \bar{P}_{7}(s) \tag{43}
\end{equation*}
$$

$\overline{P_{c}}(0, \mathrm{~s})=\gamma_{\mathrm{e} 1} \overline{P_{0}}(s)+\gamma_{\mathrm{e} 2} \overline{P_{1}}(s)$
$P_{h}(0, \mathrm{~s})=\gamma_{\mathrm{h} 1} \overline{P_{0}}(s)+\gamma_{\mathrm{h} 2} \overline{P_{2}}(s)$

Equation (28) gives on integration, using (39):

$$
\begin{align*}
& \bar{P}_{4}(y, s)=2 \beta \bar{P}_{0}(s) \cdot e^{-(s+n \alpha \lambda+\beta) y-\int \xi(y) d y} \\
\Rightarrow & \bar{P}_{4}(s)=2 \beta \bar{P}_{0}(s) \cdot D_{4}(s+n \alpha \lambda+\beta) \tag{46}
\end{align*}
$$

Integration equation (28) by using (38), we get

$$
\begin{equation*}
\bar{P}_{3}(s)=(1-\lambda) \bar{P}_{1}(s) D_{3}(s) \tag{47}
\end{equation*}
$$

Equation (25) gives on simplification

$$
\begin{equation*}
\bar{P}_{1}(s)=A(s) \bar{P}_{0}(s) \tag{48}
\end{equation*}
$$

where

$$
\begin{equation*}
A(s)=\frac{n \alpha \lambda}{s+n \lambda+2 \beta+\gamma_{e_{2}}+\gamma_{h_{2}}+(1-\lambda) s D_{3}(s)} \tag{49}
\end{equation*}
$$

Integration equation (32) by using (41), we get

$$
\begin{equation*}
\bar{P}_{8}(s)=(1-\lambda) \bar{P}_{7}(s) \bar{D}_{8}(s) \tag{50}
\end{equation*}
$$

Equation (31) gives on simplification

$$
\begin{equation*}
\bar{P}_{7}(s)=B(s) \bar{P}_{0}(s) \tag{51}
\end{equation*}
$$

where

$$
\begin{equation*}
B(s)=\frac{2 \beta\left[A(s)+n \alpha \lambda \cdot D_{4}(s+n \alpha \lambda+\beta)\right]}{s+n \alpha+\beta+(1-\lambda) s \bar{D}_{8}(s)} \tag{52}
\end{equation*}
$$

Integrating equation (33) by using (42), we get

$$
\begin{equation*}
\bar{P}_{9}(s)=n \alpha B(s) \cdot \bar{P}_{0}(s) \cdot D_{9}(s) \tag{53}
\end{equation*}
$$

On integrating equation (34) by making use of (43), we get

$$
\begin{equation*}
\bar{P}_{10}(s)=\beta B(s) \cdot \bar{P}_{0}(s) \cdot D_{10}(s) \tag{54}
\end{equation*}
$$

On integrating equation (35) by making use of (44), we get

$$
\begin{equation*}
\bar{P}_{e}(s)=\left\lfloor\gamma_{e_{1}}+\gamma_{e_{2}} A(s)\right\rfloor \cdot \bar{P}_{0}(s) \cdot D_{e}(s) \tag{55}
\end{equation*}
$$

Integrating equation (36) by making use of (45), we get

$$
\begin{equation*}
\bar{P}_{h}(s)=\left[\gamma_{h_{1}}+\gamma_{h_{2}} A(s)\right] \cdot \bar{P}_{0}(s) \cdot D_{h}(s) \tag{56}
\end{equation*}
$$

Integrating equation (26) by making use of (37), we get

$$
\begin{equation*}
\bar{P}_{2}(s)=n \alpha\left[A(s)+B(s) \bar{S}_{9}(s)\right] \cdot \bar{P}_{0}(s) \cdot D_{2}(s) \tag{57}
\end{equation*}
$$

Equation (29) gives on simplification

$$
\begin{equation*}
\bar{P}_{5}(s)=C(s) \bar{P}_{0}(s) \tag{58}
\end{equation*}
$$

where

$$
\begin{equation*}
C(s)=\frac{\beta}{s+w}\left[2 \beta D_{4}(s+n \alpha \lambda+\beta)+B(s) \bar{S}_{10}(s)\right] \tag{5}
\end{equation*}
$$

Integrating equation (30) by using (40), we get

$$
\begin{equation*}
\bar{P}_{6}(s)=w C(s) \cdot \bar{P}_{0}(s) \cdot D_{6}(s) \tag{60}
\end{equation*}
$$

Finally equation (24) gives on simplification by making use of relevant relations:

$$
\begin{equation*}
\bar{P}_{0}(s)=\frac{1}{E(s)} \tag{61}
\end{equation*}
$$

where,

$$
\begin{aligned}
E(s) & \left.=s+n \alpha \lambda+2 \beta+\gamma_{e_{1}}+\gamma_{h_{1}}-\gamma_{e_{1}}+\gamma_{e_{2}} A(s)\right] \bar{S}_{e}(s)-2 \beta \bar{S}_{4(s+n \alpha \lambda+\beta)} \\
& -\left[\gamma_{h_{1}}+\gamma_{h_{2}} A(s)\right] \bar{S}_{h}(s)-n \alpha\left[A(s)+B(s) \cdot \bar{S}_{9}(s)\right] \bar{S}_{2}(s) \\
& -w C(s) \cdot \bar{S}_{6}(s)
\end{aligned}
$$

Thus, we have finally the Laplace transforms of various state probabilities as below:

$$
\bar{P}_{0}(s)=\frac{1}{E(s)}
$$

$$
\bar{P}_{1}(s)=\frac{A(s)}{E(s)}
$$

$$
\bar{P}_{2}(s)=\frac{n \alpha\left[A(s)+B(s) \cdot \bar{S}_{9}(s)\right]}{E(s)} D_{2}(s)
$$

$$
\bar{P}_{3}(s)=\frac{(1-\lambda) D_{3}(s) A(s)}{E(s)}
$$

$$
\bar{P}_{4}(s)=\frac{2 \beta D_{4}(s+n \alpha \lambda+\beta)}{E(s)}
$$

$$
\begin{equation*}
\bar{P}_{5}(s)=\frac{C(s)}{E(s)} \tag{68}
\end{equation*}
$$

$$
\begin{equation*}
\bar{P}_{6}(s)=\frac{w C(s) \cdot D_{6}(s)}{E(s)} \tag{69}
\end{equation*}
$$

$\bar{P}_{8}(s)=\frac{(1-\lambda) B(s) \cdot \bar{D}_{8}(s)}{E(s)}$

$$
\begin{equation*}
\bar{P}_{7}(s)=\frac{B(s)}{E(s)} \tag{70}
\end{equation*}
$$

$$
\begin{align*}
& \bar{P}_{9}(s)=\frac{n \alpha \cdot B(s) \cdot D_{9}(s)}{E(s)} \tag{72}\\
& \bar{P}_{10}(s)=\frac{\beta \cdot B(s) \cdot D_{10}(s)}{E(s)} \tag{73}\\
& \bar{P}_{e}(s)=\frac{\left\lfloor\gamma_{e_{1}}+\gamma_{e_{2}} A(s)\right\rfloor D_{e}(s)}{E(s)} \tag{74}\\
& \bar{P}_{h}(s)=\frac{\left.\mid \gamma_{h_{1}}+\gamma_{h_{2}} A(s)\right\rfloor D_{h}(s)}{E(s)} \tag{75}
\end{align*}
$$

where,

$$
\begin{align*}
& A(s)=\frac{n \alpha \lambda}{s+n \lambda+2 \beta+\gamma_{e_{2}}+\gamma_{h_{2}}+(1-\lambda) s D_{3}(s)} \tag{76}\\
& B(s)=\frac{2 \beta\left[A(s)+n \alpha \lambda D_{4}(s+n \alpha \lambda+\beta)\right.}{s+n \alpha+\beta+(1-\lambda) s \bar{D}_{8}(s)} \tag{77}\\
& C(s)=\frac{\beta}{s+w}\left[2 \beta D_{4}(s+n \alpha \lambda+\beta)+B(s) \cdot \bar{S}_{10}(s)\right]
\end{align*}
$$

and

$$
\begin{align*}
E(s) & =s+n \alpha \lambda+2 \beta+\gamma_{e_{1}}+\gamma_{h_{1}}-\left\lfloor\gamma_{e_{1}}+\gamma_{e_{2}} A(s)\right] \bar{S}_{e}(s)-2 \beta \bar{S}_{4}(s+n \alpha \lambda+\beta) \\
& -\left[\gamma_{h_{1}}+\gamma_{h_{2}} A(s)\right] \bar{S}_{h(s)}-n \alpha\left[A(s)+B(s) \cdot \bar{S}_{9}(s)\right] \bar{S}_{2}(s) \\
& -w C(s) \cdot \bar{S}_{6}(s) \tag{79}
\end{align*}
$$

6.6 ERGODIC BEHAVIOUR OF THE SYSTEM:

By using Abel's Lemma in probabilities; viz.
$\lim _{s \rightarrow 0} s \bar{F}(s)=\lim _{t \rightarrow \infty} F(t)=F(S a y)$
, provided the limit on R.H.S. exists; one can obtain the
following time independent state probabilities from equations (63) through (75):

$$
\begin{equation*}
P_{0}=\frac{1}{E^{\prime}(0)} \tag{80}
\end{equation*}
$$

$P_{1}=\frac{A_{1}}{E^{\prime}(0)}$
$P_{2}=\frac{n \alpha\left[A_{1}+B_{1}\right]}{E^{\prime}(0)} M_{2}$
$P_{3}=\frac{(1-\lambda) A_{1}}{E^{\prime}(0)} M_{3}$
$P_{4}=\frac{2 \beta}{E^{\prime}(0)} \cdot D_{4}(n \alpha \lambda+\beta)$
$P_{5}=\frac{C_{1}}{E^{\prime}(0)}$
$P_{6}=\frac{w C_{1}}{E^{\prime}(0)} \cdot M_{6}$
$-----(85)$
$P_{7}=\frac{B_{1}}{E^{\prime}(0)}$
$P_{8}=\frac{(1-\lambda) B_{1}}{E^{\prime}(0)} \cdot M_{8}$
$P_{9}=\frac{n \alpha \cdot B_{1}}{E^{\prime}(0)} \cdot M_{9}$
$P_{10}=\frac{\beta \cdot B_{1}}{E^{\prime}(0)} \cdot M_{10}$
$P_{e}=\frac{\left\lfloor\gamma_{e_{1}}+\gamma_{e_{2}}\right\rfloor}{E^{\prime}(0)} \cdot M_{h}$

$$
\begin{equation*}
P_{h}=\frac{\left\lfloor\gamma_{h_{1}}+\gamma_{h_{2}} A_{1}\right\rfloor}{E^{\prime}(0)} \cdot M_{h} \tag{92}
\end{equation*}
$$

where,

$$
\begin{align*}
A_{1} & =\frac{n \alpha \lambda}{n \lambda+2 \beta+\gamma_{e_{2}}+\gamma_{h_{2}}} \tag{93}\\
B_{1} & =\frac{2 \beta\left[A_{1}+n \alpha \lambda D_{4}(n \alpha \lambda+\beta)\right.}{n \alpha+\beta} \tag{94}\\
C_{1} & =\frac{\beta}{w}\left[2 \beta D_{4}(n \alpha \lambda+\beta)+B_{1}\right] \\
M_{i} & =-\bar{S}^{\prime}{ }_{i}(0) \quad \forall i
\end{align*}
$$

and

$$
E^{\prime}(0)=\left\lfloor\frac{d}{d s} E(s)\right\rfloor_{s=0}
$$

------(96)

6.7 PARTICULAR CASES:

(a)When all repairs follow exponential time distribution

Setting $\bar{S}_{i}(k)=\frac{\mu_{i}}{\left(k+\mu_{i}\right)} \quad \forall k$ and $i, \quad D_{i}(k)=\frac{1}{\left(k+\mu_{i}\right)} \quad \forall \quad i \quad \& k$ etc.,
in equations (63)
through
one
can
obtain

$$
\begin{equation*}
\bar{P}_{0}(s)=\frac{1}{F(s)} \tag{75}
\end{equation*}
$$

$$
\begin{equation*}
\bar{P}_{1}(s)=\frac{G(s)}{F(s)} \tag{99}
\end{equation*}
$$

$$
\begin{align*}
& \bar{P}_{2}(s)=\frac{n \alpha\left[G(s)+H(s) \cdot\left(\frac{\xi}{s+\xi}\right)\right]}{F(s)} \cdot\left(\frac{1}{s+\mu_{2}}\right) \tag{100}\\
& \bar{P}_{3}(s)=\frac{(1-\lambda) G(s)}{F(s)} \cdot\left(\frac{1}{s+\eta}\right) \tag{101}
\end{align*}
$$

$$
\begin{equation*}
\bar{P}_{4}(s)=\frac{2 \beta}{F(s)} \cdot \frac{1}{(s+n \alpha \lambda+\beta+\xi)} \tag{102}
\end{equation*}
$$

$$
\begin{equation*}
\bar{P}_{5}(s)=\frac{I(s)}{F(s)} \tag{103}
\end{equation*}
$$

$$
\begin{equation*}
\bar{P}_{6}(s)=\frac{w \cdot I(s)}{F(s)} \cdot\left(\frac{1}{s+\xi_{1}}\right) \tag{104}
\end{equation*}
$$

$\bar{P}_{7}(s)=\frac{H(s)}{F(s)}$
$\bar{P}_{8}(s)=\frac{(1-\lambda) H(s)}{F(s)} \cdot\left(\frac{1}{s+\eta}\right)$
$\bar{P}_{9}(s)=\frac{n \alpha \cdot H(s)}{F(s)} \cdot\left(\frac{1}{s+\xi}\right)$
$\bar{P}_{10}(s)=\frac{\beta \cdot H(s)}{F(s)} \cdot\left(\frac{1}{s+\mu_{1}}\right)$
$\bar{P}_{e}(s)=\frac{\gamma_{e_{1}}+\gamma_{e_{2}} G(s)}{F(s)} \cdot\left(\frac{1}{s+\mu_{e}}\right)$

$$
\begin{equation*}
\bar{P}_{h}(s)=\frac{\gamma_{h_{1}}+\gamma_{h_{2}} G(s)}{F(s)} \cdot\left(\frac{1}{s+\mu_{h}}\right) \tag{110}
\end{equation*}
$$

where,

$$
\begin{align*}
& G(s)=\frac{n \alpha \lambda}{s+n \lambda+2 \beta+\gamma_{e_{2}}+\gamma_{h_{2}}+(1-\lambda)\left(\frac{s}{s+\eta}\right)} \tag{1111}\\
& H(s)=\frac{2 \beta\left[G(s)+n \alpha \lambda \cdot \frac{1}{(s+n \alpha \lambda+\beta+\xi)}\right]}{s+n \alpha+\beta+(1-\lambda)\left(\frac{s}{s+\eta}\right)} \tag{112}\\
& I(s)=\frac{\beta}{s+w}\left[2 \beta \cdot \frac{1}{(s+n \alpha \lambda+\beta+\xi)}+H(s)\left(\frac{\mu_{1}}{s+\mu_{1}}\right)\right] \tag{113}
\end{align*}
$$

and

$$
\begin{aligned}
F(s) & =s+n \alpha \lambda+2 \beta+\gamma_{e_{1}}+\gamma_{h_{1}}-\left[\gamma_{e_{1}}+\gamma_{e_{2}} G(s)\right]\left(\frac{\mu_{e}}{s+\mu_{e}}\right)-2 \beta \frac{\xi}{(s+n \alpha \lambda+\beta+\xi)} \\
& -\left[\gamma_{h_{1}}+\gamma_{h_{2}} G(s)\right]\left(\frac{\mu_{h}}{s+\mu_{h}}\right)-n \alpha\left[G(s)+H(s) \cdot\left(\frac{\xi}{s+\xi}\right)\right]\left(\frac{\mu_{2}}{s+\mu_{2}}\right) \\
& -w I(s) \cdot\left(\frac{\xi_{1}}{s+\xi_{1}}\right)
\end{aligned}
$$

it is interesting to note that
Sum of equations (98) through (110) $=\frac{1}{s}$

(b) Evaluation of up and down state probabilities:

We have,

$$
\begin{align*}
\bar{P}_{u p}(s) & =\frac{1}{\left(s+n \alpha \lambda+2 \beta+\gamma_{e_{1}}+\gamma_{h_{1}}\right)}\left[1+\frac{n \alpha \lambda}{\left(s+n \lambda+2 \beta+\gamma_{e_{2}}+\gamma_{h_{2}}+(1-\lambda)\right.}\right] \\
& \left.+\frac{2 \beta}{(s+n \alpha \lambda+2 \beta)}\right] \tag{116}
\end{align*}
$$

On inverting this, we get

$$
\begin{align*}
P_{u p}(t)= & (1+L+N) e^{-\left(n a \lambda+2 \beta+\gamma_{c 1}+\gamma_{n 1}\right) t} \\
& +M e^{-\left(n \lambda+2 \beta+\gamma_{c 2}+\gamma_{n 2}+(1-\lambda)\right) t}+Q e^{-(n a \lambda+\beta) t} \tag{117}
\end{align*}
$$

where,

$$
L=\frac{n \alpha \lambda}{n \lambda(1-\alpha)-\gamma_{e_{1}}-\gamma_{h_{1}}+\gamma_{e_{2}}+\gamma_{h_{2}}^{+(1-\lambda)}}=-M
$$

$$
\begin{equation*}
N=\frac{2 \beta}{\gamma_{e_{1}}+\gamma_{h_{1}}+\beta}=-Q \tag{119}
\end{equation*}
$$

Note that

$$
\begin{equation*}
\mathrm{P}_{\mathrm{up}}(0)=1 \tag{120}
\end{equation*}
$$

Also,

$$
\begin{equation*}
\mathrm{P}_{\text {down }}(\mathrm{t})=1-\mathrm{P}_{\mathrm{up}}(\mathrm{t}) \tag{121}
\end{equation*}
$$

(c) Reliability evaluation:

we have,
$\bar{R}(s)=\frac{1}{s+n \alpha \lambda+2 \beta+\gamma_{e_{1}}+\gamma_{h_{1}}}$

On inverting this, we get
$R(t)=e^{-\left(n \alpha \lambda+2 \beta+\gamma_{c i}+\gamma_{m 1}\right) t}$

(d) Mean time to system failure (M.T.S.F.):

$$
\begin{align*}
& \text { M.T.S.F. }=\lim _{s \rightarrow 0} \bar{R}(s) \tag{124}\\
\Rightarrow & \text { M.T.S.F. }=\lim _{s \rightarrow 0}\left[\frac{1}{s+n \alpha \lambda+2 \beta+\gamma_{e_{1}}+\gamma_{h_{1}}}\right] \\
\Rightarrow & \text { M.T.S.F. }=\frac{1}{\left(n \alpha \lambda+2 \beta+\gamma_{e_{1}}+\gamma_{h_{1}}\right)} \tag{125}
\end{align*}
$$

(e) Numerical computation:

For a numerical example, let us consider the values
$\mathrm{n}=5, \alpha=0.01, \lambda=0.06, \beta=0.02, \eta=0.01, \gamma_{\mathrm{el}}=\gamma_{\mathrm{h} 1}=0.001, \gamma_{\mathrm{e} 2}=\gamma_{\mathrm{h} 2}=0.002, \mathrm{w}=0.005, \xi=$ $\xi_{1}=0.004, \mu_{1}=0.003, \mu_{2}=0.007, \mu_{e}=0.04, \mu_{\mathrm{h}}=0.03$ and $\mathrm{t}=0,1,2------, 10$.

6.8 CONCLUSION OF THE PAPER:

When we plot various graphs, shown in the figs (2) through (6), we observer that:
(i) Availability of the considered system decreases slowly and for $\mathrm{t}=7$ and 8 it remains nearly same, after this it again decreases approximately in the constant manner.
(ii) Reliability of the considered system decreases rapidly up to $t=5$ and thereafter it decreases smoothly.
(iii) When we make increase in the value of α the M.T.S.F. decreases at the constant rate and for $\alpha=0.07$ and 0.08 , it remains nearly the same.
(iv) When we make increase in the value of β the M.T.S.F. decreases rapidly initially up to $\beta=0.07$ and thereafter it decreases solely in constant way.

\mathbf{t}	$\mathbf{P}_{\mathbf{u p}}(\mathbf{t})$
0	1
1	0.992998
2	0.986628
3	0.980012

4	0.972939
5	0.965384
6	0.957365
7	0.948918
8	0.940078
9	0.930878
10	0.921351

Table - 1

Fig- 2

\mathbf{t}	$\mathbf{P}_{\text {down }}(\mathbf{t})$
0	0
1	0.007002
2	0.013372
3	0.019988
4	0.027061
5	0.034616
6	0.042635
7	0.051082
8	0.059922
9	0.069122
10	0.078649

Table - 2

Fig-3

\mathbf{t}	$\mathbf{R}(\mathbf{t})$
0	1
1	0.95599748
2	0.91393118
3	0.87371591
4	0.83527021
5	0.79851621
6	0.76337949
7	0.72978887
8	0.69767632
9	0.66697681
10	0.63762815

Table- 3

Fig-4

$\boldsymbol{\alpha}$	M.T.S.F.
0.01	22.222223
0.02	20.833334
0.03	19.607843
0.04	18.518518
0.05	17.543859
0.06	16.666667
0.07	15.873015
0.08	15.151515
0.09	14.492753
0.10	13.888889

Table-4

$\boldsymbol{\beta}$	M.T.S.F.
0.01	40.000000
0.02	22.222223
0.03	15.384615
0.04	11.764705
0.05	9.523809
0.06	8.000000
0.07	6.896552
0.08	6.060606
0.09	5.405405
0.10	4.878049

Table-5

Fig-5

