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Abstract 

This paper describes ongoing research and development of machine learning and other complemen- tary 

automatic learning techniques in a framework adapted to the specific needs of power system security 

assessment. In the proposed approach, random sampling techniques are considered to screen all relevant 

power system operating situations, while existing numerical simulation tools are exploited to derive detailed 

security information. The heart of the framework is provided by machine learning methods used to extract 

and synthesize security knowledge reformulated in a suitable way for decision making. This consists of 

transforming the data base of case by case numerical simulations into a power system security knowledge 

base. The main expected fallouts with respect to existing security assessment methods are computational 

efficiency, better physical insight into non-linear problems, and management of uncertainties. The paper 

discusses also the complementary roles of various automatic learning methods in this framework, such as 

decision tree induction, multilayer perceptrons and nearest neighbor classifiers. Illustrations are taken from two 

different real large scale power system security problems : transient stability assessment of the Hydro-Québec 

system and voltage security assessment of the system of Electricité de France. 

Keywords: Electric power systems; security assessment; decision tree induction; neural net- works; nearest 
neighbor. 
 

1 Introduction 

Security assessment is a major topic in planning and operation of electric power systems. It consists of 

evaluating the ability of the power system to face various contingencies and of proposing appropriate 

remedial actions able to counter its main weaknesses, whenever deemed necessary. Contingencies may be 

external or internal events (e.g. faults subsequent to lightning vs operator initiated switching sequences) and 

may consist of small/slow or large/fast disturbances (e.g. random behavior of the demand pattern vs generator or 

line tripping). 

The effect of a contingency on a power system in a given state is usually assessed by numerical (e.g. time-

domain) simulation of the corresponding scenario. However, the nonlinear nature of the physical phenomena 

and the growing complexity of real-life power systems make security assessment a difficult task. For 

example, the everyday monitoring of a power system calls for fast analysis, sensitivity analysis (which are the 

salient parameters driving the phenomena, and to which extent?), suggestions to control. On the other hand, 
increasing economic and environmental pressure make the conflicting aspects of security and economy even 

more challenging. Overall, the need for methods different from the standard time domain simulation is 

increasingly felt. 

This paper describes ongoing research and development of such methods, using machine learning (and other 

automatic learning) techniques in a framework adapted to the specific needs of power system security 

assessment. In the proposed approach, schematically sketched in Fig. 1, random sampling techniques are 

considered to screen all relevant situations in a given context, while existing numerical simulation tools are 

exploited - if necessary in parallel - to derive detailed 
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Figure 1: Machine learning framework for security assessment 

security information. The heart of the framework is provided by machine learning methods used to extract 

and synthesize relevant information and to reformulate it in a suitable way for decision making. This consists 

of transforming the data base (DB) of case by case numerical simulations into a power system security knowledge 

base (KB). As illustrated in Fig. 1, a large variety of automatic learning methods may be used here in a toolbox 

fashion, according to the type of information they may exploit and/or produce. The final step consists of using 

the extracted synthetic information (decision trees, rules, statistical or neural network approximations) either 

in real-time, for fast and effective decision making, or in the off-line study environment, so as to gain new 

physical insight and to derive better system and/or operation planning strategies. 

How will this automatic learning based framework complement classical system theory oriented methods 

(relying on analytical power system models, such as numerical simulation) for security assessment? In 

practice, there are three dimensions along which we expect important fallouts. 

First of all computational efficiency 

 By using synthetic information extracted by automatic learn- ing, instead of analytical methods, much higher 

speed may be reached for real-time decision making. Further, in terms of data requirements, whereas analytical 

methods require a full description of the system model, the approximate models constructed via automatic 

learning may be tailored in order to exploit only the significant input parameters. Computational efficiency 

was actually the motivation of Dy Liacco, when he first envisioned in the late sixties the use of automatic 

learning (at that time, statistical pattern recognition) for real-time security assessment [1]. Even today, and in 

spite of the very significant increase in computing powers in the last twenty-five years, this remains a strong 

motivation. 

But the synthetic information extracted by automatic learning methods, may itself be comple- mentary to and 
generally more powerful than that provided in a case by case fashion by existing analytical methods. In 

particular, much more attention is paid nowadays to interpretability and management of uncertainties, the 

two other important fallouts expected from automatic learning methods. 

As concerns interpretability, the use of automatic learning to provide physical insight into the nonlinear 

system behavior was first proposed by Pao et al in the mid-eighties [2]. In the meanwhile, it has been 

demonstrated that machine learning is indeed an efficient and effective way to generate reliable and 

interpretable security rules from very large bodies of simulated examples [3, 4], even for as complex systems 

as are real large-scale power systems. The extracted rules are found to express explicitly problem specific 

properties, similarly to human expertise, and hence may be easily appraised, criticized and eventually adopted 

by engineers in charge of security studies. This means that the above framework should also be viewed as an 

approach to the maintenance and enhancement of utility expertise. The flexibility of the machine learning 

framework allows one to tailor the resulting information to analysis, sensitivity analysis and control 

applications. 
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As concerns management of uncertainties, the need to devise a rational way to take decisions whenever 

there are major uncertainties about the power system state becomes more and more apparent. Today, for 

example, it is well known that operators are often sorely missing guidance in the context of unusual system 

states reached after major disturbances, where reliable real-time information is generally lacking. 

Tomorrow, technological and economic changes will probably lead to a higher and physically more 

irrational distribution of decision making and thus to more uncertainties in routine operation and planning 

activities. Indeed, on the one hand, new devices (e.g. flexible alternating current transmission systems 

(FACTS)) may cause stronger interactions among remote components of very large interconnections. On the 

other hand, increased competition among economic actors may further reduce their willingness to share 

information on their respective subsystems, in spite of the stronger physical interactions. Under such 

circumstances, approaches able to manage uncertainties, such as the above framework based on automatic 

learning, will be urgently needed. 

Nonetheless and despite repetitive attempts, there are still no large-scale industrial applications of the 

machine learning framework to power system security assessment. This is mainly due to the fact that until 

recently, the existing automatic learning methods were not powerful enough while the amount of possible 

security studies was limited by available simulation hardware and software. 

Today, however, all the required conditions are met. Present day computer networks together with fast 

simulation tools allow the generation of large amounts of detailed studies. At the same time much progress 

has recently been achieved in automatic learning methods and their application to large-scale power 

systems was shown to be feasible. Hence, automatic information synthesis tools to assist engineers to 

compare and interpret the numerous elementary results, and extract and appraise useful synthetic information 

are at the same time strongly needed and technically feasible. 

Therefore, while we expect additional progress in learning methods and application methodologies, we foresee 
that some important electric power companies e.g. in North America or Europe will soon start using this 

approach more or less routinely for security studies. 

2 Aspects of power system security problems 

In this section we provide a guided tour of power system security for the unfamiliar reader. We will first 

analyze the different types of physical problems, then consider the practical application environments where 

security is treated, and finally mention briefly the main classes of existing analytical tools for security 

assessment. In our discussion, we will focus on security problems involving large disturbances 

corresponding to nonlinear system behavior. Although such dis- turbances are generally very unlikely to 

happen, their potential consequences can be extremely important and may lead to complete system 

blackouts, freezing the economic activity of a whole country for many hours. 

 Classification of operating states 

The different operating modes of a power system were defined by Dy Liacco [1]. Figure 2 shows a more 
detailed description of the “Dy  Liacco state diagram”. 

Preventive security assessment is concerned with the question whether a system in its normal state is able to 
withstand every plausible disturbance, and if not, preventive control would consist of moving this system 

state into a secure operating region. Since predicting future disturbances is difficult, preventive security 

assessment will essentially aim at balancing the reduction of the probability of losing integrity with the 

economic cost of operation. 
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Figure 2: Operating states and transitions. Adapted from [5] 

Emergency state detection aims at assessing whether the system is in the process of losing integrity, 

following an actual disturbance inception. This is a more deterministic evolution, where response 

time is critical while economic considerations become temporarily secondary. Emergency control 

aims at taking fast last resort actions, to avoid partial or complete service interruption. 

When both preventive and emergency controls have failed to bring system parameters back within 

their inequality constraints, automatic local protective devices will act so as to preserve power 

system components operating under unacceptable conditions from undergoing irrevocable damages. 

This leads to further disturbances, which may result in system splitting and partial or complete 

blackouts. 

Consequently, the system enters the restorative mode, where the task of the operator is to minimize 

the amount of un-delivered energy by resynchronizing lost generation as soon as possible and 

picking up the disconnected load, in order of priority. 

We will confine ourselves to preventive and emergency aspects. 

Physical classification of security problems 

Various security problems are distinguished according to the time scales of the dynamics, the 

characteristic symptoms (low voltage, large angular deviations: : : ), and the control means (reactive 

power, switching: : : ) to alleviate problems. 

Transient stability. Transient stability concerns the ability of the generators of a power system to 

recover synchronous operation following the electromechanical oscillations caused by a large 

disturbance. In this context, the dynamic performance is a matter of seconds and is mainly 

affected by switching operations and fast power controls (e.g. fast valving, high voltage direct 

current converters, FACTS) and voltage support by the automatic voltage regulators of synchronous 

generators and static var compensators (SVCs). To determine the degree of stability we may evaluate 

the critical clearing time of a fault, which is the maximum time duration it may take to clear the 

fault without the system losing its ability to maintain synchronism. 

Voltage security. The fastest voltage instabilities are characterized by sudden voltage collapse 
phenomena which may develop at the same or even higher speeds than loss of synchronism. More 

classical is the mid-term voltage instability, which corresponds to a typical time frame of one to 
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Table 1: Security assessment environments. Adapted from [6] 

 
Environment Time scales Typical problems Operator Expert 

System 

planning 
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Generation 
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Protection 

 

No 

 

Yes 

Operation 

planning 

 

1 week - 1 year 
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No 
 

Yes 

On-line 

operation 
1 hour - 1 day 
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Security assessment 
Yes Partly 

Real-time  

monitoring 
sec. - min. - hour 

Emergency control 
Protective actions 

No   No 
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Improve 

operator skill 
Yes No 

     Here we distinguish between real-time, which considers dynamic situations following a disturbance inception, from merely 

on-line which considers static pre-disturbance situations. 
      except for static security corrective control 

 

five minutes. In this case voltage collapse is mainly driven by automatic transformer on-load tap changers 

trying to restore voltage nearby the loads. There is a third, even slower time frame, corresponding to the so-

called long-term voltage instability, which involves the gradual buildup in load demand. This interacts with 

classical static security and is well within the scope of operator intervention. 

Although a voltage collapse may result in a wide spread degradation of the voltage profile and subsequent 

loss of synchronism, it is normally initiated by a local deficiency in reactive power reserves and/or a 

reduced reactive power transmission capability into a given load area. The distance to voltage insecurity 

may be evaluated by a load power margin which is the maximum additional amount of power which may be 

transferred safely from the generation to a given load area. 

Static security  

It concerns essentially thermal overload problems of generation transmission system components, where 
phenomena span over significantly longer periods of time. For example, line overloads may be tolerated 

during 30 to 60 minutes under favorable weather conditions. 

 Practical application domains 

Table 1 shows the practical study contexts or environments which may be distinguished in security assessment 

applications. The first column identifies the study context; the second specifies how long in advance (with 

respect to real-time) studies may be carried out; the third column indicates the type of subproblems that are 

generally considered in a given environment; the last two columns indicate respectively if an operator is 

involved in the decision making procedure and if an expert in the field of power system security is available. 

In the first three contexts one currently relies mostly on the intervention of human experts exploiting the 

numerical simulation tools. In real-time monitoring and emergency control, the reduced time available calls 

for more automatic procedures. 

System planning. Multitudinous system configurations must be screened for several load pat- terns, and 

for each one a large number of contingencies. An order of magnitude of 100,000 
 

different scenarios per study would be realistic for a medium sized system. While enough time may be 

available to carry out so many security simulations, there is still room for improved data analysis methods 

to exploit their results more effectively for the identification of structural system weaknesses and to provide 

guidelines to improve reliability. 

 



www.ijcrt.org                                                                © 2023 IJCRT | Volume 11, Issue 4 April 2023 | ISSN: 2320-2882 

IJCRT2304534 International Journal of Creative Research Thoughts (IJCRT) c385 
 

Operation planning. As suggested in Table 1, operation planning concerns a broad range of problems, 

including maintenance scheduling (one year to one month ahead), design of operating strategies for usual 

and abnormal situations, and setting of protection delays and thresholds. The number of combinations of 

situations which must be considered for maintenance scheduling is also generally very large, and automatic 

learning approaches would equally be useful to make better use of the available information and to exploit 

the system more economically. 

Similarly, for the closer to real-time determination of operating security criteria, machine learning is 

particularly well adapted. It would allow engineers to screen more systematically representative samples of 

situations, in order to identify critical operating parameters and determine their security limit tables needed for 

on-line operation. This would actually consist of automating and enhancing such manual approaches 

presently in use at many utilities. 

On-line operation. In the context of this framework, it would consist of exploiting on-line the security 
knowledge bases set up off-line, e.g. in operation planning. Appropriate strategies are required in order to 

update this information when major changes happen in the system. For example, several weeks ahead routine 

security criteria could be designed for a forecast range of topologies, load levels and generation schedules, 

while, closer to real-time, maybe a day or some hours ahead, these criteria might then be refreshed to handle 

previously unexpected situations. In order to be compatible with the way operators usually appraise their 

system, it is particularly important for the synthetic information extracted by automatic learning to be as 

simple as possible to interpret. 

Real-time monitoring. Here, the purpose is to design criteria to trigger more or less automatically emergency 

control actions, so as to prevent a disturbed system state to evolve towards blackout. An important aspect is the 

use of appropriate models1 to reflect the disturbed power system behavior, when designing the security 

criteria. Furthermore, the use of readily available system measurements as inputs to the derived emergency 

control rules is often an operational constraint in addition to minimal data requirements and ultra high 

speed. 
Training. During operator training, the security criteria derived in either of the preceding contexts might be usefully 

exploited as guidelines, provided that they are presented in an intelligible way. In addition, these models might be used 

internally in a training simulator software,. 

 Analytical tools 

A rather large set of numerical methods are available for security assessment in the different time frames 

mentioned. We call them analytical tools since they exploit analytical power system models in contrast to the 

synthetic ones extracted by automatic learning techniques. Some of them are based on general purpose 

power system dynamic simulation packages and have a very broad scope. Others are based on simplified 

models or approaches representing only those features which are relevant for the particular study. The latter 

methods may be significantly more efficient, although at the expense of being restricted to some particular 

physical phenomena and/or some particular 

(types of) power systems. We briefly discuss them since they provide the raw input data exploited by the 

automatic learning methods in order to synthesize the high level security information. 

 Transient stability 

There are two main classes of analytical tools for transient stability assessment : time-domain (or step-by-

step) simulation approach and direct methods, based on the second Lyapunov method. 

Time-domain simulation. The general power system dynamic model is composed of mixed algebraic and 

differential equations strongly nonlinear, involving typically a few thousand discrete or continuous time state 

variables. To assess transient stability, the time-domain approach consists of simulating the during and post-

fault behavior of the system for a given disturbance, and observing its electromechanical angular and voltage 

swings during a few seconds. Practical criteria vary from one utility to another, but an unacceptable 

performance would generally imply too large or undamped angular deviations (e.g. pole slips) or 

excessively large variations of voltage or frequency. To obtain stability margins, repetitive simulations must 

be carried out for various pre- fault operating states or for various assumptions concerning the delays of 
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protection devices. While this approach is still considered as very CPU intensive, we observe that within the 

last three years the time required for a typical power system simulation with high order models has shrunk 

from one hour to some minutes. 

 

Direct Lyapunov type methods. They aim at identifying when the system leaves its stability domain 

without further integration of the system trajectory. By avoiding the simulation of the post-fault trajectory, 

they reduce the simulated time period to a fraction of a second instead of the several seconds of time-domain 

methods. Some of them are thus able to provide a rich stability assessment (margins, sensitivities, mode of 

instability) within a fraction of the time required for a single time-domain simulation. A major drawback is 

their difficulty to exploit accurately models of generators and control loops as well as nonlinear or dynamic 

loads. However, since the first multimachine direct methods developed in the late sixties much progress has 

been achieved in incorporating more realistic models. 

 Voltage stability and security 

Tools for voltage security assessment range from static load-flow calculations to full short- term / mid-

term time domain simulations. It is worth mentioning that due to the rather recent emergence of voltage 

security problems, modeling practices have not yet reached maturity compa- rable to those used in transient 

stability studies. In particular, one intrinsic difficulty of analyzing voltage collapse phenomena is the very 

strong dependence on load behavior, for which good models are generally missing. 

Short-term / mid-term dynamic simulations. Since voltage collapse phenomena may involve time 

constants ranging from a fraction of a second to a few minutes, a variable step-size numerical integration 

method with stiff system simulation capability is preferable for the sake of efficiency and accuracy, in 

contrast to transient stability where fixed step-size methods have been widely used. 

Simplified simulations. Since many voltage security problems are essentially driven by automatic on-load tap 

changer mechanisms, it is possible to neglect sometimes the faster interactions among load and generation 

dynamics. The differential equations corresponding to the faster phenomena are then replaced by 

equilibrium equations and only the slower dynamics are modeled. With the intrinsic limitation of neglecting 

problems caused by the fast dynamics, this kind of approach allows drastic reduction in computing times. 

 

Post-contingency load-flow. A further simplification consists of neglecting totally the dynamics, and using 

only purely static post-contingency load-flow calculations. Typically, this allows one to compute maximal 

loading limits, based on successive computations or even on direct optimization. 
 

3 Aspects of automatic learning 

In this section we introduce classes of potentially useful automatic learning methods for the synthesis of 

security assessment information. We first give a definition of the generic supervised learning problem and 

introduce three important classes of algorithms for this problem, and finish with some comments on the use 

of unsupervised learning methods. 

 Supervised learning problem 

The generic problem of supervised learning from examples can be formulated as follows : 

 
Given a learning set of examples of associated input/output pairs, derive a general model for the 

underlying input/output relationship, which may be used to explain the observed pairs and/or predict 

output values for any new unseen input. 

 
In the context of security assessment, an example corresponds to a given operating situation. The input 

attributes would be (hopefully) relevant parameters describing its electrical state and topology and the 

output could be information concerning its security, in the form of either a discrete classification (e.g. secure 

/ marginal / insecure) or a numerical value derived from security margins. 
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In general, the solution of this overall learning problem is decomposed into several subtasks. 

Representation consists of (i) choosing appropriate input attributes to represent the power system state, (ii) 

defining the output security information, and (iii) choosing a class of models suitable to represent 

input/output relations. 

The representation problem is left to the engineer. A compromise has to be found between the use of very 

elementary standard operating parameters and more or less sophisticated compound features. Below we 

discuss how unsupervised learning techniques may help to choose appropriate input attributes. 

Feature selection aims at reducing the dimensionality of the input space by dismissing attributes which do 

not carry useful information to predict the considered security information. This allows one to exploit the 

more or less local nature of many security problems. 

Model selection (or learning per se) will typically identify in the predefined class of models the one which 

best fits the learning states. This generally requires choice of model structure and parameters, using an 

appropriate search technique. 

The distinction between feature selection and model selection is somewhat arbitrary, and some of the 

methods actually solve these two problems simultaneously rather than successively. 

Interpretation and validation are very important in order to understand the physical meaning of the 

synthesized model and to determine its range of validity. It consists of testing the model on a set of unseen 

test examples and comparing its information with prior expertise about the security problem. 

 

 

 

 

 

 

Figure 3: Hypothetical decision tree and its corresponding input space decomposition 

From the interpretation and validation point of view, some supervised learning methods provide rather 

black-box information, difficult to interpret, while some others provide explicit and very transparent 

models, easy to compare with prior knowledge. 

Model use consists of applying the model to predict security of new situations on the basis of the values 

assumed by the input parameters, and if necessary to “invert” the model in order to provide information on 

how to modify input parameters so as to achieve a security enhancement goal. 

As far as the use of the model for fast decision making is concerned, we notice that there are speed variations 

of several orders of magnitude between various techniques, but most of the methods are sufficiently fast in 

the context of control center oriented power system security analysis 

 Supervised learning methods [7] 

In what follows, we consider only non-parametric automatic learning methods. Parametric meth- ods may 

be useful in some particular circumstances, but are not powerful enough to treat the wide variety of 

practical security problems. We will discuss three classes of methods providing three complementary types 

of information. Although we have selected them from three different paradigms (machine learning, neural 

nets, pattern recognition) we insist on the type of information provided rather than on the paradigm itself. 

 Symbolic knowledge via machine learning 

Machine learning is the subfield of artificial intelligence concerned with the design of automatic procedures 

able to learn from examples. Concept learning from examples denotes the process of deriving a logical 

description of the necessary and sufficient conditions corresponding to a class of objects, i.e. a rule in some 
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given representation language. A major concern is to find out adequate compromises between rule 

complexity and data fit, so as to avoid over-fitting and to privilege interpretability. 

Top down induction of decision trees (TDIDT) is one of the most successful classes of such methods which was 

popularized by Quinlan [8]. Figure 3 shows a hypothetical binary decision tree (DT) : to infer the output 

information corresponding to given input attribute values, one traverses the tree, starting at the top-node, and 

applying sequentially the dichotomous tests encountered to select the appropriate successor. When a 

terminal node is reached, the output information stored there is retrieved. 

As suggested by the acronym, TDIDT approaches the decision tree learning in a divide and conquer fashion, 

whereby a decision tree is progressively built up, starting with the top-node and ending up with the terminal 

nodes. At each step, a tip-node of the growing tree is considered and the algorithm decides whether it will 

be a terminal node or should be further developed. To develop a 

 

node, an appropriate attribute is first identified, together with a dichotomy on its values. The subset of its 

learning examples corresponding to the node is then split according to this dichotomy into two subsets 

corresponding to the successors of the current node. The terminal nodes are “decorated” with appropriate 

information on the output values derived from their learning examples, e.g. the majority class label or 

probabilities, or expected value and standard deviation of numerical output information. 

The right part of Fig. 3 shows how the decision tree in its left decomposes its input space into non-

overlapping subregions. The number of such regions should ideally be as small as possible and at the same 

time the states contained by each region should belong to a same class. Thus, to build good decision trees, an 

algorithm must rely on appropriate optimal splitting and stop splitting rules. Optimal splitting has to do with 

selecting a dichotomy at a test node so as to provide a maximum amount of information on the output value 

(i.e. separate states of different classes) whereas stop splitting has to identify situations where further 

splitting would either be useless or lead to performance degradation, due to over-fitting. 

Decision trees have been quite extensively studied in the context of various security assessment problems 

[6]. A main asset lies in the explicit and logical representation of the induced classification rules and the 

resulting unique explanatory capability. In particular, the method provides systematic correlation analyses 

among different attributes and identifies the most discriminating attributes at each tree node. From the 

computational viewpoint it is efficient at the learning stage as well as at the prediction stage. 

There are two generalizations of decision trees of interest in the context of security assessment. First, 

regression trees which infer information about a numerical output variable; they are illustrated below. Second, 

fuzzy trees which use fuzzy logic instead of standard logic to represent output information in a smooth 

fashion. Both approaches allow us to infer information about security margins, similarly to the techniques 

discussed below. Fuzzy trees have not yet reached the maturity of crisp classification or regression trees, 

but they seem particularly well suited to our types of problems. Indeed, they appear to be more robust 

with respect to noise than classical machine learning methods and are able to combine smooth input/output 

approximation capabilities of neural networks with interpretability features of symbolic machine learning [9]. 

 Smooth nonlinear approximations via artificial neural networks 

The field of artificial neural networks has grown since the early work on perceptrons to an im- portant and 
productive research field. We restrict ourselves to multilayer perceptrons; for further information, a widely 

recommended theoretical introduction to neural networks is given in [10]. 

The single-layer perceptron, is basically a simple linear threshold unit together with an error correcting 

learning algorithm. It is able to represent a linear boundary in its input space. Its limited representation 

capabilities have motivated the consideration of more complex models composed of multiple 

interconnected layers of perceptrons, MLPs for short. Figure 4 illustrates the classical feed-forward MLP. 

The first or input layer corresponds to the attribute values, and the last or output layer to the desired security 

classification or margin information. Intermediate layers enable the network to approximate arbitrarily 

complex input/output mappings, provided that its topology and its weights are chosen appropriately. 

The discovery of the back-propagation algorithm has been central to the success of MLPs. It allows one to 
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compute efficiently and locally the gradient of the output error of the network with respect to its weights and 

thresholds. It may be exploited iteratively in order to adjust the weights so as to 

 

reduce the total mean square output error for learning examples. In recent years, much progress has been 

made in improving efficiency of optimization techniques for the learning procedures of MLPs, but the 

MLPs are still very slow at the learning stage, which may prevent extensive experimentations for data base 

sizes typical of security assessment of realistic power systems. 

Similarly to decision trees, an interesting property of MLPs is their ability to achieve feature extraction and 

learning in a single step : the weights connecting the input layer with the first hidden layer may be interpreted 

as projecting the input vector in some particular directions, realizing a linear transformation of the input 

space, which is used in subsequent layers to approximate outputs. However, one of the difficulties with MLPs 

comes from the very high number of weights and thresholds related in a nonlinear fashion, which makes it 

almost impossible to give any insight into the relationship learned. All in all, one can say that MLPs offer a 

flexible, easy to apply, but essentially black-box type of approach to function approximation. 

It should be observed that a bunch of similar methods exist nowadays, such as radial basis functions and 

projection pursuit regression techniques. They offer the possibility of translating the case by case 

information provided in the learning sets into an approximate but closed form numerical model. The latter 

one may be used for fast assessment of unseen situations and direct computation of sensitivities. 

 Memory based reasoning via statistical pattern recognition [11] 

The previous two approaches essentially compress detailed information about individual simulation results into 

general, more or less global security characterizations. 

Additional information may however be provided in a case by case fashion, by matching an unseen (e.g.   real-

time) situation with similar situations found in the data base.   This may be achieved by defining 

generalized distances so as to evaluate similarities among power system a 

 

4 Application of automatic learning to power system security 

Below we will first describe a hypothetical application of the automatic learning based framework to a 

hypothetical security problem. Then we will provide a short overview of some real-life applications to 

large-scale security problems. 

 A hypothetical illustration of the framework 

 A security problem 

Let us imagine that our hypothetical power system is voltage security limited in some reactive power weak area, 
and let us suppose this security problem was discovered in a preliminary screening security study, where 

also the possibly constraining disturbances were identified. 

Then, a practical problem would be the characterization of security regions with respect to these 

disturbances, so as to provide operators with preventive security assessment criteria and effective preventive 

control means to alleviate potential insecurities, such as optimal rescheduling of available reactive power 

resources. 

Another, different problem would be the design of emergency state indicators to be applied in case of a 

disturbance, ideally highly anticipative and reliable at the same time while providing information on 

appropriate emergency control means, such as on-load tap changer blocking and load shedding. 

 How could we generate a data base ? 

In order to provide a representative sample of voltage security scenarios for the above problems, we would 

first ask for the advice of planning and operation planning engineers and operators of that system, so as to 

gather information about known system weaknesses and operating practices. 
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From this information, data base building software would then be designed in order to generate randomized 

samples representative of normal operating conditions, including also a sufficient number of unusual 

situations, deemed relevant for security characterization. In particular, with 

respect to real-life operating statistics, this sample would typically be biased towards the insecure regions of 

the state space. 

According to that sampling procedure, an initial data base would be generated, typically comprising several 

thousand states and the security of each state would be pre-analyzed with respect to the studied 

disturbances. For example, post-contingency load power margins could be computed for real large-scale 

power system models on existing computer networks within some hours of response time, by using an efficient 

simulation software and exploiting trivial parallelism. In addition to this information, appropriate preventive 

or emergency control information could be pre-determined for the insecure states and secure economic 

generation dispatch for the secure ones. 

Further, a certain number of attributes would be computed, which would be proposed as input variables to 

formulate security criteria. In the preventive mode security assessment problem, these attributes would 

typically be contingency-independent pre-fault operating parameters, such as voltages, reactive power 

generation and compensation reserves, power flows, topology indicators. For the emergency state detection 

problem, we would rather use raw system measurements (e.g. voltage magnitudes, power flows, 

transformer ratios, breaker status) of the intermediate just after disturbance state. In contrast to the 

preventive mode attributes, the emergency state attributes would depend on the disturbance and on the 

short-term system modeling, in addition to the pre- fault operating state. 

When designing the data base generation software, care must be taken so as to appropriately take into 

account various kind of uncertainties. For example, random noise terms should be added to the attribute 

values so as to model measurement or state estimation errors and delays. Further, static and dynamic power 

system model parameters are often uncertain (load distribution and sensitivity to voltage, external systems, 

parameter variations with temperature : : : ) and should thus be accordingly randomized. 

 Unsupervised learning for data pre-processing 

In practical security problems, many different attributes often turn out to provide equivalent in- formation, 
due to the very strong physical correlations among geographically close components of a power system. 

Thus, clustering methods may be used to define a small set of representative attributes from a larger number 

of elementary variables. 

To fix ideas, let us consider the case of voltage magnitudes. Correlation coefficients among any pair of bus 

voltages may be easily computed on the basis of the data base statistical sample. They may then be used as 

similarity measures by a clustering algorithm searching for a reduced number of voltage “coherent” regions. 

For each region an equivalent (e.g. mean) voltage would be used as an attribute instead of individual bus 

voltages, and the computational burden of the subsequent supervised learning of security criteria would be 

reduced, while robustness and interpretability would be improved. For example, two-dimensional 

Kohonen feature maps may be exploited in order to visualize the relationships among voltage regions and 

compare them easily with the geographic location of busbars in the power system. 

In addition to the above “feature extraction” application, clustering techniques have also been proposed in a 

more conventional way, to identify groups of similar power system operating states. One possible purpose is 

to partition a very large data base into smaller subsets for which the security assessment problem could be 

easier to solve. Another interesting application would be to “condense” the full data base into a reduced 

number of representative prototypes, thereby decreasing the number of required security simulations and 

shortening the associated computation delays. 

 Supervised learning of security criteria 

Given a data base composed of examples, for which security margins have been determined for several 

contingencies and a number of candidate attributes have been computed, supervised learning would proceed so 

as to derive appropriate security criteria. First of all however, the data base would be partitioned into disjoint 

learning and test samples. The learning sample will be used to build the synthetic security criteria, whereas 
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the test set will be used to assess their reliability by comparing the security information predicted by them and 

the “real” one determined by simulation. In addition to the unseen test states generated automatically together 

with the learning states, a test sample representative of actual operating statistics should be collected from 

historical on-line records. 

What can decision trees do ? We need first to define security classes by appropriate thresholds on the security 
margin. Then, the decision tree building includes (i) the automatic identification of the subset of attributes 

among the candidate ones relevant for the prediction of the security class (say ten to twenty among one or two 

hundred), and (ii) the definition of appropriate threshold values for these attributes so as to provide an 

approximate model of the voltage security region of the studied area of the power system. In addition to a 

global DT covering all disturbances simultaneously, single- contingency DTs may also be constructed to 

provide more specific information and additional insight. Further, various DTs may be constructed for 

various security margin threshold values, so as to discriminate between marginally secure and very secure 

situations. Depending upon whether normal pre-disturbance or just after disturbance attribute values are 

used, the DTs can be used either in a preventive or in an emergency wise approach. 

If there are too many non-detections of insecure states, the threshold value used to define the secure class in 

terms of the security margin may be increased before rebuilding a tree. If there are too many false alarms, 

additional candidate attributes or learning states should be used. 

What can neural networks add ? In addition to the simplified view on security, provided by the DTs in 

terms of a discrete model relating a small number of security classes and thresholds on attribute values, one 

is generally interested in providing a continuous security margin, at least in the neighborhood of the 

threshold values used to define security classes. 

As we have mentioned, one of the strong points of the MLP is its nonlinear modeling capability. On the 
other hand, the decision tree identifies the attributes in strong correlation with the security class. Thus, in a 

hybrid approach we may use the latter attributes as input variables to a MLP model, while using a 

normalized security margin as output information. 

In practice it may be necessary to proceed by trial and error to determine an appropriate number of hidden 

neurons and topology for the MLP structure. Once its structure and weights have been adapted on the basis 

of the learning states, the MLP provides a closed-form and differentiable security approximator, which may 

be used for fast margin prediction for any seen or unseen state and as well to compute margin sensitivities to 

attribute values. 

Practical experiments reported below with various security problems have shown that this leads to richer and 

more reliable security assessment information. 

What do distance based methods offer ? With the previous two approaches, we have essentially compressed 

detailed information about individual simulation results into general, more or less global security 

characterizations. This allows us to provide the required physical understanding, 
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thanks to the data analysis component of decision trees and attribute clustering techniques. In addition, the 

derived models may be used efficiently for on-line security analysis. 

In this latter context, further information may be obtained via memory based reasoning exploiting 

appropriate distances to find the most similar pre-analyzed situations to the real-time state. Once identified, 

these may be used in multitudinous ways. For example, their distance to the current state would provide a 

measure of confidence of the security information provided by any model derived from the data base (DT 

and/or MLP). If the latter were too large, it would then be concluded that for the current state no reliable 

security information may be derived from the data base. If the nearest neighbors were on the contrary 

sufficiently close to the current state, then various kinds of detailed and specific security information may 

be extrapolated from these states to the current situation and shown to the operator, including detailed 

contingency analysis and preventive and/or emergency controls. 

 Overview of some real-life applications 

Below we provide more specific information about feasibility studies of the automatic learning approach, 

made for some real practical power system security problems. 

 Transient stability 

A first large-scale feasibility study was initiated in early 1990, for preventive transient stability assessment 

of an important generation plant within the large-scale EHV system of Electricite´ de France (EDF) [13]. 

A more recent study was carried out on the Hydro-Québec system which is illustrated in Fig.  5. Its normal 

operating condition is considered secure if it withstands any permanent single-phase to ground fault, 

followed by line tripping, fast re-closure and subsequent permanent tripping. It is notable that this system is 

mainly constrained by its transient stability limits, due to the very large power flows and long transmission 

distances. 

More specifically, in our investigations we have considered only faults occurring within the James’ Bay 

transmission corridor in the Western part of the system. With respect to such faults, the stability is mainly 

influenced by the power flows and topology within the same corridor. A set of transient stability limits have 

previously been developed, in a manual approach, where operation planning engineers have determined off-

line, on the basis of carefully chosen simulation scenarios, a set of approximate limit tables relating the system 

topology and power flows to a Stable/Unstable classification. These limit tables have been implemented on 

the real-time computer of Hydro- Québec, via an ad hoc data base tool called LIMSEL, presently in use for 

operation. The purpose of our investigation was to evaluate the capability of the automatic learning 

approach to provide a more systematic and potentially more efficient methodology to derive these operating 

guidelines. 

A data base, composed of 12,500 normal operating states was generated via random sampling and chained 
load flow computations; it comprises more than 300 different combinations of up to 6 line outages, and 

about 700 different combinations of reactive voltage support equipment in operation, and a wide variety of 

power flow distributions. The dashed lines in Fig. 5 show the variable topology part of the 735kV 

system. For each state, the corresponding classification Stable/Unstable was obtained from LIMSEL, 

running on the backup on-line computer, resulting in 3,939 stable states and 8,561 unstable ones, among 

which 393 are marginally and 8,168 fairly unstable. 

To describe the operating states, and in order to characterize their stability, the following types of 

Clustering and unsupervised learning 

In contrast to supervised learning, where the objective is clearly defined in terms of modeling the 
underlying correlations between some input variables and some particular output variables, unsupervised 

learning methods are not oriented towards a particular prediction task. Rather, they try to identify existing 

underlying relationships among a set of objects characterized by a set of variables or among a set of 

variables used to characterize a set of objects. 

Thus, one of the purposes of clustering is to identify homogeneous groups of similar objects, in order to 

represent a large set of objects by a small number of representative prototypes. Graphical, two-dimensional 
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scatter plots may be used as a tool in order to analyze the data and identify clusters. Another application of the 

same techniques is to identify similarities (and redundancies) among the different attributes used to 

characterize objects. In the context of power system security both applications may be useful as 

complementary data analysis and preprocessing tools. 

Unsupervised learning algorithms have been proposed under the three umbrellas given above to classify 

classification methods, termed cluster analysis in the statistics literature, conceptual clustering in the 

machine learning community, and self-organizing maps or vector quantization in the neural net community 

[12]. 

ndidate attributes were computed : active power flows through important lines and cut-sets in the James’ Bay 

corridor; total active power generated in the 4 La Grande (LG) power plants and various combinations; number 

of SVCs in operation within the six substations in the James’ Bay corridor; logical indicators (in/out) for 

important lines. This set, composed of 67 candidate attributes was determined with the help of an expert in 

charge of transient stability studies  at Hydro-Québec. From previous studies it was already known that the 

total power flow through the corridor would be an important attribute, together with the topological 

information and the total number of SVCs. 

The tree partially represented in the right hand part of Fig. 5 was built on the basis of the first 10,000 states 2 of 

the data base and 87 candidate attributes, including in addition to the above 67 ones four linear combination 

attributes and some other combined ones. Fig. 5 shows its most important parts nearby the top-node. The 

notation used for a typical node is also represented at the top left hand side of the tree : each node is 

represented by a box, the upper part of which corresponds to the proportions of stable and unstable learning 

states relative to this node. Test nodes are identified by the label “Ti” or “STi”, the latter corresponding to 

subtrees which have not been drawn on the picture. Terminal nodes are identified by a label “Li” for leafs 

and “Di” for deadends. A leaf is a terminal node with a sufficiently class pure learning subset (in the 

algorithm used this is expressed in terms of an entropy measure) whereas a deadend is a node which 

corresponds to a subtree pruned to avoid over-fitting. In addition to the label indicating the type of a node, 

the number of learning states of the node is indicated next to it. above which a state is unconditionally 

declared unstable for at least one line-fault in the corridor. 

To evaluate its generalization capability, the tree was tested on the basis of an independent test set 

comprising the 2,500 states of the data base not used for its building, yielding an overall error rate of 4.3% 

(the proportion of erroneous classifications of test states of each subtree are depicted in the lower part of 

each node-box in Fig. 5). Out of the 1,622 fairly unstable states, only 30 are classified as stable yielding 

1.85% “dangerous” errors. On the other hand, 23 marginally unstable states are classified stable, leading to 

small non-detection errors. There are also 52 false alarms, 
i.e. stable test states classified unstable by the tree. 

To improve accuracy, the same data base was further exploited by building a multilayer perceptron (with a 

single hidden layer of 20 neurons) on the basis of the same 10,000 learning states, leading to a reduced test 

set error rate of 2.4%. 

In terms of computational requirements we mention the following CPU times determined on a SUN 

Sparc10 workstation : about 1 week for the data base generation, 1 hour for the decision tree building and 1 

second for testing; and 60 hours for the learning of the MLP weights and 10 seconds for testing. 

Further investigations were made, concerning the data base decomposition into various topology classes for 

which simpler and more interpretable trees were obtained. These and other recent research results, e.g. 

concerning a nearest neighbor technique optimized using genetic algorithms, are described in [14]. 

 Voltage security 

A second rather extensive feasibility study was carried out for voltage security, on a test problem concerning 

the Brittany region of the EDF system. Both preventive security assessment and emergency state detection 

were considered [4, 15]. Figure 6 depicts in its left part the one-line diagram of the related part of the EDF 

system. Its subregions correspond to voltage coherent load areas, determined with respect to behavior of 

HV voltage magnitudes just after the loss of a generator in Plant No. 1. These regions were automatically 
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determined in a preliminary study by non-supervised learning using a Kohonen feature map [16]. 

The independent variables used during the random sampling of the pre-disturbance states concerned the 

following : topology (single or double line or transformer outages); regional load level, unit commitment 

and generation dispatch; reactive support by synchronous condensers and gas turbines. To account for 

uncertainties the following quantities were also randomized : secondary voltage control set-points; 

individual HV load distribution and power factors; MV shunt compensation; voltage sensitivities of the 

active and reactive load powers. 

A total of 13,513 random variants were drawn to yield 5000 pre-disturbance states. (The remaining 8,513 

variants led to power flow computation divergence or non-convergence.) For each state about 200 attributes 

were computed, corresponding to key variables such as topological indicators, important EHV power flows, 

400kV voltages, numbers of units in operation in power plants, total load demand, reactive shunt 

compensation reserves in the study region, and reactive generation  

All in all 26 different contingencies were considered in this broad study, corresponding to syn- chronous 

condenser, generator or line tripping and busbar faults. The electrical static and dynamic models, the voltage 

security criterion and the load power margin computation procedure used are described in [15]. The 

severity of a disturbance was determined by the difference between pre- and post-disturbance load power 

margins in the Brittany region. Thus, in addition to the pre-disturbance margin, the corresponding 26 post-

disturbance margins were computed for each operating state, yielding a total number of 135,000 load power 

margin computations. Overall, the data base generation required about one month of CPU time on a SUN 

Sparc10 workstation. 

Several tens of multilayer perceptrons and even more decision and/or regression trees were built, for different 

disturbances and both preventive security assessment and emergency state detection. In addition, various 

nearest neighbor classifiers were also tried out. For illustration, we will comment briefly on the regression 

tree depicted in the right part of Fig. 6, built to estimate the severity of the loss of Circuit No. 1 of an 

important 400kV line (see the one-line diagram in Fig. 6). Each node of the tree is represented by a box 

containing a graphical representation of the distribution of values of the contingency severity in the learning 

set at this node, together with its sample mean value and standard deviation, and the number of its 

learning states : at the top-node, N = 2775 
corresponds to the total number of learning states used to build the tree. 

Once the tree has been constructed, it may be used to estimate the contingency severity of an unknown 

state : to this end, we direct the state from the top-node to the appropriate successoraccording to its 

reactive reserve and further to a terminal node according to the status of Circuit 2. There, the severity is 

estimated by the mean severity of the corresponding learning states. 

This very simple tree provides actually a very accurate estimate of the severity of the disturbance. Admittedly, 

it might be further improved by further developing some of its terminal nodes using other attributes carrying 

complementary information, Applying it to a representative independent test sample, the difference between 

this estimate and the “actual” pre-computed severity yields an overall mean error of -0.5MW and standard 

deviation of 43.6MW, which is indeed almost negligible if compared to the overall load level of the study 

region which varies between 5,000MW and 7,700MW.  

 Conclusions 

In this paper we have attempted to survey state of the art and future potentials of machine learning 

approaches for power system security assessment. 

We have described the high diversity of power system security problems so as to justify the combined use of 

machine learning and other statistical and neural network based automatic learning methods, in a tool box 

fashion. To provide insight into the possible complementary uses of these various methods, we have put the 

emphasis on illustrations and discussions, rather than on theoretical presentations. To render credible 

machine learning approaches to power system security, we have reported a small subset of results obtained 

with two different real-life problems. 

One of the messages we would like to convey is that to make automatic learning methods really successful it 
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is important to include the human expert in the process of deriving security information. For example, to guide 

the security studies it is necessary to exploit his prior expertise and then to allow him to criticize, assimilate 

and accept the new information. The results must therefore be provided in a form compatible with his own 

way of thinking. In the general class of automatic learning approaches, machine learning is presently the 

only one able to meet this requirement; it is therefore a key element of the tool box. 

Clearly, machine learning as well as other learning methods can produce interesting security information 

only when they exploit representative data bases. To obtain them, the initial investment is quite important for 

each new security problem, but the subsequent data base generations take full advantage of the previous 

ones. To further enhance the approach, powerful parallel simulation environments could be developed to 

enable a transparent allocation of simulations on virtual machines composed of the large numbers of 

elementary workstations available through local or wide area networks, and not fully exploited today. 

After eight years of research, we deem that automatic learning methods are indeed able to provide interesting 

security information for various physical problems and practical contexts. Actually, in their philosophy 

they are quite similar to existing practices in power system security studies, where limits are derived from 

simulations, though in a manual fashion. But automatic learning approaches are more systematic, easier to 

handle and master, in short more reliable and powerful. 

These possibilities open up new perspectives to power system engineers to respond to the challenge of 
planning and operating future power systems with an acceptable level of security, in spite of growing 

complexity and level of uncertainties (e.g. due to the de-regulation of transmission systems and faster 

technological changes) and increasing economical and environmental pressures. 
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