ISSN: 2320-2882

IJCRT.ORG

INTERNATIONAL JOURNAL OF CREATIVE RESEARCH THOUGHTS (IJCRT)

An International Open Access, Peer-reviewed, Refereed Journal

ESTIMATION FOR METHOD DEVELOPMENT AND VALIDATION OF RIFAMPICIN IN ORALDOSAGE FORM BY RP- HPLC

DG.KIRAN¹, MOHAMMED FAQRUDDIN², PSUHANA PRAVEEN³, Dr.HASEENA TABASSUM⁴

1.Associate Professor, Department of department of pharmacology, A.M Reddy Memorial college of pharmacy, Petlurivaripale, Nasaraopet, Guntur, Pin:522601
2.MS in Health informatics, new England college. Hennker NH.
3.Department of Pharmacy, SIMS college of Pharmacy, Mangaladas nagar, guntur.

4. Asst professor, clinical pharmacy practice, MRM College of Pharmacy, MRM College of Pharmacy, Chintapally guda, Hyderabad-501510

ABSTRACT

A Reproducible reverse phase high performance liquid chromatographic (RP-HPLC) method for simultaneous estimation of Rifampicin in tablet formulation. Good chromatographic separation was achieved isocratically using a Prontosil C18 column (250 x 4.6mm, 3μ m) and mobile phase consisting of acetonitrile: 0.02M sodium dihydrogen phosphate buffer (60:40) with 1.5ml of Triethyl Amine , adjusted to pH 6.5 with Orthophosphoric acid, at flow rate 1ml/min. The first method of these three drugs which involves absorbance measurement at 211nm The retention time of Rifampicin and was found to be 2.38min, 2.747min and 3.660min respectively. Linearity was obtained in the range of 8-38 µg/ml,18-53 µg/ml and 32-116 µg/ml respectively. The correlation coefficient for calibration curve of all three peaks was found to be 0.9999.

Keywords: Rifampicin, RP-HPLC, Validation, Prontosil C18 column etc.

Introduction:

The pharmaceutical analysis defined as "the branch of practical chemistry which deals with the resolution, separation, identification, determination and purification of a given sample of a medicine, the detection and estimation of impurities, which may be present in drug substance (or) given sample of medicine". The substance may be a single compound or a mixture of compounds and may be in the form a tablet, pill, capsule, ampoule, liquid, mixture or an ointment. The quality control tests involve methods which embrace chemicals, physio – chemical, instrumental, microbiological (or) biological procedures. The pharmaceutical analysis deals with the subject of determining the composition of material in terms of the elements or compound (drug) present in the system.

JCR

2. METHOD VALIDATION

VALIDATION

According to ICH guidelines method validation can be defined as "Establishing documented evidence, which provides a high degree of assurance that a specific activity will consistently produce a desired result or product meeting its predetermined specifications and quality characteristics". Such validated analytical method for qualitative and quantitative testing of the drug molecule assume greater importance when they are employed to generate quality and safety compliance data during development, pre-formulation studies and post approval of drug products.

The ICH of Technical Requirements for the Registration of Pharmaceutical for human use has developed a consensus text on the validation of analytical procedures. The document includes definitions for eight validation characteristics

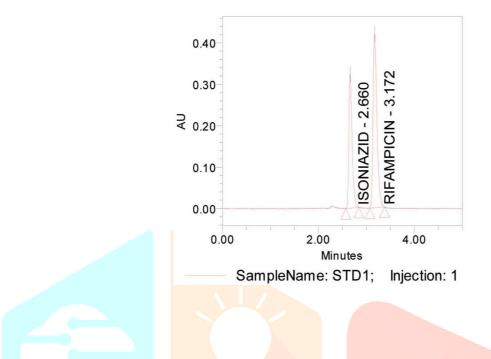
Parameters Used for Assay Validation

The validation of the assay procedure was carried out using the following parameters.

- **1**) Parameters:
 - 1.1 System suitability
 - **1.2 Specificity**
 - **1.3 Method Precision**
 - 1.4 Linearity & range
 - **1.5 Accuracy / Re**covery studies
 - **1.6 Robustness**

SYSTEM SUITABILITY

System suitability is the checking of a system to ensure system performance before or during the analysis of unknowns. Before performing any validation experiment, HPLC method and the procedure should be capable of providing data of acceptable quality. These tests are to verify that the resolution and repeatability of the system are adequate for the analysis to be performed. It is based on the concept that equipment, electronics, analytical operations and sample constitute an integral system that can be evaluated as a whole. System suitability parameters and recommendations were shown in the table no.3


> Table no. 3 System suitability parameters and recommendations

S.N	Parameters	Recommendations
0	1 di dificter 5	Keominentations
1	Theoretical plates (N)	>2000
2	Tailing factor (T)	≤ 2
3	Resolution (Rs)	> 2 between peak of interest and the closest eluting potential Interference
4	Repeatability	$RSD \le 1\%$ for N ≥ 5 is desirable
5	Capacity factor (k ¹)	> 2.0
6	Relative retention	Not essential as long as the resolution is stated

Procedure:

- A standard solution was prepared by using Isoniazid and Rifampicin working standards as per test method and was injected six times into the HPLCsystem.
- The system suitability parameters were evaluated from standard chromatograms by calculating the % RSD from ten replicate injections for Isoniazid and Rifampicin retention times and peak areas. Resulted chromatogram was shown in the chromatogram fig.no.3.

Fig no.3 Chromatogram of standard 1

Table no.4

Data for system suitability of ISONIAZID Name: ISONIAZID

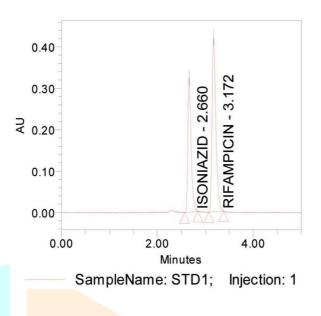

	Sample Nam	Inj	Nam e	RT	Area	U	SPResolu	ution	U SPT	ailing	U SPPlateCoun
1	STD 1	1	ISONIAZI	2 .660	1518803				1 .469		7755
Mean	Ž				1518803						2
%RSD	5										

Table no.5

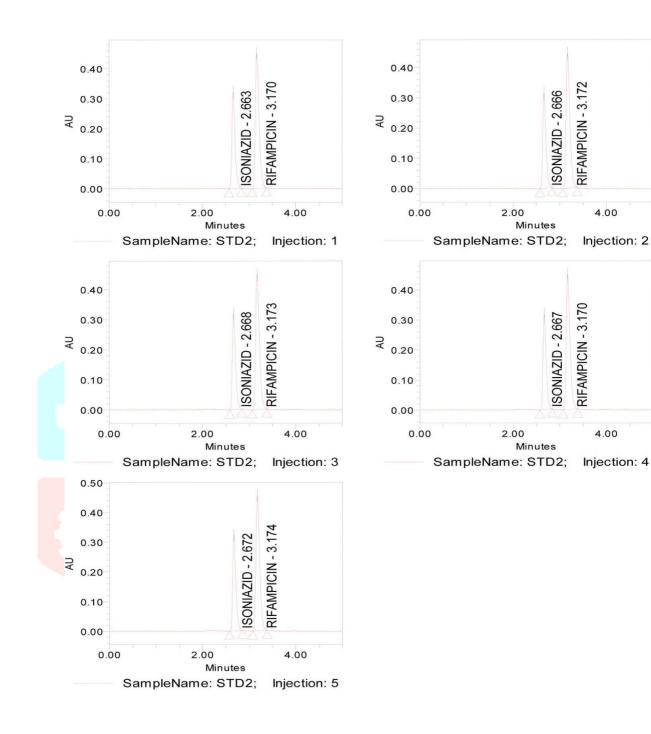
Data for system suitability of RIFAMPICIN Name: RIFAMPICIN

	Sample Na m	Inj	Nam e	RT	Area	U SPResolutio	U SPTailing	U SPPlateCount
1	STD 1	1	RIFAMPICI	3 .172	2348101		1.412	7613
Mean					2348101			
%RSD								

Fig no.3Chromatogram of standard 1

Tableno.4

Data for system suitability of ISONIAZID Name: ISONIAZID


		Sample Name	Inj	Nam	e	RT	Area	U SP	Resolution	U SPTa <mark>iling</mark>	<mark>U SPPla</mark> teCount
1		STD 1	1	IS ON	IAZID	2 .660	1518803			1 .469	7755
Mean							1518803				
%RSI)										8.

Tableno.5

Data for system suitability of RIFAMPICIN Name: RIFAMPICIN

	Sample Name	Inj	Nam e	RT	Area	U SPResolution	USPTailing	USPPlateCount
1	STD 1	1	RIFAMPICIN	3 .172	2348101		1 .412	7613
Mean					2348101			
%RSD								

Fig no.4Chromatograms of standard 2

Results of system suitability (ISONIAZID) Name: ISONIAZID

	Sample	Inj	Nam e	RT	Area	USPResolutio	USP Tailing	USPPlateCount
1	STD 2	1	ISONIAZI	2.663	151632		1 .436	7479
2	STD 2	2	ISONIAZI	2.666	150283		1 .426	7316
3	STD 2	3	ISONIAZI	2 .668	151642		1.428	7288
4	STD 2	4	ISONIAZI	2.667	150767		1.424	7576
5	STD 2	5	ISONIAZI	2 .672	152012		1 .448	7392
Mean					151267			
%RSD					0.5			

Table no.7

Results of system suitability (RIFAMPICIN)

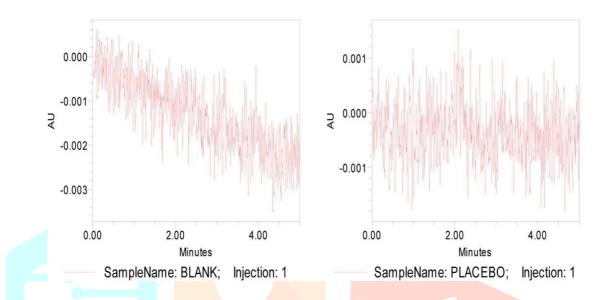
	Sample Name	Inj	Nam e	RT	Area	USPResolution	U SPTailing	U SPPlateCo unt
1	STD 2	1	RIFAMPICI	3 .170	2518297	7	1 .420	7539
2	STD 2	2	RIFAMPIC	3 .172	2514902		1 .407	7382
3	STD 2	3	RIFAMPIC	3 .173	2535682		1 .402	7460
4	STD 2	4	RIFAMPICI	3 .1 <mark>7</mark> 0	<mark>252</mark> 0334		1 .428	7586
4	STD 2	5	RIFAMPI CI	3 .174	252 <mark>8250</mark>		1.390	7441
Mean					2523493			
%RSD	~				0.3			~

Name: RIFAMPICIN

SPECIFICITY

Specificity is the ability to assess unequivocally of an analyte in the presence of components which may be expected to be present. Lack of specificity of an individual analytical procedure may be compensated by other supporting analytical procedures.

Blank, standard, placebo, all known related compounds, spiked sample, sample solutions were prepared and injected into the chromatographic system for identification and interference with the Isoniazid and Rifampicin peaks.


Placebo Interference:

A study to establish the interference of placebo was conducted. Sample preparation of placebo was done as that of test sample preparation of assay method. Chromatogram of placebo did not show any additional peaks. This indicated that the excipients used in the formulation did not interfere in the assay of Isoniazid and Rifampicin tablets. Resulted chromatograms were shown below.

Blank Interference:

A study to establish the interference of blank was conducted. Mobile phase was injected as per the test method and are shown below.

Fig no.5

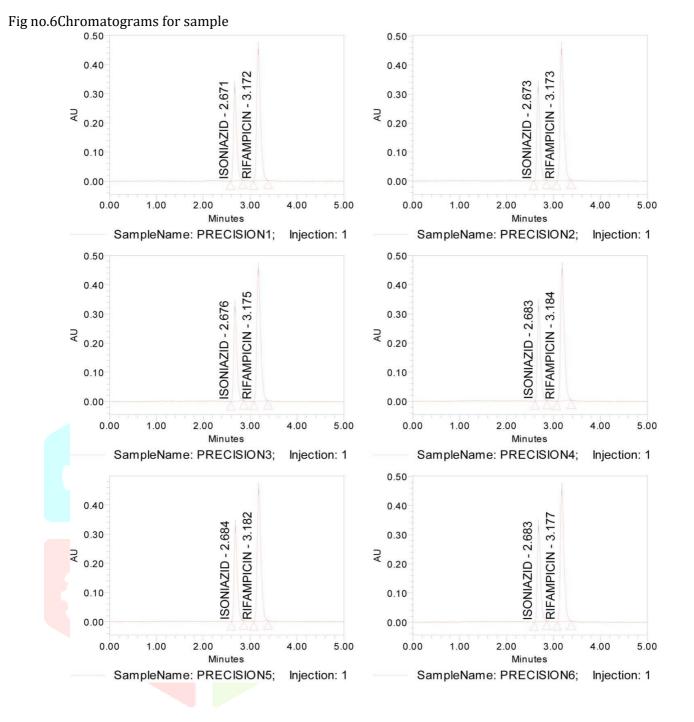
Table no.8

Component Summary Table for ISONIAZID

	Sample Name	Inj	Name	RT Are
1	Blank	1	ISONIAZI	2.600
			D	
2	Placebo	1	ISONIAZI	2.600
			D	

Component Summary Table for RIFAMPICIN

	Sample Name	Inj	Name	RT	Area
1	Blank	1	RIFAMPICIN	3.100	
2	Placebo	1	RIFAMPICIN	3.100	


Precision:

Precision is the measure of the degree of repeatability of analytical method under normal operation and is normally expressed as %RSD for the statistically significant number of samples.

Method Precision:

Six sample preparations were prepared individually using single batch of Isoniazid and Rifampicin tablets (1/32 mg) as per test method and injected each solution. Resulted chromatogram was shown in the fig. no. 6. And data was shown in below table10.

Data for precision (ISONIAZID)

Name: ISONIAZID

	SampleNam e	In	Nam e	RT	Area
1	PRECISION 1	1	ISONIAZID	2 .671	1519920
2	PRECISION 2	1	ISONIAZID	2 .673	1516120
3	PRECISION 3	1	ISONIAZID	2 .676	1511693
4	PRECISION 4	1	ISONIAZID	2 .683	1518392
5	PRECISION 5	1	ISONIAZID	2 .684	1514151
6	PRECISION 6	1	ISONIAZID	2 .683	1511595

Data for precision (RIFAMPICIN)

Name: RIFAMPICIN

	SampleNam e	Inj	Nam e	RT	Area
1	PRECISION 1	1	RIFAMPICIN	3 .172	2525898
2	PRECISION 2	1	RIFAMPICIN	3 .173	2527812
	PRECISION 3	1	RIFAMPICIN	3 .175	2527001
2	PRECISION 4	1	RIFAMPICIN	3 .184	2529333
4	PRECISION 5	1	RIFAMPICIN	3 .182	2520997
6	PRECISION 6	1	RIFAMPICIN	3 .177	2521813

Table no.12 Calculated data for repeatability of Isoniazid andRifampicin

S.No	Sample Weigh t	Sample Area-1	Sample Area- 2	% Ass ay	% Assay
1	902.55	1519920	2525898	100	100
2	902.55	1516120	2527812	99	100
3	902.55	1511693	2527001	99	100
4	902.55	1518392	2529333	99	100
5.	902.55	1514151	2520997	99	100
6	902.55	1511592	2521813	99	100
Average Assay				99	100
STD				0.23	0.13
%RSD				0.23	0.13

Acceptance criteria:

The % RSD of individual Isoniazid and Rifampicintablet from the six units should be not more than 2.0%.

All assay values should be within the 90.0 $\%\,$ - 110.0 $\%\,$ of label claim.

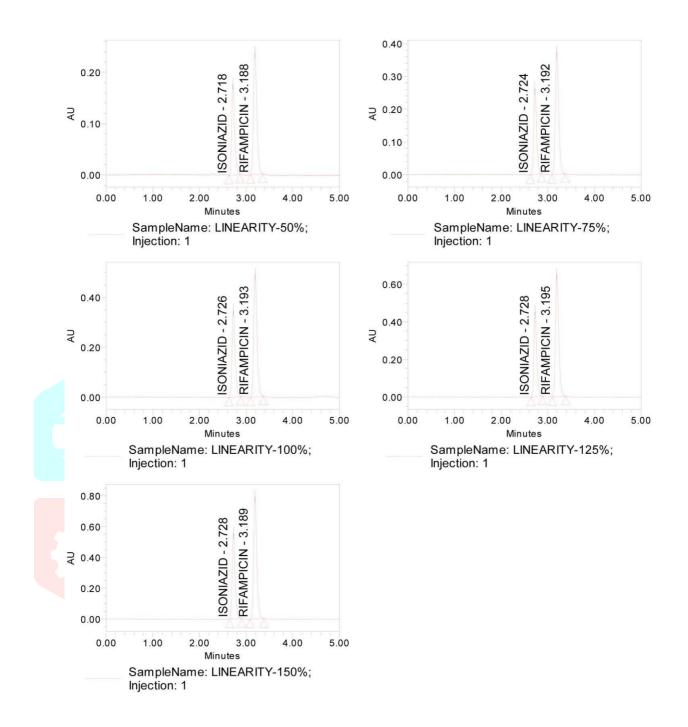
LINEARITY AND RANGE

Linearity

Linearity of an analytical procedure is its ability (within a given range) to obtain test results which are directly proportional to the concentration (amount) of an analyte in the sample.

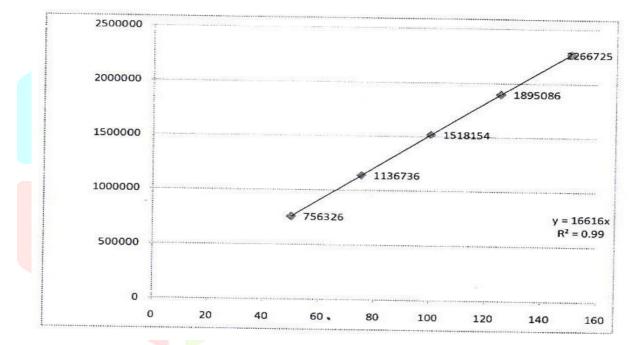
Range

Range of an analytical procedure was the interval between the upper and lower concentration (amount) of an analyte in the sample (including these concentrations) for which it has been demonstrated that the analytical procedure has suitable level of precision, accuracy and linearity.


Standard solutions of Isoniazid and Rifampicin at concentration levels from 50 % to 150 % of standard solution were injected into HPLC system. The linearity graph was plotted from 50 % to 150

Acceptance criteria

- a. The correlation coefficient (r^2) must be NLT0.999.
- b. The RSD of replicate injections for lower and upper level concentrations should not be more than 2.0 %.


Fig no.7Chromatograms for linearity

Data for linearity (ISONIAZID)

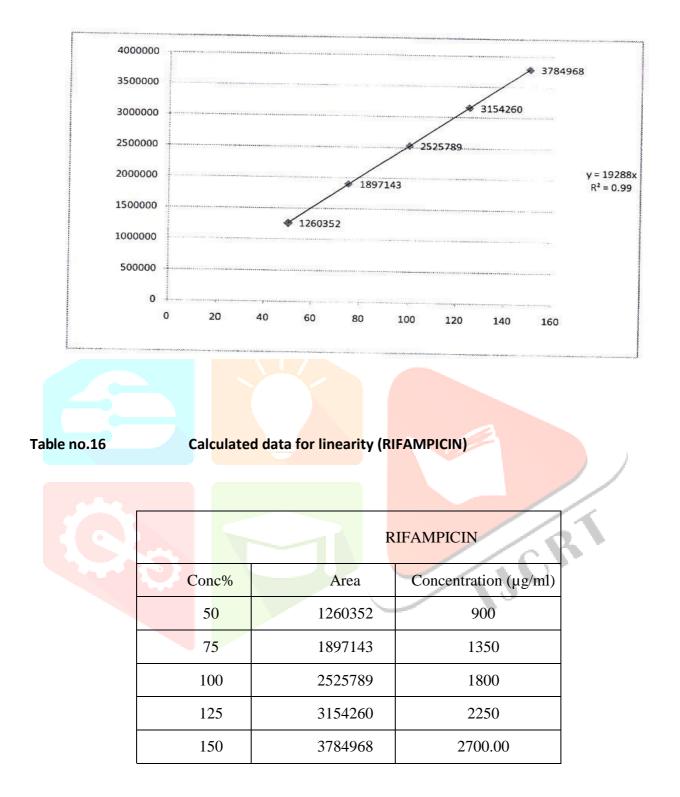
	Sample Nam e	In	Nam e	RT	Area
-	LINEARITY-50%	1	ISONIAZID	2 .718	756326
	LINEARITY-7 5 %	1	ISONIAZID	2 .724	1136736
	LINEARITY-1 00 %	1	ISONIAZID	2 .726	1518154
2	LINEARITY-1 25 %	1	ISONIAZID	2 .728	1895086
4	LINEARITY-1 50 %	1	ISONIAZID	2 .728	2266725

Figno.8 Calibration curve for Isoniazid

IJCRT2304484 International Journal of Creative Research Thoughts (IJCRT) c14

Calculated data for linearity (ISONIAZID)

	ISONIAZID				
Conc%	Area	Concentration (µg/ml)			
50	756326	600			
75	1136736	900.00			
100	1518154	1200.00			
125	1895086	1500			
150	2266725	1800			


Table no.15

Data for linearity (RIFAMPICIN)

Name: **RIFAMPICIN**

	Sa	mple Nam	e	In	ij	Nam e	RT		Area
1	LINE	ARITY-5 () %	1	1	RIFAMPICIN	3 .188	12	260352
2	LINE	ARITY-7 5	5 %	1	1	RIFAMPICIN	3 .192	18	97143
3	LINE	ARITY-1 (00 %	1	1	RIFAMPICIN	3 .193	25	525789
2	LINE.	ARITY-12	25 %	1	1	RIFAMPICIN	3 .195	31	154260
5	LINE	ARITY-1 5	50 %		1	RIFAMPICIN	3 .189	37	784968

Figno.9 Calibration curve for Rifampicin

METHOD ACCURACY

The accuracy of an analytical procedure expresses the closeness of agreement between the values which is accepted either as a conventional true value or an accepted reference value for the observed value.

Fig no.10 Chromatograms for sample of 50% concentration

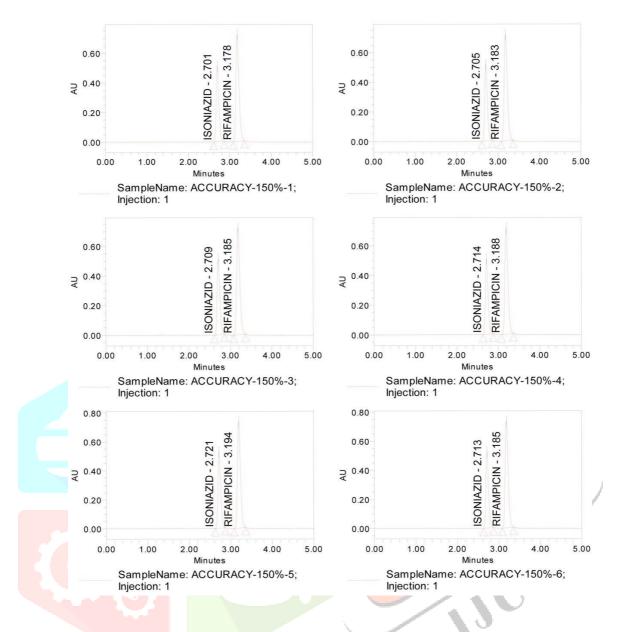
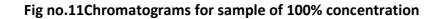
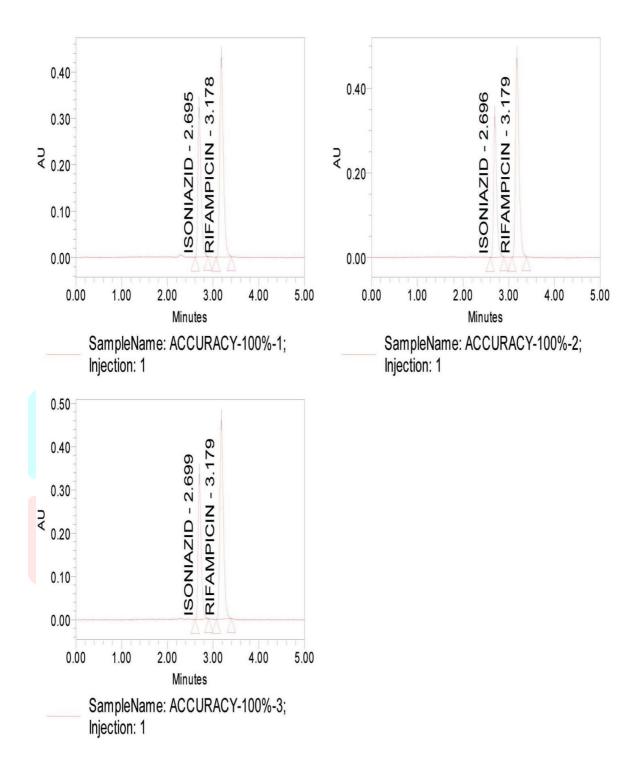


Table no.17

Data for accuracy of 50% concentration of Isoniazid Name: ISONIAZID


	SampleNam e	Inj	Nam e	RT	Area
1	ACCURACY-50%-1	1	ISONIAZID	2 .688	756728
2	ACCURACY-50%-2	1	ISONIAZID	2 .687	756907
3	ACCURACY-50%-3	1	ISONIAZID	2 .687	756975
4	ACCURACY-50%-4	1	ISONIAZID	2 .696	756326
5	ACCURACY-50%-5	1	ISONIAZID	2 .699	756274
6	ACCURACY-50%-6	1	ISONIAZID	2 .695	756141


Data for accuracy of 50% concentration of Rifampicin

Name: **RIFAMPICIN**

	SampleNam e	In	Nam e	RT	Area
1	ACCURACY-5 0 %-1	1	RIFAMPICIN	3 .183	1265170
2	ACCURACY-5 0 %-2	1	RIFAMPICIN	3 .180	1262461
3	ACCURACY-5 0 %-3	1	RIFAMPICIN	3 .178	1261719
4	ACCURACY-50%-4	1	RIFAMPICIN	3 .187	1263056
5	ACCURACY-5 0 %-5	1	RIFAMPICIN	3 .187	1268196
6	ACCURACY-50%-6	1	RIFAMPICIN	3 .182	1262096

Data for accuracy of 100% concentration of soniazid

Name: ISONIAZID

	Sample Name	Inj	Name	RT	Area
1	ACCURACY – 100% -1	1	ISONIAZID	2.695	1512475
2	ACCURACY – 100% -2	1	ISONIAZID	2.696	1518251
3	ACCURACY - 100% -3	1	ISONIAZID	2.699	1512296

Data for accuracy of 100% concentration of Rifampicin

Name: **RIFAMPICIN**

	Sample Name	Inj	Name	RT	Area
1	ACCURACY – 100% -1	1	RIFAMPICIN	3.178	2523741
2	ACCURACY - 100% -2	1	RIFAMPICIN	3.179	2525279
3	ACCURACY - 100% - 3	1	RIFAMPICIN	3.179	2528251

RESULTS AND DISCUSSION

Analytical method development and method validation was performed for RP-HPLC method for the Isoniazid and Rifampicin in tablet formulation as per ICH norms for the following parameters: system suitability, linearity and precision (repeatability), intermediate precision (ruggedness), specificity and accuracy. The summary of results obtained in analytical method development and validation were tabulated in table no.26.

VALIDATION SUMMARY REPORT

The observations and results obtained for each of the parameters like system suitability, linearity, precision (repeatability), specificity, accuracy and robustness lies well within the acceptance criteria. So the developed method was simple, specific, linear, precise, and accurate and robustness could be extensively used for the Isoniazid and Rifampicin in tablet formulation system.

S. No	Validation paramete	rs Specification		Results
		System suitability	Isoniazid	Rifampicin
	Retention time	Not applicable	2.660	3.172
	Tailing	NMT 2	1.469	1.412
1	Resolution	NLT 2		3.697
	Theoretical plates	NLT 2500	7755	7613
	Similarity factor	0-98 to 1.02	0.99	0.99
	%RSD	NMT 2.0%	0.5	0.3
2	Specificity	There is no peak in blank at the Rt of analyte	Nil	Nil
2	Specificity -	There is no peak in placebo at the Rt of analyte	Nil	Nil
			100	100
			99	100
		The value should be between 97%	99	100
		to 103%	99	100
3	Precision		99	100
3	Flecision		99	100
		The %RSD of six replicate assay results NMT 2.0%	0.23	0.13
4	Accuracy (50%)	The value should be between 97%	100	
9		to 103%		101

Table no. 26Validation parameters and acceptance criteria for INH and RIF

	Accuracy (100%)	The value should be between 97%	100	101
	Accuracy (100%)	to 103%	100	101
	$\Lambda_{aauraau}$ (150%)	The value should be between 97%	100	101
	Accuracy (150%)	to 103%	100	101
5	Linearity	Correlation coefficient NLT 0.999	0.998	0.997
6	LOD	Not applicable	2.88 µg/ml	2.77 µg/ml
7	LOQ	Not applicable	9.58 µg/ml	9.22 µg/ml
8	Range	Not applicable	600μg to 1800 μg/ml	900µ g to
				2700 µg/ml
	Ro	bustness(Flow-1)		
	Tailing	NMT 2	1.421	1.378
	Resolution	NMT 2	Nil	3.596
	Theoretical plates	NLT 2500	7399	7386
	Ro	bustness(Flow-2)		
	Tailing	NMT 2	1.398	1.410
	Resolution	NMT 2	Nil	3.578
9	Theoretical plates NLT 2500		7247	7350
7	Ro	bustness(Temp-1)		
	Tailing	NMT 2	1.393	1.374

IJCRT2304484 International Journal of Creative Research Thoughts (IJCRT) c21

Resolution	NMT 2	Nil	3.590
Theoretical plates	NLT 2500	7510	7233
Ro			
Tailing	NMT 2	1.411	1.364
Resolution	NMT 2	Nil	3.601
Theoretical plates	NLT 2500	7515	7300

CONCLUSION

From the results obtained, it was observed that the developed method was proven to be specific, precise, linear, accurate, rugged and robust and is suitable for its intended purpose. So the above work performed gives documented evidence that the analytical method for the Isoniazid and Rifampicin by RP-HPLC in tablet dosage forms will consistently analyze these drugs quantitatively and could be used for routine analysis.

BIBILOGRAPHY

- D. Kealey and P. J. Haines. Analytical Chemistry. 1st edition. New Delhi: Viva Brook Pvt Ltd. 2002;P.1-3.
- 2. Skoog, West holler crouch. Fundamentals of Analytical Chemistry. 8th edition. Australia: Thomason Brooks/Cole. 2004; P.2-4.
- 3. Willard, Merit, Dean, Settle. Instrumental Method of Analysis. 7thedition. New Delhi: CS publishers and distributors. 1986; P. 1, 592,622-628,256-264.
- 4. ICH-Q2A. Validation of Analytical Procedure / Methodology. Geneva, Switzerland: ICH Harmonised Triplicate Guidelines; 1996. P.1-8.
- Code ICH-Q2B. Validation Analytical Procedure / Methodology. Geneva, Switzerland: ICH Harmonized Triplicate Guidelines; 1996. P.1-8.
- Sharma BK. Organic Spectroscopy. 6th edition. New Delhi: GoelPublishing House. 2002; P.75.
- GurdeepChatwal, Sham Anand. Instrumental Methods of Chemical Analysis. 5thedition. New Delhi: Himalaya Publishing House. 2002;P.25-67.
- Sharma B.K. Instrumental Method of Chemical Analysis.18thedition Meerut: Goel Publishing House. 1999; P. 1-23,175-203.

- Jeffery G. H, Denny R. C, Barnes J. D, Thomas M. Vogel's text book of Quantitative Chemical Analysis. 6thedition. Pearson Education. P. 2-7,216-227.
- Hdicostas E, Wendawiak B.W. Koch M. Quality Assurance in Analytical Chemistry Training and Teaching. 1stedition. New Delhi: Springer Pvt Ltd. InternationalSpringer Group. 2004; P.204-219.
- Martindale. The Complete Drug Reference. 3thedition. London: pharmaceutical press. 1999; P.128-523, 1027.
- In Indian Pharmacopeia. 6th edition. Published by The Indian Pharmacopeia Commission Indian Pharmacopeia Laboratory Govt. of India. 2010; Vol - II:1515.
- 13. In Indian Pharmacopeia. 6th edition. Published by The Indian Pharmacopeia Commission Indian Pharmacopeia Laboratory Govt. of India. 2010; Vol III:2054.
- 14. ShahY, Khanna S, Jindal KC. Determination of rifampicin and isoniazid in pharmaceutical formulation by HPLC. Drug Development and Industrial Pharmacy. 1992;18(14):1589-1596.
- 15. Glass BD, Agatonovic KS, Chen YJ, Wisoh MH. Optimization of a stability indicating HPLC method for the simultaneous determination of rifampicin, isoniazid and pyrazinamide in a fixed dose combination using artificial neural networks. J Chromatogr Sci. 2007;45(1):38-44.
- 16. Calleri E, De Lorenzi E, Furlanetto S, Massolini G, Caccialanza G. Validation of a RP-LC method for the simultaneous determination of isoniazid, pyrazinamide and rifampicin in a pharmaceutical formulation. J Pharm and Biomed Ana. 2002; 29(6):1089-96.
- 17. Mohan B, Sharda N and Singh S. Evaluation of the recently reported USP gradient HPLC method for analysis of anti-tuberculosis drugs for its ability to resolve degradation products of rifampicin. J Pharm and Biomed Ana. 2003;31(3):607-612.
- Panchagnula R, Sood A, Sharda N, Kaur K. Determination of rifampicin and itsmain metabolic in plasma and urine in presence of pyrazinamide and isoniazid by HPLC method. J Pharm and Biomed Ana. 1999;18(6):1013-1020.
- 19. Smith PJ. Determination of rifampicin, isoniazid and pyrazinamide by high performance liquid chromatography after their simultaneous extraction from plasma. The International Journal of IJCRT2304484 | International Journal of Creative Research Thoughts (IJCRT) | c23

Tuberculosis and Lung Diseases. 1999; 3(3):S325-S328 (1).

- 20. Khuhawar MY, Rind FM. Liquid chromatographic determination of isoniazid, pyrazinamide and rifampicin from pharmaceutical preparation and blood. J Chromatogr B Analyt Technol Biomed Life Sci. 2002;766(2):357-363.
- 21. Ali J, Ali N, Sultana Y, Baboota S and Faiyaz S. Development and validation of a stability indicating HPTLC method for analysis of antitubercular drugs. Acta Chromatographica. 2007;18:168-179.
- 22. Kakde RB, Kastune AV, Wadodkar SG. Spectrophotometric determination of rifampicin and isoniazid in pharmaceutical preparation, IJPS. 2002;64:24-27.
- 23. Balbao MS, Bertacci C, Bergamaschi MM, Malfana WR, CarvalhopreossiSA,Paula ML.
 Rifampicin determination in plasma by stir bar sorptive extraction and liquid chromatography. J
 Pharm and Biomed Ana. 2010;51(5):1078-1083.

