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Abstract: Information exchange on internet is increased in very high level because of this reason the security risk is also increased 

on the user’s side. Cryptography is used to decrease the risk level. Public and private keys are the base of the Asymmetric 

cryptography. The time required for encryption and decryption improve the capability of information security. The foundation of 

public key cryptographic security therefore relies on this hardness of the RSA algorithm. This is a secure factorization based on 

modern classical cryptographic algorithms. Various techniques are available to find the numerical factors using different 

algorithms. The best-known set of techniques includes probabilistic integer factorization-based cryptography and geometric 

elliptic curve cryptography. Both techniques approach the factorization problem differently by generating at least one factor. 

This paper examines Pollard Rho and Lenstra's algorithm used to decompose integer factorization-based cryptography, 

finds the number factors, and compares the factorization times for different key lengths. The experimental results will be 

beneficial to recognize the impact of computation complexity implicated in factoring process of Pollard Rho as well as Lenstra 

algorithms regarding to time taken in each case. 

 

Index Terms - Pollard Rho, Lenstra’s Algorithm, Result and Discussion. 

I. INTRODUCTION 

 

In today’s internet world, security is very important aspect that ensures our information is available to only authenticate 

receiver and it protects our information from any kind of modifications in the information. For providing this security to our 

information on internet various cryptographic algorithms are used like RSA. RSA is one of the methods based on integer 

factorization. Cryptography is the science-based magical technique of transforming information into an encoded form. It is a very 

necessary aspect for a human being in today’s world. Encryption is a very important aspect for practically doing any online task 

like cloud storage, emails, etc. From the start of the Modern Classical Cryptographic era, the Integer Factorization method has 

been used for encryption. RSA is the most popular integer factorization-based algorithm. It is generally used in the encryption 

process which was designed by Ron Rivest, Adi Shamir, and Leonard Adleman in 1977. [3] In 1985, Elliptic Curve 

Cryptography, a new type of encryption technique, was introduced by Miller and Kolblitz. NIIST implemented this Elliptic Curve 

Cryptography firstly from 161 bits. The security is given by a large key size in RSA Security. The same kind of security is 

achieved with the help of Elliptic Curve Cryptography using a very small key.[1,7] RSA like integer factorization techniques are 

break by using different techniques like Pollard rho integer factorization based algorithmic technique and Lenstra’s Elliptic Curve 

based algorithmic technique.[13] 

Indeed, every classical algorithm that is linked to the RSA and ECC algorithms can still be executed efficiently on a digital 

computer. This means that Lenstra’s Elliptic Curve algorithm – which operates using computers – remains an efficient method for 

calculating long modulus values in this era. 

In this paper, we present the comparative study between the Elliptic Curve-based Lenstra’s algorithm and the Pollard Rho 

algorithm for finding the factors of the number which is the reverse process of the RSA algorithm. 

 

II. METHDOLOGY 

In order to begin to calculate the factoring time of ‘Number’ on the basis of its length by using Pollard Rho algorithm 

and Lenstra’s Elliptic Curve algorithm. Here we consider length of the ‘Number’ in bits that are 8, 16, 32, and 64. For this testing 

process Python Version 3.9.5 is used. These programs are running on a 14-inch Lenovo system, with 8 Gigabytes of memory, 

running OS Windows 10. Excel is used for data tables. 

This research is to essentially examine the time required for ‘Number’ bit length 8, 16, 32 and 64 factored by Pollard rho 

and Lenstra’s Elliptic Curve Algorithm. 
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III. LITERATURE REVIEW 

We are using various techniques to give success to the cryptography implementation concept. Key is the very main aspect of 

cryptography. Two different keys are used in asymmetric key cryptography for both the encryption and decryption process.[6] 

Many methods have been invented by various scientists like Integer factorization, Discrete Logarithms, and Elliptic Curves. On 

the basis of these methods, algorithms like RSA, Elgamal, and ECElgamal are developed. The implementation criteria of these 

algorithms are different. The RSA algorithm is very popular in integer factorization methods. The core concept of RSA is 

hardness of factoring two bigger numbers. The reliability of this algorithm totally depends on the hardness of the number.[8] If 

the public key (e,n) is known and the size of decryption key d is small then it is easy to place attack on RSA algorithm. A Trial 

division method has been initiated, to factorize RSA mod N. Simple arithmetic operations are used to find the factors which are 

closer to √N.[14]The Trial division technique require so much time (in days or months) to factor large numbers that don’t have 

small prime factors. In such, instances other techniques are utilized like quadratic sieve and the General Number Field Sieve 

(GNFS).[15] The Quadratic Sieve is the second fastest technique after GNFS. It is Suitable for numbers less than 100 decimal 

digits or so on.[16] The most structured GNFS classical algorithm is used to factor the numbers larger than 10 100 .[17] Quadratic 

Sieve and General Number Field Sieve algorithms have super polynomial time development a practical limit of ‘N’ digits is 

extended very rapidly. Just because of that in asymmetric key cryptography, values for number are selected to have large prime 

factors of same size in order that they are unable to factor by any publicly well-known technique in a functional time period on 

any accessible computer system such as super computers. By using the GNFS and resources of several supercomputers RSA-250 

has been factored. The execution time was 2700 core years.[15]In 1975 John Pollard was invented Pollard’s Rho algorithm for 

number factorization.[18] It is one of the most popular and used number factorization algorithm. As it’s time complexity is 

corresponding to the square root of the size of the small prime factor and it requires very less amount of space for algorithm 

execution than others.[20]In 1985 Miller and Koblitz presented the utilization of the elliptic curve additive group for creating an 

asymmetric key cryptosystem. In 1988 Lenstra presented elliptic curve arithmetic based Integer Factorization method. General 

Number field sieve technique requires the testing of smoothness proportional to small composite numbers.In this scenario, 

Lenstra elliptic curve technique is the foremost choice for achieving smoothness testing. It is also required the less memory 

space.[19]Discrete logarithm is difficult to compute as compared to RSA because its base is to find the exponent given power in a 

well-known multiplicative group[9]. The Elgamal algorithm is based on this discrete logarithm problem. On other side, the small 

key size is the core point of Elliptic Curve Cryptography. With a small key size, it gives more security in less time.[10]  Pollard 

and Lenstra's algorithms are integer factorization-based and elliptic curve-based algorithms used to find the factors of numbers, 

which is the base of our RSA integer factorization algorithm. Floyd’s cycle-detecting algorithm is the base of Pollard Rho. [12]. 

Lenstra used an elliptic curve method to factorize the number.[5] 

IV. RESULT AND DISCUSSION 

4.1 Pollard Rho Algorithm 

 

The Pollard Rho algorithm is a probabilistic type of algorithm. Its work is based on the consecutive iterations of a random 

quadratic function. For a standard quadratic function, it produces numbers that are decreased modulo the number. Arbitrarily, the 

selected initial number is the main core part of consecutive iterations of this function, which produce a series that establishes 

looping after a certain point. 

The numbers are congruent to each other modulo a factor of the number if two points are in the identical position of the loop. In 

pollard rho algorithm as the loop is actually a subgroup produced by the starting element as the identity and with the random 

function as the group operation. Thus,  if two points are associated with the same class in the subgroup. They are identical to each 

other modulo the order of the subgroup, which divides the order of the whole group, which is the composite number. Subtraction 

gives a multiple of the order of the subgroup and returns the gcd of this and the modulus gives a factor of the modulus.[11] 

Algorithm 

 

 

 

 

 

 

 

 

1. Select any random value of x and c 

2. Select  y = x and f(x) = x2-c 

3. While divisor is not acquired 

i) Update  x to f(x) % n 

ii) Update y to f(y) % n 

iii) Evaluate GCD of x – y and n 

4. If GCD ≠1 

i) If GCD is n, repeat  from step2 with other set of x,y and c 

ii) Else GCD is our answer. 
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Example 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

    4.2 Lenstra’s Elliptic Curve Algorithm 

 

The geometric concept is the basis of Lenstra’s elliptical curve algorithm[4, 5] y2=ax3+b function is the core part of this 

algorithm, which is a function of the arc length of an ellipse.  When applying a multiplication operation on two points, that  is (x1, 

y1) X (x2, y2) = (x3, -y3), where the point (x3, y3) indicates the third point on the line that passes through the points (x1, y1) and 

(x2,y2). Obtain Inverses such as (x, y) X (x, -y) = ∞, where ∞ is the point that all vertical lines intersect and the identity of the 

group [8]. A starting point and successive iterations of the group operation are applied. In the end, some point will be a generator 

of a subgroup, and its order will be a factor of the modulus. The best way to obtain the modulus factor is to take two initial points 

and successively operate on them in increasing numbers, so the kth iteration will have k! iterations of the group operation. Thus, if 

the current term is a generator of a subgroup, the GCD of k! and the modulus will be the order of the elements. 

 

Algorithm 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

N = 493; a = b = 4; k=1 

F(a) = a2 + 1(mod 493) 

        = 42 + 1(mod 493) 

        = 17 mod 493 

        = 17 

F(a) = a2 + 1(mod 493) 

       = (17)2 + 1(mod 493) 

       = 290 mod 493 

       = 290 

F(a) = a2 + 1(mod 493) 

       = (290)2 + 1(mod 493) 

       = 841 mod 493 

       = 348 

Now, Calculate GCD i.e. D 

D = gcd (| 290 – 348 |, 493) 

    = gcd (58, 493) 

= 29 

One factor i.e prime1 = 29 now we find second factor i.e prime2 = 493÷29 = 17 

Therefore, 493 = 29 * 17 

 

 

 

An integerN, we use the following steps to find factors of N. [2] 

1 Examine that N isn’t divisible by 2 or 3, and that n isn’t a perfect power. 

2 Select random integers A, x, y between 1 and N. 

3 Let C = y2 − x3 − Ax (mod N). 

4 Compute T = GCD(4A3 + 27C2; N). 

i) If 1 < T< N, we are done. 

ii) If T = 1, move to Step 5. 

iii) If T = N, go back to Step 2 and pick a different A. 
5 Let E be the Elliptic Curve E: y2= x3 + Ax + C, and let P = (x, y) ∈ E. 

6 Select a number k which is a product of small prime numbers raised to small powers.  

For example, a good selection is k = lcm(2, 3, . . . , C) for some integer C ≈ 100. 

7 Calculate(k * P ) % N. 

8 If k * P lies on E, go back to Step 2 and select different values for A, x, y. Otherwise, Step 7 generates a factor of N. 
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Example 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.3 Observations: 

 

 
 

Fig.1Factoring time: Pollard rho and Lenstra Algorithm Timing Analysis 

Figure. 1, shows that Lenstra’s Algorithm utilized less time during the  15, 21 35 and 55 numbers factorization process than 

Pollard rho algorithm.   
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N = 4453.  

 

The Elliptic Curve E:  y2 = x3 + 10x -2, and point P = (1,3).  

 

C =[ y2 – x3 – 10x] % 4453 

    = [(3)2 – (1)3 -10(1)] % 4453 

    = -2 % 4453 

    = 2 

T = [4A3 + 27B2] % 4453 

   = [4(10)3 + 27(2)2] % 4453 

   = 4108 % 4453 

   = 4108 

G = (2y1) % 4453 

    = 2(3) % 4453 

    = 6 % 4453 

    = 6 

GCD (6,4453) = 1 

Compute 2P = (4332,3230)  

x2= 4332     y2 = 3230 

H = 2y2 * (x2-x1) % 4453 

    = [2(3230) * (4332 -1)] % 4453 

    = [27978260] % 4453 

    = 61 

Since, GCD (61, 4453) = 61 

Therefore, 61 ≠ 1 

So, here we found one factor i.e. 61 

Second factor = 4453 / 61 = 73 

Therefore, 4453 = 61 * 73 
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Fig2. Factoring time: Pollard rho and Lenstra’s Algorithm with increasing number size Timing Analysis 

Figure. 2, shows that Lenstra’s Algorithm utilized less time during the number factorization process of different key lengths 

than the Pollard rho algorithm. 

 

 

V. CONCLUSIONS 

Pollard-Rho is a probabilistic algorithm, so the limitation of this algorithm is that every time it is not possible to find the factor in 

the first run. Lenstra’s algorithm is very difficult to implement because it is a geometric method-based algorithm. The major 

drawback of Lenstra algorithm is that we don’t know which elliptic curve will create a factorization for mod number. Factoring 

time using Lenstra’s Elliptic Curve Cryptographic algorithm takes less time to compute compared to Pollard rho algorithm.The 

experimental outcomes show that Lenstra’s Elliptic Curve algorithm can complete the task faster than Pollard rho algorithm for 

all cases. Furthermore, the computation time is reduced by 51 to 68 percent. 
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