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ABSTRACT: The design addressed the study of beams and thin plates subjected to plane stress adopting the meshless approach, 

ELEMENT FREE GALERKIN. This involves a detailed study of the Element Free Galerkin Method consisting of its expression, 

mode of application, its advantages and disadvantages along with a brief study of the analysis of thin plates and beams. The presently 

developed EFG technique is a truly meshless technique, as it doesn't bear the mesh, either for the construction of the shape functions, 

or for the integration of the original weak form. To properly understand the reason and functioning of the technique, a MATLAB 

software was created to analyse a Timoshenko Beam Problem utilising EFGM. Several cases of plane stress were considered in the 

design similar as beams subordinated to point loads and slightly distributed loads, and plates with varying shapes and boundary 

conditions using MFree2D simulation package. The major points of this design were twofold. first, to test the delicacy of the 

Element Free Galerkin Method by comparing it to accurate theoretical values, and second, to solve some common issues related to 

plates by the Element Free Galerkin Method. 
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1. INTRODUCTION 

 

The finite element technique is a numerical approach for solving problems in engineering and mathematical physics. Analysis 

of FEM Is used to commonly in now a days Typical problems area of interest in engineering and mathematical physics that are 

solvable by use of the Structure analysis, fluid flow, mass transfer, and electromagnetic potential are all examples of element 

methods. 

For problem involving complicated geometries, loading, and material properties, it is generally not possible to obtain analyt ical 

mathematical solutions. Analytical solutions are those that are provided by a mathematical equation that provides the values of the 

required unknown quantities at any place in the body (whole structure) and so are acceptable for an unlimited number of body 

locations Mesh free methods use distinct points known as nodes on the problem domain and the boundary to define the problem. 

These analytical solutions often need the solution of ordinary or partial differential equations, which are frequently achievable 

because to the complicated geometries, loads, and material characteristics. Hence, we need to rely on numerical methods, such as 

the FEM for acceptable solution these numerical methods yielding approximately values of unknown at discrete numbers of points 

in the continuum.  

Hence this process of modelling a body by dividing it into an equivalent system of smaller bodies or units interconnected at 

points common to two or more elements (nodal points) and boundary lines and surfaces is called discretization. The solution for 

structural problems typically refers to determining the displacement at each node and the stresses within each element making up 

the structure that is subjected to applied loads. This technique has been used with great accuracy for determination of various 

parameters of important in the system of consideration. But the complexity of the problem statement increases, the accuracy of the 

FEM becomes an issue. Since this methos requires the presence of a predefine mesh for proper analysis to be carried, modelling of 

structure with complicated geometries requires a very fine mesh arrangement or some times more than one mesh thus increasing 

the time, load and cost of the computation. As a result, there is a need to look for different computational approaches that may 

produce higher accuracy in less time. A lot of effort has been done to develop mesh free methods of analysis as an alternative to 

FEM. In meshless methods, the problem domain and boundary are defined by separate points called nodes.  

The Element Free Galerkin Method was developed by Belytschko in 1994, it is based on the Diffuse Element Method (Nayroles 

1992). 

The EFG method's main characteristics include: 

 Moving least square method is used to create shape function  

 Galerkin weak form cretes discretized equations. 

 A background mesh is created to carry out integration to obtained the system matrices  

The following numerical techniques are often thought to belong to the broad category of "meshfree" methods. 
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1. Element free galerkin method  

2. Finite pointing method  

3. Generalized finite difference method 

4. Mesh free moving kriging interpolation method 

5. Natural element method 

The Element Free Galerkin Method's salient characteristics include 

 Moving least squares (MLS) approximation is employed for the construction of the shape functions. 

 Galerkin weak form with constrains is employed to develop the discrete system equations. 

Background cells are required to perform the numerical integration or computing system matrices. 

 

2. REVIEW OF LITERATURE 

 

Meshless approaches have clear advantages in adaptive processes as well. For the most of meshfree algorithms, there exist a 
priori error estimates. This allows the definition of adaptive refinement processes as in finite element computations: an a 
posteriori error estimate is computed and the solution is improved by adding nodes/particles where needed or increasing the 
order of the approximation until the error becomes acceptable. Meshless approaches have clear advantages in adaptive processes 
as well. For the most of meshfree algorithms, there exist a priori error estimates. This makes it possible to define adaptive 
refinement processes similar to those used in finite element calculations, where an a posteriori error estimate is computed and 
the solution is improved by including more nodes or particles where required or raising the order of the approximation until the 
error is acceptable. Meshfree techniques were developed more than 25 years ago, but only recently have they attracted a lot of 
attention. This method, known as a galerkin, may be thought of as a subset of moving least-squares (MLS) approximations.  

Lancaster has a thorough overview of MLS approximants (1981). Evidently, Nayroles et al. (1992) used moving least square 
approximations for the first time in the diffuse element approach was created using Galerkin weak form (DEM). The approach 
was improved and expanded to include discontinuous approximations by Belytschko et al. (1994), who dubbed it element-free 
Galerkin (EFG). Book of “Mesh Free Methods: Going Beyond the Finite Element Method”, G.R. Liu provides a detailed explanation 
of the EFG approach. There are several numerical examples used to demonstrate convergence studies and the impact of variables 
like the number of nodes, quadrature points, support size domains, etc. Moreover, G.R. Liu and Y.T. Gu produced a source code 
for FORTRAN that was used to analyse the EFG Method, and their book "An Introduction to Mesh Free Techniques and their 
Programming"[4] published the code. Source codes for were also produced by J. Dolbow and T. Belytschko[5]. their article "An 
introduction to programming the mesh-less Element Free Galerkin Method," which describes the EFG technique. The technique 
and flowchart for programming the EFGM for both 1D and 2D problem domains were thoroughly documented in the study. The 
paper really clearly explains the method and the theory that behind it. The MATLAB source codes for the same are also provided 
in addition to this. A uniform node distribution and a Gaussian quadrature order of 4 are assumed in order to simplify the problem. 

 
3. MESHFREE METHODS BASED ON THE MOVING LEAST SQUARES APPROXIMATION 

 

Using moving least squares approximation, meshless approaches the original creator of the moving least squares (MLS) 

approximation was 

working on surface construction and data fitting (Lancaster and Salkauskas, 1981).   As the MLS may offer a continuous 

approximation for a field function across the entire issue domain, it was essential for the creation of numerous MFree weak-form 

approaches. It is currently commonly used for creating MFree form functions in many different sorts of MFree techniques.  

 

3.1 Formulation of MLS shape functions 

 

The following approximate function in the form of series as: 

(𝑢)ℎ(𝑥) = ∑ 𝑝𝑚
𝑗=1 j (x) aj (x) = pT a (x) 

a(x) is the vector of coefficients given by where m is the number of monomials (polynomial basis)  

aT (x) = {a0 (x) a1 (x)………………. am (x)} 

It is important to notice that a(x) is an arbitrary function of x. The estimated values of the field function and the nodal parameters 

u1=u(x1) are then used to generate a functional of weighted residual  

J=∑ 𝑤𝑛
𝑖=1 (x-x1) [u

h (x-x1) (x1)]
2 

J=∑ 𝑤𝑛
𝑖=1 (x-x1) [p

T (x1) a(x)-u1]
2 

Were w(x-x1) is weight function the sufficient nodes are used 
𝜕𝐽

𝜕𝑎
= 0 

This results in the coefficient vector being expressed as follows: 

a(x) = A-1 (x)B(x)us 

where A is the MLS moment matrix denoted by 

A(x) = ∑ 𝑤𝑚
𝑖=1 (x)pT (x1) p(x1) 

where w(x) = w(x−x1) and B(x) has  

                      uh (x) = ∑ Φ(x)n
i=1 u1 

Φ(x) is MLS shape function  

Φ(x) = ∑ 𝑝𝑚
𝑖=1 I (x)A-1(x)B(x)jiui = pT A-1 B1 

This brings us to another key moment about applying the essential boundary conditions to the weak form, because we cannot apply 

boundary conditions directly to u1. As a result, we use Lagrange multipliers to enforce the necessary boundary condition. 
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3.2 Formulation of EFG 

 

The system's partial differential equations and boundary conditions (2D issue) may be expressed as 

LTσ+b = 0 

Boundary conditions are given by 

U = u͞    on Γt 

L= divergent operator 

L = 

[
 
 
 
 

𝜕

𝜕𝑥
0

0
𝜕

𝜕𝑥
𝜕

𝜕𝑥

𝜕

𝜕𝑥]
 
 
 
 

 

 

 
Above equation can be written as 

 
 

4. STATISTICAL ANALYIS AND DISCUSSIONS 

 

A MATLAB programme for linear static was created as a first test to understand the EFG approach. Timoshenko 

and Goodier developed this solution. 

Consider a beam of length L=100mm and depth D=36mm subjected to a traction force F=1000KN at free end the 

beam subjected to completely in elastic nature, as illustrated in Figure 1 

 
Figure 1 Timoshenko beam problem 

The exact solution of the Timoshenko beam is given by the following equations, given by Timoshenko and Goodier 

 
The solution of the stresses obtained by the EFG program created in MATLAB is shown in the following pages. The error of the 

EFGM technique is presented as a percentage error as well as a global energy error. 

The below table 1 shows result of EFGM for first 30 quadrature points 
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Table 1 Result of EFGM 

 

NODE NUMBER STRESS(XX) N/mm2 STRESS(YY) N/mm2 STRESS(XY) N/mm2 

1 391.0747 -4.1317 0.7889 

2 378.1780 -2.9634 -11.3414 

3 357.6244 -2.1966 -25.7798 

4 340.2911 -1.8312 -36.0242 

5 387.9402 -2.1914 -0.2942 

6 374.0728 -1.8346 -11.6402 

7 353.3518 -1.7335 -25.5455 

8 336.2587 -1.6839 -35.6780 

9 382.4394 -0.8510 -1.3763 

10 367.6004 -1.1212 -11.9967 

11 346.8371 -1.4734 -25.3917 

12 330.185 -1.6013 -35.32010 

13 378.2045 -0.2871 -2.0884 

14 362.6185 -0.8413 -12.3280 

15 341.6608 -1.3989 -25.4682 

16 325.1980 -1.6028 -35.2725 

17 330.6604 -1.4330 -41.5631 

18 311.9606 -0.7696 -51.5186 

19 286.9381 -0.9345 -62.2734 

20 267.9847 -0.8021 -69.8860 

21 326.8750 -1.4009 -51.2087 

22 308.6971 -0.8512 -62.1940 

23 284.1575 -1.0187 -69.9980 

24 265.3647 -0.9134 -40.7892 

25 321.1214 -1.3983 -50.8137 

26 303.6470 -0.9016 -61.9282 

27 279.8461 -1.0703 -69.8748 

28 261.4137 -1.0113 -40.7034 

29 316.3157 -1.4279 -50.6846 

30 299.2659 -0.9566 -61.8054 

 

 

Figure 2 Variation of σxx with quadrature points 
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Figure 3 Variation of σxy with quadrature points 

 

The following figures display the changes in direct stress (σxx) and shear stress (σxy) with quadrature points. For the purpose of 

computing the field parameters, arbitrary points called quadrature points are selected from the plate domain. In this example, 3200 

quadrature points were selected. It must be remembered that the obtained values of the stresses depend on where the point is on the 

plate domain. Even if both points are equally distance from the fixed point, it is obvious that the stress will be compressive (negative) 

if the point is placed below the neutral axis and tensile (positive) if it is positioned above the neutral axis. 

By determining the percentage error or by evaluating the global strain energy error enorm, the mistake in the EFG Method may 

be determined in two different ways. We can determine the enorm value to determine how quickly the technique will converge. The 

statistics below demonstrate how the total number of nodes affects the value of error calculated using both techniques.  

 

Table 2 Convergence table for EFG method 

 

 

Number      of 

nodes 

σxx                  

(N/ mm2) 

(EFG) 

σxx        

(N/ mm2) 

(Exact) 

σyy          

(N/ mm2) 

(EFG) 

σyy             

(N/ mm2) 

(EFG) 

σxy              

(N/ mm2) 

(EFG) 

σxy                  

(N/ mm2) 

(EFG) 

 

231 

 

-1.6611 

 

-1.5849 

 

0.0339 

 

0 

 

-1.2234 

 

-1.1492 

 

1071 

 

-0.6322 

 

-0.6384 

 

0.0094 

 

0 

 

-0.5782 

 

-0.5766 

 

Table 3 Error values for different number of nodes 

 

Number of Nodes Error 

enorm 

Percentage 

error in σxx 

Percentage 

error in σyy 

Percentage 

error in σxy 

231 0.0074 4.8% ------------ 6.4% 

1071 0.0034 0.97% ------------ 0.27% 

 

It is obvious that the EFG approach is not particularly accurate for low numbers of nodes, but accuracy increases significant ly 

as the number of nodes increases. Also, it should be noted that when the number of nodes increases, the calculation time does not 

change significantly. 

 

4.1 Cantilever Beam with Uniformly Distributed Load 

 

Length of cantilever beam is 2m and depth is 0.5m, subjected to a traction force of 1KN. The elastic behaviour of beam is assumed 

and young’s modulus is 3x107N/m2. 

 

Figure 4 Cantilever beam with udl  
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The beam was manually analysed, and the stresses from the EFG approach were calculated using MFree2D. There is a 

comparison of the precise and obtained stresses. Two portions were evaluated in the domain analysis. 

Section 1-1 at x=0m and Section 2-2 at x=1m 

 

Table 4 Comparison of stresses obtained by EFG method and exact analysis 

 

Sect. 

No. 

σxx (N/mm2)      

EFG Method 

σxx (N/mm2)         

Exact Analysis 

Percentage Error 

1-1 49850 48000 3.85% 

2-2 11600 12000 3.33% 

 

 

Figure 5 Displacement field vector 

 

Figure 6 σXX Field vector 

 

 

Figure 7 Shear stress field vector 
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It is discovered that the fluctuation of field parameters is comparable to the prior example. This is to be expected given that the 

test parameters are nearly identical, with the main difference being the existence of a distributed load rather than a single load. The 

shear stress field parameter increases as one moves away from the fixed end. This is due to the fact that the effective load acting is 

proportional to the distance from the fixed end. The variations of σxx and σxy for both of the preceding sections are displayed on 

the next pages. 

Graphs for section 1-1 

 

Figure 8 Plot for stress at section 1-1 

 
Figure 9 Plot for shear stress at 1-1 

Graphs for section 2-2 

 
Figure 10 σXX at section 2-2 

 
Figure 11 σXY at section 2-2 
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4.2 Square plate with one edge fixed and subject to udl 

 

A thin 2m square plate is subjected to a distributed load of 1000N/m in the x direction. It is fixed on the opposite side of the 

force's action. All other sides are unrestricted. The material is considered to be entirely elastic, with a Young's Modulus of 3x107 

N/m2. 

 

Figure 12 Square plate with one edge fixed and subject to udl 

 

Timoshenko and Goodier [16] describe an analytical model of stresses on an infinite plate. Normal traction (Nx) is applied in 

the direction ox. The perforated plate's stress distributions (and) are described by 

 
PLANE42 elastic elements with nodes and u.d.l are used in the FEM simulation with ANSYS software [17]. Modelling approach 

using EFG employs the generation ANSYS points in its methods for a fair distribution of points (Figure 12) 

This problem has not been thoroughly investigated. The problem's main purpose is to demonstrate the use of the EFG technique 

in the computation of several field parameters, particularly stress (xx and xy) and displacement. The plate problem is a relatively 

common one, and it was chosen to make understanding and interpretation of the results as simple as possible. Plots of the field 

parameters are displayed, as well as variations of these values along two section lines is shown. 

Sections taken:  

Section 1-1 x=0 (along fixed end) and Section 2-2 (along the diagonal) 

 
 

Figure 13 Displacement vector 

 
 

Figure 14 Field vector σxx 
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Figure 14 Field vector σxy 

 

The field vector displacement illustrates that nodes closest to the fixed end are displaced less than nodes further away. The 

shifted placement of the nodes demonstrates the influence of the imparted force on the plate domain once again. The field vector 

σxx indicates that uniform stress is applied to the whole plate domain (997.4 N/m2 to 1033.6N/m2). The stress is highest in the 

plate's corners at the fixed end (1178.3 N/m2). The field vector σxy is comparable to that of σxx, except that the shear is highest 

towards the fixed end and uniform throughout the plate. The graphs located on the following page illustrate the fluctuation of these 

parameters at the pre-defined sections.  

 

Graph For Section 1-1 

 

Figure 15 σXX at section 1-1 

 
Figure 15 σXY at section 1-1 
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Graphs for section 2-2 

 
Figure 16 σXX for section 2-2 

 

 
Figure 17 σXY at section 2-2 

 

The displacement and stress in the plate have been accurately simulated by the Meshfree algorithm. The numerical results 

achieved with the EFG approach may be considered good and are nearly identical to the Analytics solution. 

 

5. CONCLUSION 

 

The mesh-free Element Free Galerkin technique is used to analyse a variety of structures or problem domains. A complete study 

of the approach showed that it is not entirely mesh-free since it uses a background mesh for integration. 

The purpose of the first three numerical discussed was to show the EFGM's precision. The MFree2D software tool was used to 

solve the remaining numerical problems (including the final four) and to write the EFG analysis for the first technique. The findings 

reached were as follows. 

 The number of nodes directly affects the EFGM's accuracy. The accuracy of the EFGM automatically improves with an increase 

in node count. 

 Similar to this, we may increase the quadrature points while using the same number of nodes to reduce the error value. The 

backdrop mesh may be modified to achieve this. As the mesh is not predetermined, it may be improved without changing the 

domain. As a result, the overall computation time is unaffected. 

Hence, the EFGM proves to be a very accurate analytical approach for elasto-statics with the right selection of the number of 

nodes and the quadrature points. 

It is clear from the information above that the Element Free Galerkin approach may be used to precisely and effectively analyse 

2D objects with a variety of geometries and loads. 
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