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ABSTRACT 

 In the present paper we have determined the conditions under which a geodesic of a Finsler space 𝐹𝑛 =

(𝑀𝑛, 𝐿) is also a geodesic of Finsler space �̅�𝑛 = (𝑀𝑛, �̅�) and vice versa underlying with the same manifold 𝑀𝑛, 

where �̅� = 𝑓(𝐿, 𝛽) is a positively homogeneous function of degree one in 𝐿 and 𝛽, 𝛽(𝑥, 𝑦)= 𝑣𝑖(𝑥, 𝑦)𝑦
𝑖, 𝑣𝑖(𝑥, 𝑦) is 

an h-vector in𝐹𝑛 = (𝑀𝑛, 𝐿). 

Keywords: Finsler space, (𝛼, 𝛽)-metric,h-vector, Berwald connection, Cartan connection, 𝛽-change, Rander's 

change, Projective change. 

1. INTRODUCTION 

 Let 𝐹𝑛 = (𝑀𝑛, 𝐿) be a Finsler space,𝑀𝑛 an n-dimensional differentiable manifold and L(x,y) is the metric 

function. A geodesic on 𝐹𝑛 = (𝑀𝑛, 𝐿) which is an extremal of the length integral, is given by the system of 

differential equation ([8], [9])  

𝑑𝑦𝑖|𝑑𝑡 + 2𝐺𝑖(𝑥, 𝑦) = 𝜏𝑦𝑖, (1.1) 

where𝑦𝑖 = 𝑑𝑥𝑖|𝑑𝑡,𝜏 = (𝑑2𝑠|𝑑𝑡2)|(𝑑𝑠|𝑑𝑡) and 𝐺𝑖(𝑥, 𝑦) = 𝛾𝑗𝑘
𝑖 (𝑥, 𝑦)𝑦𝑗𝑦𝑘are (2)  

p-homogeneous function in 𝑦𝑖, 𝛾𝑗𝑘
𝑖 =

1

2
𝑔𝑖𝑟(𝜕𝑗𝑔𝑘𝑟 + 𝜕𝑘𝑔𝑗𝑟 − 𝜕𝑟𝑔𝑗𝑘), 𝜕𝑗 = 𝜕|𝜕𝑥

𝑗  

 Let 𝐺   𝑗
𝑖 = �̇�𝑗𝐺

𝑖 , 𝐺𝑘   𝑗
  𝑖 = �̇�𝑘𝐺   𝑗

𝑖 , �̇�𝑘 = 𝜕|𝜕𝑦
𝑘. 

The connection coefficients of Berwald connection BΓ are (𝐺𝑘  𝑗
𝑖 , 𝐺  𝑗

𝑖 , 0). The h- and v-covariant derivatives of a 

contravariant vector field 𝑋𝑖 with respect to BΓ are given by ([8])  

𝑋; 𝑗
𝑖 = ∂𝑗𝑋

𝑖 − 𝐺     𝑗
𝑚 (�̇�𝑚𝑋

𝑖) + 𝑋𝑚𝐺𝑚  𝑗
  𝑖  (1.2) 

      𝑋.   𝑗
𝑖 = �̇�𝑗𝑋

𝑖                           (1.3) 

BΓ is neither h-metrical nor v-metrical since 𝑔𝑖𝑗;𝑘 = −2𝐶𝑖𝑗𝑘|0 and 𝑔𝑖𝑗.𝑘 = 2𝐶𝑖𝑗𝑘 in terms of the Cartan connection 

CΓ. 
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 The Ricci identities with respect to BΓare given by ([8]) 

𝑋;𝑗; 𝑘
𝑖 − 𝑋;𝑘;𝑗

𝑖 = 𝑋ℎ𝐻ℎ  𝑗𝑘
   𝑖 − 𝑋.  ℎ

𝑖  𝑅𝑗𝑘
ℎ  (1.4) 

𝑋;𝑗.𝑘
𝑖 − 𝑋.𝑘;𝑗

𝑖 = 𝑋ℎ𝐺ℎ  𝑗𝑘
   𝑖  (1.5) 

𝑋.𝑗.𝑘
𝑖 − 𝑋.𝑘.𝑗

𝑖 = 0 (1.6) 

 The tensors 𝐻ℎ  𝑗𝑘
   𝑖  and 𝐺ℎ  𝑗𝑘

   𝑖  are called the h- and h v- curvature tensors respectively and 𝑅  𝑗𝑘
 ℎ is the v(h) – 

torsion tensor of BΓ. In terms of the coefficients (𝐺𝑗  𝑘,
 𝑖 𝐺   𝑗

𝑖 ,0) these tensors are written as. ([8]) 

𝑅   𝑗𝑘
ℎ = 𝑄(𝑗𝑘)(𝜕𝑘𝐺   𝑗

ℎ − 𝐺𝑗  𝑚
 ℎ  𝐺   𝑘

𝑚 ) (1.7) 

𝐻ℎ  𝑗𝑘
𝑖 = 𝑄(𝑗𝑘){𝜕𝑘𝐺ℎ  𝑗

  𝑖 −  𝐺   𝑘
𝑚 (�̇�𝑚𝐺ℎ  𝑗

  𝑖 ) + 𝐺ℎ  𝑗
 𝑚  𝐺𝑚  𝑘

   𝑖 } (1.8) 

 𝐺ℎ  𝑗𝑘
  𝑖 = �̇�ℎ 𝐺𝑗  𝑘

𝑖 . 

 Throughout the paper, we shall use the notations 

𝑄(𝑖𝑗)(𝑋𝑖𝑚𝑌𝑗𝑘
𝑚) = 𝑋𝑖𝑚𝑌𝑗𝑘

𝑚 − 𝑋𝑗𝑘𝑚𝑌𝑖𝑘
𝑚 

and 𝐴(𝑖,𝑗,𝑘)(𝑋
𝑖𝑌𝑗𝑘) = (𝑋𝑖𝑌𝑗𝑘 + 𝑋

𝑗𝑌𝑘𝑖 + 𝑋
𝑘𝑌𝑖𝑗) 

Here 𝐺ℎ  𝑗𝑘
   𝑖  is symmetric in subscripts and𝐺ℎ  𝑗0

   𝑖  where '0' denotes the contraction with respect to the supporting 

element 𝑦𝑘 throughout this paper. 

 Matsumoto [7] has introduced the metric  

"L(𝑥, 𝑦) = L(𝑥, 𝑦) + 𝛽 (𝑥, 𝑦),   (1.9) 

𝛽 (𝑥, 𝑦) = 𝑣𝑖(𝑥)𝑦
𝑖 

Hashiguchi and Ichijyo [3] called it a Rander's change. 

The change 

′L (𝑥, 𝑦) = 𝐿2(𝑥, 𝑦) |𝛽 (𝑥, 𝑦)  (1.10) 

is called a Kropina change ([11])  

 Shibata ([13]) has introduced a 𝛽-change by  

*L = 𝑓(L, 𝛽),   (1.11) 

𝛽 = 𝑣𝑖(𝑥)𝑦
𝑖 and f is a positively homogeneous function of degree one in L and 𝛽. If L is a Riemannian metric, 

then *L = 𝑓(𝛼, 𝛽) becomes (𝛼, 𝛽) metric. Many authors ([2], [4], [5], [10], [12], [14]) studied the properties of this 

metric with different physical and mathematical aspects. In all these works, 𝑣𝑖(𝑥) are assumed to be a function of 

coordinates only.  

 During the study of conformal transformation of Finsler space, Izumi ([6]) introduced an h-vector which is 

defined by 𝑣𝑖|𝑗 = 0, L𝐶𝑖  𝑗
 ℎ 𝑣ℎ = 𝐾ℎ𝑖𝑗 , 𝐾 =

𝐿 𝐶𝑖𝑣𝑖

(𝑛−1)
, 𝐶𝑖𝑗

ℎ = 𝑔ℎ𝑘𝐶𝑖𝑗𝑘, 𝐶𝑖𝑗𝑘 =
1

2
�̇�𝑘𝑔𝑖𝑗is Cartan's  C-tensor, 𝐶𝑖 =
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𝑔𝑗𝑘𝐶𝑗𝑘
𝑖 , ℎ𝑖𝑗 = 𝐿(𝜕

2𝐿|𝜕𝑦𝑖𝜕𝑦𝑗)is the angular metric tensor, 𝑣𝑖|𝑗 is the v-covariant derivative with respect to the 

Cartan connection CΓ (𝐹𝑗𝑘
𝑖 , 𝑁𝑘

𝑖 , 𝐶𝑗𝑘
𝑖 ), [9] 

𝑣𝑖|𝑗 = �̇�𝑗𝑣𝑖 − 𝑣𝑚𝐶𝑖   𝑗
 𝑚  

Thus the h-vector 𝑣𝑖(𝑥, 𝑦) is not only a function of coordinates but it is also a function of directional argument 

satisfying �̇�𝑗𝑣𝑖 = (𝐾|𝐿)ℎ𝑖𝑗 . 

 Singh and Srivastava  ([15]) studied the properties of Finsler space with a change. 

�̅� = 𝑓(𝐿, 𝛽).  (1.12) 

where 𝛽(𝑥, 𝑦) = 𝑣𝑖(𝑥, 𝑦)𝑦
𝑖, 𝑣𝑖(𝑥, 𝑦) is an h-vector in 𝐹𝑛. We shall call this change ([1.12]) a generalized 𝛽-change 

by an h-vector. 

 In the present paper, we shall determine the conditions under which a geodesic of a Finsler space 𝐹𝑛 =

(𝑀𝑛, 𝐿)is also geodesic of the Finsler space �̅�𝑛 = (𝑀𝑛, �̅�) 

2. THE FINSLER SPACE �̅�𝑛 = (𝑀𝑛, �̅�) 

 Let 𝐹𝑛 = (𝑀𝑛, 𝐿) and �̅�𝑛 = (𝑀𝑛, �̅�) be the Finsler spaces defined on the same manifold Mn, where L is 

obtained by a change 

�̅� = 𝑓(𝐿, 𝛽).  (2.1) 

𝛽(x, y) = 𝑣𝑗(𝑥, 𝑦)𝑦𝑗, 𝑣𝑗(𝑥, 𝑦) is an h-vector in 𝐹𝑛 = (𝑀𝑛, 𝐿) and 𝑓(𝐿, 𝛽) is a positively homogeneous function of 

degree one in L and 𝛽.  

 The terminology and notations are referred to Matsumoto's book ([9]) unless otherwise stated.  

 The quantities of Finsler spaces �̅�𝑛are denoted by barred symbols. 

 If 𝑙𝑖, 𝑔𝑖𝑗,ℎ𝑖𝑗 and 𝐶𝑖𝑗𝑘 denote the normalized element of support, the metric tensor, the angular metric tensor 

and Cartan’s C-tensor of 𝐹𝑛 respectively, then these quantities of �̅�𝑛 = (𝑀𝑛, �̅�) are given by ([15]) 

𝑙�̅� = 𝑓1𝑙𝑖 + 𝑓2𝑣𝑖 (2.2) 

ℎ̅𝑖𝑗 = 𝑞
′ℎ𝑖𝑗 + 𝑟0𝑚𝑖𝑚𝑗  (2.3) 

�̅�𝑖𝑗 = 𝑞′𝑔𝑖𝑗 + 𝑞0𝑣𝑖𝑣𝑗 + 𝑞−1(𝑣𝑖𝑦𝑗 + 𝑣𝑗𝑦𝑖) + 𝑞−2
′ 𝑣𝑖𝑣𝑗  (2.4) 

𝐶�̅�𝑗𝑘 = 𝑞
′𝐶𝑖𝑗𝑘 + 𝑞−1

′ (ℎ𝑖𝑗𝑚𝑘 + ℎ𝑗𝑘𝑚𝑖 + ℎ𝑘𝑖𝑚𝑗) + 𝑞02𝑚𝑖𝑚𝑗𝑚𝑘|2 (2.5) 

where we put 𝑓1 = 𝜕𝑓|𝜕𝐿,  𝑓2 = 𝜕𝑓|𝜕𝛽, 𝑓11 = 𝜕
2𝑓|𝜕𝐿𝜕𝐿, 𝑓12 = 𝜕

2𝑓|𝜕𝐿𝜕𝛽 𝑒𝑡𝑐,  

�̇�𝑖 = 𝜕|𝜕𝑦𝑖, 𝜕𝑖 = 𝜕|𝜕𝑥𝑖 
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(2.6)

{
 
 
 

 
 
 

𝑞 = 𝑓𝑓1|𝐿, 𝑟 = 𝑓𝑓2,  𝑟0 = 𝑓𝑓22
𝑓 = 𝑓1𝐿 + 𝑓2𝛽, 𝐿𝑓12 + 𝛽𝑓22 = 0, 𝐿𝑓11 + 𝛽𝑓12 = 0,

𝑞0 = 𝑟0 + 𝑓2
2,  𝑟−1 = 𝑓𝑓12|𝐿,       𝑞−1 = 𝑟−1 + 𝑞𝑓2|𝑓 

 𝑟−2 = 𝑓(𝑓11 − 𝑓1|𝐿)|𝐿
2,         𝑞−2 = 𝑟−2 + 𝑞

2|𝑓2

𝑞′ = 𝑓(𝑓1 + 𝐾𝑓2)|𝐿, 𝑞−2
′ = 𝑞−2 − 𝐾𝑟|𝐿

3,

𝑞−1
′ = 𝑞−1 + (𝐾|𝐿)𝑞0 𝑎𝑛𝑑 𝑞02 = 𝜕𝑞0|𝜕𝛽.

 

𝑚𝑖 = 𝑣𝑖 − 𝛽𝑦𝑖|𝐿
2 is a non vanishing vector orthogonal to the supporting element 𝑦𝑖 

 The reciprocal tensor �̅�𝑖𝑗 of �̅�𝑖𝑗 can be written as ([15]) 

�̅�𝑖𝑗 = (1|𝑞′)𝑞𝑖𝑗 − 𝑢0
′ 𝑣𝑖𝑣𝑗 − 𝑢−1

′ (𝑣𝑖𝑦𝑗 + 𝑣𝑗𝑦𝑖) − 𝑢−2
′ 𝑦𝑖𝑦𝑗 (2.7) 

where 𝑣𝑖 = 𝑔𝑖𝑗𝑣𝑗 , 𝑣
𝑖 = 𝑔𝑖𝑗𝑣𝑗 ,  𝑣

2 = 𝑔𝑖𝑗𝑣𝑖𝑣𝑗 , 𝜖 = 𝑣2 − (𝛽2|𝐿2)  

𝑢0
′ = 𝑓2𝑟0|𝐿

2𝜐′𝑞′, 𝑢−1
′ = (𝑓2|𝑞′𝜐′𝐿2)(𝑞−1 + 𝐾𝑓2

2|𝐿) 

𝜐′ = (𝑓2|𝐿2)(𝑞′ + 𝜖𝑟0), 𝑢−2
′ =

𝑞−2
′

𝑞𝑞′
− (𝑢−1

′ |𝑞)(𝜖𝑞−1 − 𝐾𝑟𝛽|𝐿
3) 

we shall assume that 𝑞′ + 𝜖𝑟0 ≠ 0 and 𝑞 + 𝜖𝑟0 ≠ 0 for all values of K. From the homogeneity, we have 

𝑟0𝛽 + 𝑟−1𝐿
2 = 0, 𝑟−1𝛽 + 𝑟−2𝐿

2 = −𝑞,

𝑞0𝛽 + 𝑞−1𝐿
2 = 𝑟, 𝑟𝛽 + 𝑞𝐿2 = 𝑓2,

𝑞−1𝛽 + 𝑞−2𝐿
2 = 0

}  (2.8) 

 

3.RELATION BETWEEN PROJECTIVE CHANGE AND GENERALIZED 𝜷-CHANGE BY AN 𝒉-

VECTOR 

 For two Finsler spaces 𝐹𝑛 = (𝑀𝑛, 𝐿)and �̅�𝑛 = (𝑀𝑛, �̅�), if any geodesic on 

𝐹𝑛 = (𝑀𝑛, 𝐿) is also a geodesic on �̅�𝑛 = (𝑀𝑛, �̅�) and vice versa the change L→ �̅�= 𝑓(L, 𝛽) of the metric is called 

projective. A geodesic is given by the differential equation ([8], [9]). 

(d𝑦𝑖|dt) + 2𝐺𝑖(𝑥, 𝑦) =𝜏𝑦𝑖 (3.1)  

𝜏 = (𝑑2𝑠|𝑑𝑡2)|(𝑑𝑠|𝑑𝑡), 𝐺𝑖(𝑥, 𝑦) =𝛾𝑔𝑘
𝑖 (𝑥, 𝑦)𝑦𝑗𝑦𝑘 

are (2)𝑝 homogeneous function in 𝑦𝑖.  

 Consider the Euler Lagrange Differential equation 𝐸𝑖= 0, where  

𝐸𝑖 = (𝜕𝐿|𝜕𝑥𝑖) − (𝑑|𝑑𝑡)(𝜕𝐿|𝜕�̇�𝑖)    (3.2) 

Now Euler Lagrange Differential Equation Now for �̅�𝑛 = (𝑀𝑛, �̅�) is given by �̅�𝑖 = 0,  

Now  

�̅�𝑖 = (𝜕𝑓|𝜕𝑥𝑖) − (𝑑|𝑑𝑡)(𝜕𝑓|𝜕�̇�𝑖) 
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= 𝑓1𝜕𝑖𝐿 + 𝑓2𝜕𝑖𝛽 −
𝑑

𝑑𝑡
(𝑓1�̇�𝑖𝐿 + 𝑓2�̇�𝑖𝛽) 

= 𝑓1 {𝜕𝑖𝐿 −
𝑑

𝑑𝑡
(�̇�𝑖𝐿)} + 𝑓2𝜕𝑖𝛽 −

𝑑𝑓1
𝑑𝑡

𝑙𝑖 −
𝑑𝑓2
𝑑𝑡

𝑏𝑖 − 𝑓2
𝑑𝑏𝑖
𝑑𝑡

 

= 𝑓1𝐸𝑖 −𝑚𝑖

𝑑𝑓2
𝑑𝑡

+ 𝑓2(𝜕𝑖𝑏𝑗 − 𝜕𝑗𝑏𝑖)𝑦
𝑗 − 𝑓2�̇�𝑗𝑏𝑖

𝑑𝑦𝑗

𝑑𝑡
 

= 𝑓1𝐸𝑖 −𝑚𝑖

𝑑𝑓2
𝑑𝑡

+ 𝑓2{𝑏𝑗|𝑖 + 𝑁     𝑖
𝑚 �̇�𝑚𝑏𝑗 + 𝑏𝑚𝐹𝑗   𝑖

𝑚 − 𝑏𝑖|𝑗 −𝑁     𝑗
𝑚 �̇�𝑚𝑏𝑖 − 𝑏𝑚𝐹𝑖  𝑗

𝑚 }𝑦𝑗 − 𝑓2(𝐾|𝐿)ℎ𝑖𝑗
𝑑𝑦𝑗

𝑑𝑡
. 

= 𝑓1𝐸𝑖 −𝑚𝑖 (
𝑑𝑓2
𝑑𝑡
) + 𝑓2(𝑏𝑗|𝑖 − 𝑏𝑖|𝑗)𝑦

𝑗 − (𝐾|𝐿)𝑓2 ℎ𝑖𝑗  (𝑑𝑦
𝑗|𝑑𝑡 + 2𝐺𝑗) 

Using (3.1), we have 

�̅�𝑖 = 𝑓1𝐸𝑖 −𝑚𝑖(𝑑𝑓2|𝑑𝑡) + 2𝑓2𝐹𝑜𝑖 (3.3) 

where 𝑏𝑖|𝑗 denotes the ℎ −covariant derivative with respect to Cartan connection CΓ 

(𝐹𝑗  𝑘
 𝑖 ,  𝑁   𝑘

𝑖 , 𝐶𝑗  𝑘
 𝑖 ) 

𝐹𝑗𝑖 =
1

2
(𝑏𝑗|𝑖 − 𝑏𝑖|𝑗), 𝐹𝑜𝑖 = 𝐹𝑗𝑖𝑦

𝑗 

Hence 𝑓�̅�𝑖 = 𝑓𝑓1𝐸𝑖 −𝑚𝑖𝑓(𝑑𝑓2|𝑑𝑡) + 2𝑓𝑓2𝐹𝑜𝑖 (3.4) 

Now  
𝑑𝑓2

𝑑𝑡
=

𝜕𝑓2

𝜕𝐿
.
𝑑𝐿

𝑑𝑡
+
𝜕𝑓2

𝜕𝛽
.
𝑑𝛽

𝑑𝑡
 

= 𝑓21 (𝜕𝑖𝐿 
𝑑𝑥𝑖

𝑑𝑡
+ �̇�𝑖𝐿 

𝑑𝑦𝑖

𝑑𝑡
) + 𝑓22 (𝜕𝑖𝛽

𝑑𝑥𝑗

𝑑𝑡
+ �̇�𝑗𝛽

𝑑𝑦𝑗

𝑑𝑡
) 

or 𝑓
𝑑𝑓2

𝑑𝑡
=

1

2
𝑓𝑓22(𝑏𝑖|𝑗 + 𝑏𝑗|𝑖 + 2𝑏𝑚𝐹𝑖  𝑗

𝑚 )𝑦𝑖𝑦𝑗 

−(𝛽|𝐿)𝑓𝑓22 𝜕𝑖𝐿 𝑦
 𝑖 + 𝑓𝑓22

𝑑𝑦𝑗

𝑑𝑡
(𝑏𝑗 −

𝛽

𝐿
𝑙𝑗) 

= 𝑟0 𝐸00 + 𝑟0 2𝑏𝑚𝐺
𝑚 −

𝛽

𝐿
𝑟0(𝜕𝑖𝐿)𝑦

𝑖 + 𝑟0 (𝑏𝑗 −
𝛽

𝐿
𝑙𝑗)

𝑑𝑦𝑗

𝑑𝑡
 (3.5) 

where 𝐸00 = 𝐸𝑖𝑗𝑦
𝑖𝑦𝑗 , 𝐸𝑖𝑗 = 𝑏𝑖|𝑗 + 𝑏𝑗|𝑖 

using the relation 
𝑑𝑦𝑟

𝑑𝑡
= 𝑦𝜕𝑠𝑦𝑟 + 𝑔𝑟𝑠

𝑑𝑦𝑠

𝑑𝑡
 (3.6) 

the above equation reduces to. 

𝑓
𝑑𝑓2

𝑑𝑡
= 𝑟0𝐸00 + 𝐿𝑟0𝐸𝑟𝑚

𝑟 (3.7) 

Hence from (3.4) and (3.7), we have  

𝑓�̅�𝑖 = 𝑓𝑓1𝐸𝑖 − 𝐿𝑟0𝐸𝑟𝑚
𝑟𝑚𝑖 − 𝑟0𝐸00 + 2𝑟𝐹𝑜𝑖 

or  𝑓�̅�𝑖 = 𝐿𝑞𝐸𝑖 − 𝐿𝑟0𝐸𝑟𝑚
𝑟𝑚𝑖 + 𝐵𝑖,  (3.8) 
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where 𝐵𝑖 = 2𝑟𝐹𝑜𝑖 − 𝑟0𝐸00  (3.9) 

THEOREM (3.1) A generalized 𝛽 −change by an ℎ-vector is projective iff 𝐵𝑖 = 0. 

Proof : Let the generalized 𝛽 −change by an ℎ-vector is projective. Then 𝐸𝑖 = 0 implies �̅�𝑖 = 0 and hence we 

have 𝐵𝑖 = 0 by (3.8).  

Conversely if 𝐵𝑖 = 0 then from (3.8) 𝐸𝑖 = 0 implies �̅�𝑖 = 0 Again from (3.8) if�̅�𝑖 = 0 and 𝐵𝑖 = 0 then 

we have  

𝐿 𝑞𝐸𝑖 + 𝑟0𝐿 𝑚𝑖𝑚
𝑠𝐸𝑠 = 0 (3.10) 

Contracting (3.10) by 𝑦𝑗, we have 

𝐸𝑠𝑚
𝑠 = 0 since 𝑞 + 𝜖𝑟0 ≠ 0 

∴ 𝐸𝑠 = 0 

 From the above theorem, we have the following results by Shibata ([13]) and Hashiguchi and Ichijyo ([3]). 

COROLLARY (3.1) A 𝛽-change is projective iff  2𝑟𝐹𝑜𝑖 = 𝑟0𝐸00𝑚𝑖 

COROLLARY (3.2) A Rander's change is projective iff   𝑏𝑖  is gradient of some scalar function.  

Definition(3.1) ([8]) If there exists a projective change 𝐿 → �̅� of a Finsler space 𝐹𝑛 = (𝑀𝑛, 𝐿) such that the Finsler 

space �̅�𝑛 = (𝑀𝑛, �̅�) is a locally Minkowski space, 𝐹𝑛is called projectively flat and this change 𝐿 → �̅� is an 

adapted projective change. 

THEOREM (3.2) Let the generalized 𝛽-change by an ℎ-vector ([1.12]) is projective and L is Minkowskian, then 

the Weyl torsion tensor �̅�  𝑗 𝑘
𝑖  and the Douglas tensor �̅�𝑗   𝑘𝑙

  𝑖 of �̅�𝑛 vanish. Hence 𝐹𝑛 with n >2 is projectively flat. 

Proof The Weyl torsion tensor is given by ([81]). 

𝑊  𝑗𝑘
𝑖 = 𝑅  𝑗𝑘

𝑖 +
1

𝑛 + 1
𝑄(𝑗𝑘){𝑦

𝑖𝐻𝑗𝑘 + 𝛿𝑗
𝑖𝐻𝑘} 

where 𝐻𝑗𝑘 = 𝐻𝑖  𝑗𝑘
  𝑖  and 𝐻𝑘 =

1

𝑛−1
(𝑛𝐻0𝑘 + 𝐻𝑘0) Since 𝐹𝑛is Minkowskian then 𝐻𝑗  𝑘𝑙

  𝑖  = 0 and therefore 𝐻𝑗𝑘 = 𝐻𝑘= 0 

Hence 𝑊  𝑗𝑘
𝑖 = 0 

Since 𝑊  𝑗𝑘
𝑖  is invariant under a projective change hence �̅�  𝑗  𝑘

𝑖 = 0.  

 The Douglas Tensor 𝐷𝑗  𝑘𝑙
  𝑖  is given by 𝐷𝑗  𝑘𝑙

  𝑖 = 𝐺𝑗  𝑘𝑙
  𝑖 − {𝑦𝑖𝐺𝑗𝑘.𝑙 + 𝐴(𝑗,𝑘,𝑙)(𝛿𝑗

𝑖𝐺𝑘𝑙)}|(𝑛 + 1) 

Since 𝐹𝑛 is Minkowskian, then 𝐺𝑗  𝑘𝑙
  𝑖 = 0 and so 𝐺𝑘𝑙 = 0 Hence 𝐷𝑗  𝑘𝑙

 𝑖 = 0Since 𝐷𝑗  𝑘𝑙
  𝑖  is invariant under a 

projective change hence we have �̅�𝑗   𝑘𝑙
  𝑖  = 0.  

Since 𝑊  𝑗𝑘
𝑖 = 0, 𝐷𝑗   𝑘𝑙

  𝑖 = 0 and n >2, hence 𝐹𝑛 is projectively flat. ([8]) 

THEOREM (3.3) If we suppose that generalized 𝛽-change by an ℎ-vecter is projective and L is Riemannian, then 

Douglas tensor �̅�𝑗   𝑘𝑙
  𝑖  of �̅�𝑛 vanishes. 
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Proof: Since 𝐹𝑛 is Minkowskian, then 𝐺𝑗 𝑘𝑙
 𝑖 = 0and 𝐺𝑗𝑘 = 0 Hence 𝐷𝑗  𝑘𝑙

  𝑖 = 0 Since 𝐷𝑗  𝑘𝑙
  𝑖  is invariant under a 

projective change, hence �̅�𝑗   𝑘𝑙
  𝑖  = 0.  

THEOREM (3.4) If 𝐵𝑖 = 0 then �̅�𝑛 is of scalar curvature iff 𝐹𝑛is of scalar curvature. 

Proof : By Szabo ([17]), a Finsler space is of scalar curvature iff the Weyl torsion tensor 𝑊   𝑗𝑘
𝑖 vanishes 

identicallyLet 𝐵𝑖=0, then due to Theorem (3.1) generalized 𝛽-change by an ℎ-vector is projective. Let 𝐹𝑛 be of 

scalar curvature, then 𝑊   𝑗𝑘
𝑖 k = 0 But �̅�   𝑗𝑘

𝑖 = 𝑊   𝑗𝑘
𝑖  = 0 Hence �̅�𝑛 is of scalar curvature. 

 In the Riemannian space, scalar curvature means constant curvature. 

Thus we have the following Yasuda and Shimada result ([16]) 

COROLLARY (3.3) If 𝐵𝑖 = 0 in a generalized 𝛽-change by an ℎ-vector and 𝐹𝑛 is Riemannian, then �̅�𝑛 is of 

constant curvature iff 𝐹𝑛 is of constant curvature. 
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