ISSN : 2320-2882

INTERNATIONAL JOURNAL OF CREATIVE
 RESEARCH THOUGHTS (IJCRT)
 An International Dpen Access, Peer-reviewed, Refereed Journal

PROJECTIVE CHANGES OF FINSTER METRICS BY AN h-VECTOR

RAJ KUMAR SRIVASTAVA

DEPARTMENT OF MATHEMATICS, SRI JAI NARAIN P.G. COLLEGE, LUCKNOW

Abstract

In the present paper we have determined the conditions under which a geodesic of a Finsler space $F^{n}=$ $\left(M^{n}, L\right)$ is also a geodesic of Finsler space $\bar{F}^{n}=\left(M^{n}, \bar{L}\right)$ and vice versa underlying with the same manifold M^{n}, where $\bar{L}=f(L, \beta)$ is a positively homogeneous function of degree one in L and $\beta, \beta(x, y)=v_{i}(x, y) y^{i}, v_{i}(x, y)$ is an h-vector in $F^{n}=\left(M^{n}, L\right)$.

Keywords: Finsler space, (α, β)-metric, h-vector, Berwald connection, Cartan connection, β-change, Rander's change, Projective change.

1. INTRODUCTION

Let $F^{n}=\left(M^{n}, L\right)$ be a Finsler space, M^{n} an n -dimensional differentiable manifold and $\mathrm{L}(\mathrm{x}, \mathrm{y})$ is the metric function. A geodesic on $F^{n}=\left(M^{n}, L\right)$ which is an extremal of the length integral, is given by the system of differential equation ([8], [9])
$d y^{i} \mid d t+2 G^{i}(x, y)=\tau y^{i}$,
where $y^{i}=d x^{i}\left|d t, \tau=\left(d^{2} s \mid d t^{2}\right)\right|(d s \mid d t)$ and $G^{i}(x, y)=\gamma_{j k}^{i}(x, y) y^{j} y^{k}$ are (2)
p-homogeneous function in $y^{i}, \gamma_{j k}^{i}=\frac{1}{2} g^{i r}\left(\partial_{j} g_{k r}+\partial_{k} g_{j r}-\partial_{r} g_{j k}\right), \partial_{j}=\partial \mid \partial x^{j}$
Let $G^{i}{ }_{j}=\dot{\partial}_{j} G^{i}, G_{k}{ }^{i}{ }_{j}=\dot{\partial}_{k} G^{i}{ }_{j}, \dot{\partial}_{k}=\partial \mid \partial y^{k}$.
The connection coefficients of Berwald connection $\mathrm{B} \Gamma$ are $\left(G_{k}^{i}{ }_{j}, G^{i}{ }_{j}, 0\right)$. The h - and v-covariant derivatives of a contravariant vector field X^{i} with respect to $\mathrm{B} \Gamma$ are given by ([8])
$X_{; j}^{i}=\partial_{j} X^{i}-G^{m}{ }_{j}\left(\dot{\partial}_{m} X^{i}\right)+X^{m} G_{m}{ }^{i}{ }_{j}$

$$
\begin{equation*}
X_{\cdot}^{i}{ }_{j}=\dot{\partial}_{j} X^{i} \tag{1.2}
\end{equation*}
$$

$\mathrm{B} \Gamma$ is neither h-metrical nor v-metrical since $g_{i j ; k}=-2 C_{i j k \mid 0}$ and $g_{i j . k}=2 C_{i j k}$ in terms of the Cartan connection СГ.

The Ricci identities with respect to B Гare given by ([8])
$X_{; j ; k}^{i}-X_{; k ; j}^{i}=X^{h} H_{h}{ }^{i}{ }_{j k}-X_{.}^{i}{ }_{h} R_{j k}^{h}$
$X_{; j . k}^{i}-X_{. k ; j}^{i}=X^{h} G_{h}{ }^{i}{ }_{j k}$
$X_{. j . k}^{i}-X_{. k . j}^{i}=0$
The tensors $H_{h}{ }^{i}{ }_{j k}$ and $G_{h}{ }^{i}{ }_{j k}$ are called the h- and $\mathrm{h} v$ - curvature tensors respectively and $R^{h}{ }_{j k}$ is the $\mathrm{v}(\mathrm{h})-$ torsion tensor of ВГ. In terms of the coefficients $\left(G_{j}{ }^{i}{ }_{k}, G^{i}{ }_{j}, 0\right)$ these tensors are written as. ([8])
$R^{h}{ }_{j k}=Q_{(j k)}\left(\partial_{k} G^{h}{ }_{j}-G_{j}{ }_{m}^{h} G^{m}{ }_{k}\right)$
$H_{h}^{i}{ }_{j k}=Q_{(j k)}\left\{\partial_{k} G_{h}{ }^{i}{ }_{j}-G^{m}{ }_{k}\left(\dot{\partial}_{m} G_{h}{ }^{i}{ }_{j}\right)+G_{h}^{m}{ }_{j} G_{m}{ }^{i}{ }_{k}\right\}$
$G_{h}{ }^{i}{ }_{j k}=\dot{\partial}_{h} G_{j}^{i}$.
Throughout the paper, we shall use the notations

$$
Q_{(i j)}\left(X_{i m} Y_{j k}^{m}\right)=X_{i m} Y_{j k}^{m}-X_{j k m} Y_{i k}^{m}
$$

and $A_{(i, j, k)}\left(X^{i} Y_{j k}\right)=\left(X^{i} Y_{j k}+X^{j} Y_{k i}+X^{k} Y_{i j}\right)$
Here $G_{h}{ }^{i}{ }_{j k}$ is symmetric in subscripts and $G_{h}{ }^{i}{ }_{j 0}$ where ' 0 ' denotes the contraction with respect to the supporting element y^{k} throughout this paper.

Matsumoto [7] has introduced the metric
" $\mathrm{L}(x, y)=\mathrm{L}(x, y)+\beta(x, y)$,
$\beta(x, y)=v_{i}(x) y^{i}$
Hashiguchi and Ichijyo [3] called it a Rander's change.
The change
${ }^{\prime} \mathrm{L}(x, y)=L^{2}(x, y) \mid \beta(x, y)$
is called a Kropina change ([11])
Shibata ([13]) has introduced a β-change by

* $\mathrm{L}=f(\mathrm{~L}, \beta)$,
$\beta=v_{i}(x) y^{i}$ and f is a positively homogeneous function of degree one in L and β. If L is a Riemannian metric, then $* \mathrm{~L}=f(\alpha, \beta)$ becomes (α, β) metric. Many authors ([2], [4], [5], [10], [12], [14]) studied the properties of this metric with different physical and mathematical aspects. In all these works, $v_{i}(x)$ are assumed to be a function of coordinates only.

During the study of conformal transformation of Finsler space, Izumi ([6]) introduced an h-vector which is defined by $\left.v_{i}\right|_{j}=0, L C_{i}^{h}{ }_{j} v_{h}=K h_{i j}, K=\frac{L C^{i} v^{i}}{(n-1)}, C_{i j}^{h}=g^{h k} C_{i j k}, C_{i j k}=\frac{1}{2} \dot{\partial}_{k} g_{i j}$ is Cartan's \quad C-tensor, $\quad C^{i}=$
$\overline{g^{j k}} C_{j k}^{i}, h_{i j}=L\left(\partial^{2} L \mid \partial y^{i} \partial y^{j}\right)$ is the angular metric tensor, $\left.v_{i}\right|_{j}$ is the v-covariant derivative with respect to the Cartan connection СГ ($F_{j k}^{i}, N_{k}^{i}, C_{j k}^{i}$), [9]

$$
\left.v_{i}\right|_{j}=\dot{\partial}_{j} v_{i}-v_{m} C_{i}^{m}
$$

Thus the h-vector $v_{i}(x, y)$ is not only a function of coordinates but it is also a function of directional argument satisfying $\dot{\partial}_{j} v_{i}=(K \mid L) h_{i j}$.

Singh and Srivastava ([15]) studied the properties of Finsler space with a change.
$\bar{L}=f(L, \beta)$.
where $\beta(x, y)=v_{i}(x, y) y^{i}, v_{i}(x, y)$ is an h-vector in F^{n}. We shall call this change ([1.12]) a generalized β-change by an h-vector.

In the present paper, we shall determine the conditions under which a geodesic of a Finsler space $F^{n}=$ $\left(M^{n}, L\right)$ is also geodesic of the Finsler space $\bar{F}^{n}=\left(M^{n}, \bar{L}\right)$
2. THE FINSLER SPACE $\bar{F}^{n}=\left(M^{n}, \bar{L}\right)$

Let $F^{n}=\left(M^{n}, L\right)$ and $\bar{F}^{n}=\left(M^{n}, \bar{L}\right)$ be the Finsler spaces defined on the same manifold M^{n}, where L is obtained by a change
$\bar{L}=f(L, \beta)$.
$\beta(\mathrm{x}, \mathrm{y})=v_{j}(x, y) y^{j}, v_{j}(x, y)$ is an h-vector in $F^{n}=\left(M^{n}, L\right)$ and $f(L, \beta)$ is a positively homogeneous function of degree one in L and β.

The terminology and notations are referred to Matsumoto's book ([9]) unless otherwise stated.
The quantities of Finsler spaces \bar{F}^{n} are denoted by barred symbols.
If $l_{i}, g_{i j}, h_{i j}$ and $C_{i j k}$ denote the normalized element of support, the metric tensor, the angular metric tensor and Cartan's C-tensor of F^{n} respectively, then these quantities of $\bar{F}^{n}=\left(M^{n}, \bar{L}\right)$ are given by ([15])
$\bar{l}_{i}=f_{1} l_{i}+f_{2} v_{i}$
$\bar{h}_{i j}=q^{\prime} h_{i j}+r_{0} m_{i} m_{j}$
$\bar{g}_{i j}=q^{\prime} g_{i j}+q_{0} v_{i} v_{j}+q_{-1}\left(v_{i} y_{j}+v_{j} y_{i}\right)+q_{-2}^{\prime} v_{i} v_{j}$
$\bar{C}_{i j k}=q^{\prime} C_{i j k}+q_{-1}^{\prime}\left(h_{i j} m_{k}+h_{j k} m_{i}+h_{k i} m_{j}\right)+q_{02} m_{i} m_{j} m_{k} \mid 2$
where we put $f_{1}=\partial f\left|\partial L, f_{2}=\partial f\right| \partial \beta, f_{11}=\partial^{2} f\left|\partial L \partial L, f_{12}=\partial^{2} f\right| \partial L \partial \beta$ etc,
$\dot{\partial}_{i}=\partial\left|\partial y^{i}, \partial_{i}=\partial\right| \partial x^{i}$

$$
\left\{\begin{array}{c}
q=f f_{1} \mid L, \quad r=f f_{2}, r_{0}=f f_{22} \\
f=f_{1} L+f_{2} \beta, L f_{12}+\beta f_{22}=0, L f_{11}+\beta f_{12}=0, \tag{2.6}\\
q_{0}=r_{0}+f_{2}^{2}, \quad r_{-1}=f f_{12}\left|L, \quad q_{-1}=r_{-1}+q f_{2}\right| f \\
r_{-2}=f\left(f_{11}-f_{1} \mid L\right)\left|L^{2}, \quad q_{-2}=r_{-2}+q^{2}\right| f^{2} \\
q^{\prime}=f\left(f_{1}+K f_{2}\right)\left|L, \quad q_{-2}^{\prime}=q_{-2}-K r\right| L^{3}, \\
q_{-1}^{\prime}=q_{-1}+(K \mid L) q_{0} \text { and } q_{02}=\partial q_{0} \mid \partial \beta .
\end{array}\right.
$$

$m_{i}=v_{i}-\beta y_{i} \mid L^{2}$ is a non vanishing vector orthogonal to the supporting element y^{i}
The reciprocal tensor $\bar{g}^{i j}$ of $\bar{g}_{i j}$ can be written as ([15])
$\bar{g}^{i j}=\left(1 \mid q^{\prime}\right) q^{i j}-u_{0}^{\prime} v^{i} v^{j}-u_{-1}^{\prime}\left(v^{i} y^{j}+v^{j} y^{i}\right)-u_{-2}^{\prime} y^{i} y^{j}(2.7)$
where $v^{i}=g^{i j} v_{j}, v^{i}=g^{i j} v_{j}, v^{2}=g^{i j} v_{i} v_{j}, \epsilon=v^{2}-\left(\beta^{2} \mid L^{2}\right)$
$u_{0}^{\prime}=f^{2} r_{0} \mid L^{2} v^{\prime} q^{\prime}, u_{-1}^{\prime}=\left(f^{2} \mid q^{\prime} v^{\prime} L^{2}\right)\left(q_{-1}+K f_{2}^{2} \mid L\right)$
$v^{\prime}=\left(f^{2} \mid L^{2}\right)\left(q^{\prime}+\epsilon r_{0}\right), u_{-2}^{\prime}=\frac{q_{-2}^{\prime}}{q q^{\prime}}-\left(u_{-1}^{\prime} \mid q\right)\left(\epsilon q_{-1}-K r \beta \mid L^{3}\right)$
we shall assume that $q^{\prime}+\epsilon r_{0} \neq 0$ and $q+\epsilon r_{0} \neq 0$ for all values of K. From the homogeneity, we have

$$
\left.\begin{array}{c}
r_{0} \beta+r_{-1} L^{2}=0, r_{-1} \beta+r_{-2} L^{2}=-q, \tag{2.8}\\
q_{0} \beta+q_{-1} L^{2}=r, r \beta+q L^{2}=f^{2} \\
q_{-1} \beta+q_{-2} L^{2}=0
\end{array}\right\}
$$

3.RELATION BETWEEN PROJECTIVE CHANGE AND GENERALIZED β-CHANGE BY AN h VECTOR

For two Finsler spaces $F^{n}=\left(M^{n}, L\right)$ and $\bar{F}^{n}=\left(M^{n}, \bar{L}\right)$, if any geodesic on
$F^{n}=\left(M^{n}, L\right)$ is also a geodesic on $\bar{F}^{n}=\left(M^{n}, \bar{L}\right)$ and vice versa the change $\mathrm{L} \rightarrow \bar{L}=f(\mathrm{~L}, \beta)$ of the metric is called projective. A geodesic is given by the differential equation ([8], [9]).
$\left(\mathrm{d} y^{i} \mid \mathrm{dt}\right)+2 G^{i}(x, y)=\tau y^{i}$
$\tau=\left(d^{2} s \mid d t^{2}\right) \mid(d s \mid d t), G^{i}(x, y)=\gamma_{g k}^{i}(x, y) y^{j} y^{k}$
are (2) p homogeneous function in y^{i}.
Consider the Euler Lagrange Differential equation $E_{i}=0$, where

$$
\begin{equation*}
E_{i}=\left(\partial L \mid \partial x^{i}\right)-(d \mid d t)\left(\partial L \mid \partial \dot{x}^{i}\right) \tag{3.2}
\end{equation*}
$$

Now Euler Lagrange Differential Equation Now for $\bar{F}^{n}=\left(M^{n}, \bar{L}\right)$ is given by $\bar{E}_{i}=0$,
Now

$$
\bar{E}_{i}=\left(\partial f \mid \partial x^{i}\right)-(d \mid d t)\left(\partial f \mid \partial \dot{x}^{i}\right)
$$

$$
\begin{gathered}
=f_{1}\left\{\partial_{i} L-\frac{d}{d t}\left(\dot{\partial}_{i} L\right)\right\}+f_{2} \partial_{i} \beta-\frac{d f_{1}}{d t} l_{i}-\frac{d f_{2}}{d t} b_{i}-f_{2} \frac{d b_{i}}{d t} \\
=f_{1} E_{i}-m_{i} \frac{d f_{2}}{d t}+f_{2}\left(\partial_{i} b_{j}-\partial_{j} b_{i}\right) y^{j}-f_{2} \dot{\partial}_{j} b_{i} \frac{d y^{j}}{d t}
\end{gathered}
$$

$$
=f_{1} E_{i}-m_{i} \frac{d f_{2}}{d t}+f_{2}\left\{b_{j \mid i}+N_{i}^{m} \dot{\partial}_{m} b_{j}+b_{m} F_{j}^{m}-b_{i \mid j}-N_{j}^{m} \dot{\partial}_{m} b_{i}-b_{m} F_{i j}^{m}\right\} y^{j}-f_{2}(K \mid L) h_{i j} \frac{d y^{j}}{d t} .
$$

$$
=f_{1} E_{i}-m_{i}\left(\frac{d f_{2}}{d t}\right)+f_{2}\left(b_{j \mid i}-b_{i \mid j}\right) y^{j}-(K \mid L) f_{2} h_{i j}\left(d y^{j} \mid d t+2 G^{j}\right)
$$

Using (3.1), we have
$\bar{E}_{i}=f_{1} E_{i}-m_{i}\left(d f_{2} \mid d t\right)+2 f_{2} F_{o i}$
where $b_{i \mid j}$ denotes the h-covariant derivative with respect to Cartan connection $\mathrm{C} \Gamma$
$\left(F_{j}{ }_{k}, N^{i}{ }_{k}, C_{j}{ }^{i}{ }_{k}\right)$
$F_{j i}=\frac{1}{2}\left(b_{j \mid i}-b_{i \mid j}\right), F_{o i}=F_{j i} y^{j}$
Hence $f \bar{E}_{i}=f f_{1} E_{i}-m_{i} f\left(d f_{2} \mid d t\right)+2 f f_{2} F_{o i}$
Now $\frac{d f_{2}}{d t}=\frac{\partial f_{2}}{\partial L} \cdot \frac{d L}{d t}+\frac{\partial f_{2}}{\partial \beta} \cdot \frac{d \beta}{d t}$

$$
=f_{21}\left(\partial_{i} L \frac{d x^{i}}{d t}+\dot{\partial}_{i} L \frac{d y^{i}}{d t}\right)+f_{22}\left(\partial_{i} \beta \frac{d x^{j}}{d t}+\dot{\partial}_{j} \beta \frac{d y^{j}}{d t}\right)
$$

or $f \frac{d f_{2}}{d t}=\frac{1}{2} f f_{22}\left(b_{i \mid j}+b_{j \mid i}+2 b_{m} F_{i}^{m}\right) y^{i} y^{j}$

$$
\begin{equation*}
-(\beta \mid L) f f_{22} \partial_{i} L y^{i}+f f_{22} \frac{d y^{j}}{d t}\left(b_{j}-\frac{\beta}{L} l_{j}\right) \tag{3.5}
\end{equation*}
$$

$=r_{0} E_{00}+r_{0} 2 b_{m} G^{m}-\frac{\beta}{L} r_{0}\left(\partial_{i} L\right) y^{i}+r_{0}\left(b_{j}-\frac{\beta}{L} l_{j}\right) \frac{d y^{j}}{d t}$
where $E_{00}=E_{i j} y^{i} y^{j}, E_{i j}=b_{i \mid j}+b_{j \mid i}$
using the relation $\frac{d y^{r}}{d t}=y \partial_{s} y_{r}+g_{r s} \frac{d y^{s}}{d t}$
the above equation reduces to.
$f \frac{d f_{2}}{d t}=r_{0} E_{00}+L r_{0} E_{r} m^{r}$
Hence from (3.4) and (3.7), we have

$$
\begin{equation*}
f \bar{E}_{i}=f f_{1} E_{i}-L r_{0} E_{r} m^{r} m_{i}-r_{0} E_{00}+2 r F_{o i} \tag{3.8}
\end{equation*}
$$

or $f \bar{E}_{i}=L q E_{i}-L r_{0} E_{r} m^{r} m_{i}+B_{i}$,
where $B_{i}=2 r F_{o i}-r_{0} E_{00}$
THEOREM (3.1) A generalized β-change by an h-vector is projective iff $B_{i}=0$.
Proof : Let the generalized β-change by an h-vector is projective. Then $E_{i}=0$ implies $\bar{E}_{i}=0$ and hence we have $B_{i}=0$ by (3.8).

Conversely if $B_{i}=0$ then from (3.8) $E_{i}=0$ implies $\bar{E}_{i}=0$ Again from (3.8) if $\bar{E}_{i}=0$ and $B_{i}=0$ then we have
$L q E_{i}+r_{0} L m_{i} m^{s} E_{S}=0$
Contracting (3.10) by y^{j}, we have
$E_{S} m^{s}=0$ since $q+\epsilon r_{0} \neq 0$

$$
\therefore E_{s}=0
$$

From the above theorem, we have the following results by Shibata ([13]) and Hashiguchi and Ichijyo ([3]).
COROLLARY (3.1) A β-change is projective iff $2 r F_{o i}=r_{0} E_{00} m_{i}$
COROLLARY (3.2) A Rander's change is projective iff b_{i} is gradient of some scalar function.
Definition(3.1) ([8]) If there exists a projective change $L \rightarrow \bar{L}$ of a Finsler space $F^{n}=\left(M^{n}, L\right)$ such that the Finsler space $\bar{F}^{n}=\left(M^{n}, \bar{L}\right)$ is a locally Minkowski space, F^{n} is called projectively flat and this change $L \rightarrow \bar{L}$ is an adapted projective change.

THEOREM (3.2) Let the generalized β-change by an h-vector ([1.12]) is projective and L is Minkowskian, then the Weyl torsion tensor $\bar{W}_{j k}^{i}$ and the Douglas tensor $\bar{D}_{j}{ }^{i}{ }_{k l}$ of \bar{F}^{n} vanish. Hence F^{n} with $\mathrm{n}>2$ is projectively flat. Proof The Weyl torsion tensor is given by ([81]).

$$
W_{j k}^{i}=R^{i}{ }_{j k}+\frac{1}{n+1} Q_{(j k)}\left\{y^{i} H_{j k}+\delta_{j}^{i} H_{k}\right\}
$$

where $H_{j k}=H_{i}{ }^{i}{ }_{j k}$ and $H_{k}=\frac{1}{n-1}\left(n H_{0 k}+H_{k 0}\right)$ Since F^{n} is Minkowskian then $H_{j}{ }^{i} k l=0$ and therefore $H_{j k}=H_{k}=0$ Hence $W^{i}{ }_{j k}=0$

Since $W^{i}{ }_{j k}$ is invariant under a projective change hence $\bar{W}_{j k}^{i}=0$.
The Douglas Tensor $D_{j}{ }^{i}$ il is given by $D_{j}{ }^{i} k l=G_{j}{ }^{i}{ }_{k l}-\left\{y^{i} G_{j k . l}+A_{(j, k, l)}\left(\delta_{j}^{i} G_{k l}\right)\right\} \mid(n+1)$
Since F^{n} is Minkowskian, then $G_{j}{ }_{k l}^{i}=0$ and so $G_{k l}=0$ Hence $D_{j}{ }^{i} k l=0$ Since $D_{j}{ }^{i} k l$ is invariant under a projective change hence we have $\bar{D}_{j}{ }^{i}{ }_{k l}=0$.

Since $W^{i}{ }_{j k}=0, D_{j}{ }^{i}{ }_{k l}=0$ and $\mathrm{n}>2$, hence F^{n} is projectively flat. ([8])
THEOREM (3.3) If we suppose that generalized β-change by an h-vecter is projective and L is Riemannian, then Douglas tensor $\bar{D}_{j}{ }^{i}{ }_{k l}$ of \bar{F}^{n} vanishes.

Proof: Since F^{n} is Minkowskian, then $G_{j k l}^{i}=0$ and $G_{j k}=0$ Hence $D_{j}{ }^{i} k l=0$ Since $D_{j}{ }_{k l}{ }_{k l}$ is invariant under a projective change, hence $\bar{D}_{j}{ }^{i}{ }_{k l}=0$.

THEOREM (3.4) If $B_{i}=0$ then \bar{F}^{n} is of scalar curvature iff F^{n} is of scalar curvature.
Proof : By Szabo ([17]), a Finsler space is of scalar curvature iff the Weyl torsion tensor $W^{i}{ }_{j k}$ vanishes identicallyLet $B_{i}=0$, then due to Theorem (3.1) generalized β-change by an h-vector is projective. Let F^{n} be of scalar curvature, then $W^{i}{ }_{j k} \mathrm{k}=0 \operatorname{But} \bar{W}^{i}{ }_{j k}=W^{i}{ }_{j k}=0$ Hence \bar{F}^{n} is of scalar curvature.

In the Riemannian space, scalar curvature means constant curvature.
Thus we have the following Yasuda and Shimada result ([16])
COROLLARY (3.3) If $B_{i}=0$ in a generalized β-change by an h-vector and F^{n} is Riemannian, then \bar{F}^{n} is of constant curvature iff F^{n} is of constant curvature.

REFERENCES

1. Fukui, Masaki and Yamada, T. On projective mappings in Finsler geometry. Tensor, N.S. Vol 35 (1981)
2. Hashiguchi, M. and Ichijyo, Y: On some special (α, β) metrics. Rap. Fac. Sci. Kajoshima Univ. (1975) pp. 39-46.
3. Hashiguchi, M. and Ichijyo, Y. : Rander's spaces with rectilinear geodesic. Rep.Fac. Sci. Kagoshima Univ 13 (1980) pp33-40.
4. Hashiguchi, M, Hojo, S. and Matsumoto, M.On Landsberg spaces of two dimensions with (α, β) metric J. Korean Math. Soc. 10, pp 17-26.
5. Ingarden, R.S.: On the geometrically absolute optical representation in the election microscope Wroclaw. B. 45 60p.
6. Izumi, H. Conformal transformation of Finsler spaces I and II. Tensor, N.S., 31 and 33, (1977 and 1980) pp. 33-41 and 376-379.
7. Matsumoto, M: On Finsler spaces with Rander's metric and special forms of important tensors. J. Math Kyoto Univ.. 14(1974), pp. 477-498.
8. Matsumoto, M. Projective changes of Finsler metrics and projectively flat Finsler spaces. Tensor, N.S. Vol 34 (1980).
9. Matsumoto, M.: Foundations of Finsler geometry and special Finsler spaces. Kaiseisha press, Otsu Japan, 1986.
10. Rander's, G. On the asymmetrical metric in the four space of general relativity. Phys. Rev 2 (1941) 59, pp 195199.
11. Shibata, C. : On Finsler spaces with Kropina metric. Rap. on Math Phys 13 (1978) pp 117-128.
12. Shibata, C. : On Finsler spaces with an (α, β)-metric. Journal of Hokkaido University of Education Vol. 35 (1984) pp 1-16.
13. Shibata, C. : On invariant tensors of β-charges of Finsler metrics. J. Math Kyoto Univ. (1984) pp 163-188.
14. Shibata, C., Shimada, H., Azuma, M. and Yasuda, H : On Finsler spaces with Rander's metric. Tensor, N.S. 31 (1977),pp. 219-226.
15. Singh, U.P and Srivastava, R.K. : On a transformation associated with sets of n- fundamental forms of Finsler hypersurfaces. Indian Jr. pure appl. Math 23(5)May 1992, pp. 325-332.
16. Yasuda, H. and Shimada, H. On Rander's spaces of scalar curvature Rep. Math. Phys 11 (1977) pp. 347-360.
17. Szabo, Z.I.E in Finslerschen raum ist gerade dann von skalarer krummung, wenn seine weylsche projektivkrümmung verschwindet, Acta Sci Math Szeged, 39 (1977), pp163-168.
