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ABSTRACT 

 

Animal models have greatly enriched our understanding of the molecular mechanisms of numerous types of 

cancers. Gastric cancer is one of the most common cancers worldwide, with a poor prognosis and high 

incidence of drug-resistance. However, most inbred strains of mice have proven resistant to gastric 

carcinogenesis. To establish useful models which mimic human gastric cancer phenotypes, investigators 

have utilized animals infected with Helicobacter species and treated with carcinogens. In addition, by 

exploiting genetic engineering, a variety of transgenic and knockout mouse models of gastric cancer have 

emerged, such as INS-GAS mice and TFF1 knockout mice. Investigators have used the combination of 

carcinogens and gene alteration to accelerate gastric cancer development, but rarely do mouse models show 

an aggressive and metastatic gastric cancer phenotype that could be relevant to preclinical studies, which 

may require more specific targeting of gastric progenitor cells. Here, we review current gastric 

carcinogenesis mouse models and provide our future perspectives on this field. 

Keywords: gastric cancer, mouse model, metaplasia, Helicobacter Felis, Helicobacter pylori, INS-GAS 

mice. 
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Introduction  

With the effective control of severe infectious diseases and the extension of human life expectancy, cancer 

has become one of the major diseases that seriously endanger human health. According to 2015 estimates by 

the World Health Organization (WHO), cancer is the first or second leading cause of death among people 

under the age of 70 in 91 of these countries.[1] Under the combined influence of population aging and 

population growth, the number of new cancer cases each year is expected to rise from 18.1 million in 2018 to 

29.4 million in 2040.[2] Due to the late diagnosis of most cancers and inadequate prevention measures, 

cancer is becoming a heavy burden on residents in low-and middle-income countries. The development and 

research of new diagnostic methods and innovative treatment tools are essential to reduce the global 

incidence of cancer. The animal experiment is an important bridge between cell experiment and clinical 

experiment. Under certain conditions, the occurrence and development of animal diseases are similar to that 

of human beings, and animals have similar anatomy, physiology and heredity to human beings. Therefore, 

animal models are often used to study human diseases. In cancer research, the use of animal models can help 

us understand the genetic basis of cancer and the role of specific genes and gene mutations in the occurrence 

and development of cancer, which also facilitates the development and testing of antineoplastic 

drugs.[3]With the continuous development of precision medicine and personalized medicine, researchers are 

looking for standardized and personalized tumour models that are more similar to human tumours.[4] There 

are many animal types and construction methods used to construct cancer animal models, and the progress of 

each animal model in tumour research has its own characteristics, which will be described below (Figure 1). 

 

Mouse Model  

 

The mouse genome is highly homologous to the human genome, which can simulate a series of biological 

characteristics such as the occurrence, development and metastasis of human cancer cells in vivo,[5] and has 

the advantages of convenient feeding, low price and easy gene modification. It provides a good tool for 

cancer research and a valuable platform for drug discovery and verification. At present, there are four 

commonly used methods to construct mouse cancer model: chemically induced model, cell line-derived 

xenograft (CDX) model, patient derived xenograft (PDX) model and genetically engineered mouse model 

(GEMM).[6]The chemical induction model refers to the model of experimental tumour induced by chemical 

carcinogens, which has the advantage of imitating the occurrence of human cancer from the beginning of the 

carcinogenic process.[7] But the main disadvantage of this method is that it takes 30–50 weeks to form a 

tumour after using carcinogens.[8] The cell line-derived xenograft (CDX) model refers to the 

xenotransplantation model produced by subcutaneous injection of cancer cell lines into immunodeficient 

mice.[9] The establishment of this model is simple and takes a short time to form a tumour, but after long-

term culture in vitro, the biological behaviour and tumour heterogeneity of human tumour cell lines are quite 

different from those of the original tumour tissue.[10] The patient-derived xenograft (PDX) model is an 

animal model established by directly implanting tumour tissue samples from tumour patients into mice, 

which well maintains the characteristics of tumour histopathology and genetics.[11] The genetically 

http://www.ijcrt.org/


www.ijcrt.org                                                         © 2023 IJCRT | Volume 11, Issue 3 March 2023 | ISSN: 2320-2882 

IJCRT2303136 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org b230 
 

engineered mouse model (GEMM) is to induce tumorigenesis by promoting the expression of oncogenes 

(such as BRAF V600E in melanoma)[12] or the deletion of tumour suppressor genes (such as PTEN in 

prostate cancer)[13] by genetic engineering. Compared with the above two transplantation models, GEMM 

formed an orthotopic tumour in an innate immune maturation micro- environment (natural immune-

proficient micro-environment), simulating the process of tumorigenesis.[14] However, due to the species 

differences of the immune system among mammals, these existing models cannot accurately predict the 

interaction between the human immune system and tumour. Many antineoplastic drugs with a good 

therapeutic effect in preclinical animal models cannot play a corresponding role in tumour patients. 

Therefore, it is necessary to establish an animal model 

 

Figure 1 Two commonly used classification methods of cancer animal models. Dashed red box represents 

the classification according to different modeling methods. Another classification is carried out according to 

different species. Blue arrows indicate the species of animals included in this classification.  

Abbreviations: PDX, patient-derived tumour xenograft; CDX, cell line-derived xenograft. that cannot only 

replicate the tumour microenvironment, but also have a “humanized” immune system at the same time. The 

humanized mouse model of the human immune system is a mouse model that reconstructs the human 

immune system by implanting human hematopoietic cells, lymphocytes or tissues into immunodeficient 

mice.[15] On this basis, the implantation of human tumour cells or tumour tissue can be used to study tumour 

growth in the environment of the human immune system and evaluate anti-tumour therapy, especially the 

effect of immunotherapy and related mechanism. At present, a variety of human tumour cell lines have been 

successfully established in humanized mice, such as lymphoma, glioma, breast cancer, colorectal cancer, 

kidney cancer and prostate cancer cell line.[16–19] According to the method of human immune system 

reconstruction, the humanized mouse models of the immune system are divided into three categories: Hu-

BLT (human bone marrow, liver and thymus) model, Hu-HSCs (human hematopoietic stem cell) model and 

Hu-PBL (human peripheral blood lymphocyte) model (Figure 2).  
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Hu-BLT Model 

 

The model is established by co-transplanting human embryonic liver and thymus into the renal capsule of 

immunodeficient mice and injecting liver hematopoietic stem cells from the same embryo into mice.[20] It 

can reconstruct the human 

 

                    

Figure 2 Construction method of humanized mice of human immune system. The construction of humanized 

mice needs to use immunodeficient mice as a tool. By transplanting different human immune organs or cells 

into immunodeficient mice, three different humanized mice can be constructed. Among them, the Hu-HSC 

model also needs to destroy the hematopoietic function of bone marrow in mice.  

Abbreviations: Hu-HSC, human hematopoietic stem cell; Hu-PBL, human peripheral blood lymphocyte; 

Hu-BLT, human bone marrow, liver and thymus. 

 

Zebrafish Leukaemia Model  

 

The similarity between zebrafish and human hematopoietic systems has led to the increasing use of zebrafish 

to simulate leukaemia.[21] The establishment of the zebrafish leukaemia model plays an important role in 

understanding the occurrence, development and drug research of human leukaemia. Lange nauetal.[22] 

injected rag2, encoding a lymphocyte specific promoter into zebrafish to drive the expression of the mouse-

derived c-Myc gene. It was found that the fluorescence-labelled leukaemia cells in zebrafish were implanted 

into the immunodeficient thymus, suggesting that the protooncogene c-Myc is involved in the formation of 

zebrafish tumour. Gutierrezetal.[13] found that 4-hydroxytamoxifen (4HT) can activate Myc, to induce acute 

T-lymphoblastic leukaemia in zebrafish by constructing MYC-ER transgenic zebrafish. Corkeryetal.[24] 

successfully established a leukaemia zebrafish Casper model by implanting K562 and NB-4 human 

leukaemia cell lines into zebrafish Casper embryos, and conducted targeted inhibitor intervention 

experiments on this model, which laid a good foundation for tumour research in this whole animal. Since the 
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construction of the first leukemic zebrafish model in 2003, zebrafish has made a great contribution to the 

study of leukaemia. Through these studies, we not only have a deeper understanding of the pathogenesis of 

leukaemia, but also proved a variety of anti-leukaemia drugs, including Nimesulide, Lenaldekar and 

Perphenazine. [25–27] 

 

K-ras Transgenic Mice  

 

K-ras is one of the most commonly mutated proto-oncogenes in a variety of human cancers [28]. While 

normally its activity is tightly regulated, somatic mutations occur that render its activity constitutive and 

thereby oncogenic [29]. Oncogenic activations of K-ras have been found in human gastric cancers, although 

they are not as common (0–18%) in both intestinal type and diffuse type gastric cancers as reported in other 

solid tumour, such as pancreatic or colorectal cancer [30]. While oncogenic K-ras leads to increased 

signalling through a number of proliferative (e.g., MAPK) pathways, it has also been strongly linked to the 

development of chronic inflammation and cancer [31]. In genetically engineered mouse models of pancreatic 

cancer based on PDX1-directed K-ras mutations, significant inflammatory and stromal responses correlate 

with cancer progression [32]. To analyze the function of oncogenic K-ras on the stomach cancer 

development in mice, the K19-promoter, which targets expression to the progenitor zone of the gastric 

neck/isthmus [33], was used to direct expression of K-ras-V12 mutant gene. K19-K-ras-V12 transgenic mice 

(F2 mixed C57BL/6 × DBA background) showed an early upregulation of chemokines such as CXCL1 and 

recruitment of bone marrow-derived inflammatory cells and fibroblasts, following by the gradual 

development of parietal cell loss, metaplasia and dysplasia, in a manner that closely resembled H. felis-

induced gastric preneoplasia and carcinogenesis [33,34]. Thus, these data suggest that K-ras-dependent 

chronic inflammation, leading to the recruitment of bone marrow-derived cells that contribute to the stromal 

microenvironment, can initiate gastric carcinogenesis. In a separate study, investigators introduced a 

conditional K-ras G12D mutation in the K19-positive lineage in adult mice by crossing K19-CreERT knock-

in mice with LoxP-STOP-LoxP-KrasG12D mice. The phenotype of these mice included numerous 

hyperplasias, metaplasias and adenomas in the stomach as well as in the oral cavity, colon and lungs [35]. 

Another group bred UBC9-CreERT transgenic mice with LoxP-STOP-LoxP-KrasG12D mice in order to 

determine the effect in mice of widespread, systemic activation of K-ras [36]. Ubiquitous K-ras activation in 

mice had rapid and dramatic effects on both the forestomach and glandular stomach, and resulted in severe 

inflammation, hyperplasia, metaplasia, and activated progenitor cells, although neoplastic changes in other 

organs were not detected. These latter results suggest that, amongst all the tissues in which K-ras is activated, 

the stomach appears to be unusually susceptible to the effects of K-ras mutation at early time points, pointing 

to a crucial role of K-ras activation in initiation of gastric precancerous changes. 
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Conclusion  

  

Numerous mouse models with various gastric phenotypes are now available for studies of gastric 

carcinogenesis. These include transgenic mice, knockout mice, Helicobacter infection, and carcinogen 

(MNU) models. These models have demonstrated that gender, diet, bacterial flora, inflammatory cytokines, T 

helper immune response, acid secretion, virulence, colonization properties of H. pylori strains, and host 

genetic background may all have roles in mediating the development of gastric cancer. Reasonable mouse 

models of gastric cancer are available for studies of early-stage pathogenesis and cancer therapy, which have 

distinct mechanisms and different tumour phenotypes, with variations in the time course, location, and 

pathology of the disease. Thus, researchers are able to utilize appropriate mouse models for their studies. 

Newly suggested research methods, including lineage tracing or genome-wide analysis, should prove 

valuable for understanding the causes of gastric cancer, and thereby facilitating the discovery of a cure for 

this disease. 
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