ISSN: 2320-2882

IJCRT.ORG



# INTERNATIONAL JOURNAL OF CREATIVE RESEARCH THOUGHTS (IJCRT)

An International Open Access, Peer-reviewed, Refereed Journal

# A Comprehensive Review on Face Recognition System

## Rashmirekha Mohanty<sup>1</sup>, Chandrakanti Malik<sup>2</sup>, Gayatri Barik<sup>3</sup>, Pramita Senapati<sup>4</sup>, Zeenat Afroz<sup>5</sup>

1.Department of Information Technology, Balasore College of Engineering & Technology, Odisha, India

- 2. Department of Information Technology, Balasore College of Engineering & Technology, Odisha, India
  - 3. Department of Computer Science & Engeneering, Balasore College of Engineering & Technology, Odisha, India
  - 4. Department of Computer Science & Engeneering, Balasore College of Engineering & Technology, Odisha, India
  - 5. Department of Computer Science & Engeneering, Balasore College of Engineering & Technology, Odisha, India

## **1.ABSTRACT**

In recent times, face detection and recognition has emerged as authentic real time application which is useful in varied fields. It is an implementation of AI typically employed to authenticate user through verification process. This paper reviews few techniques used in face recognition system like HAAR cascade, PCA, CNN, SVM, etc. It also reviews a wide range of related research work published in recent times. The scope of application of face recognition is spread over varied field from law enforcement agencies, security and defense check in etc., to log in into personal devices like mobile and tablets etc.

## **2.INTRODUCTION**

Face detection and recognition has become the most important biometrics techniques in today digitized era. A facial recognition system is a prove technology that is capable of matching a human face from a digital image or a video frame against a database of faces. It works by identifying and measuring facial features in an image. Facial recognition can identify human faces in image or videos, determine if the face in two images belongs to the same person or search for a face among a large collection of existing images. Research on face recognition process has been done for a quite long time and continue to be developed until now [1].

In present situation facial recognition is more safety because in this system uses unique mathematical patterns to store biometric data. So, they are the secure and successful identification methods in biometric technology. Face recognition embraces a variety of services and applications, beginning from human identification and surveillance and coming as far as e-marketing for the interested customers (Evangelos 2020) [2] In facial recognition we get so many benefits that are efficient security, improved accuracy, easier integration etc. Facial recognitions are used in many places like – Smart attendance system, Smart voting system, home security system, social media and Apps, Heath services etc. in face recognition and face detection applications, computer vision plays a vital role. It is the technology that allows computers and machines to match images of people's faces and their specifications.

computer vision consists of many components including co-ordinations, memory, retrieval, reasoning, estimation, recognition and more. system with only one of this ability is not qualified as a vision. Computer vision is actually mimicking human systems. Since our world is in three dimensions but our visual sensor usually provides only two-dimensional images which it increases the difficulty for computer to analyses an object in 3D. there are various complexity such as low resolution, occlusion, illumination, variation etc. These factors highly affect the accuracy of the computer to recognize the face more effectively, so expert system & algorithms are used to make it correct.

#### **3.HOW DOES FACIAL RECOGNITION WORKS?**

Many people are familiar with face recognition technology through the face id used to unlock iPhone. Beyond unlocking phones, facial recognition works by matching the faces of people walking past special cameras [3] they can operate as follows:

Step 1: Face detection

The camera detects the location of the image of the face that the face is alone either in crowd. The image also shows the person looking starting ahead or on profile. Detection is the process of finding a face in an image, it identifies and detect the individual faces from image through many people's faces. Step 2: Analysis

The facial recognition system then analyses the image of the face. It maps and reads face geometry and facial JCR expression. The facial recognition looks for the following-

- Distance between the eyes.
- Space between the forehead to the jaw.
- Shape of the cheekbones.
- Contour of the lips and ears.

Then it converts the face recognition data into a character of numbers and each person has a distinctive faceprint, as like as fingerprint.

#### Step3: Recognition

Recognition of a person can be done through balancing the faces in two or more images in the face recognition technology. For example, it can verify that the faces shown in a selfie taken by a mobile camera matches the faces in an image of a government issued ID like driver license as well as identify the face.

The methods we use for facial recognition are classified as geometry based or template-based algorithms.

Geometry based:

The geometric features-based methods analyze local facial features and their geometric relationship. It is also called as feature-based technique.

### Template based:

The template-based methods can be manufactured using mathematically tools like SVM (Support Vector Machines), PCA (Principal Component Analysis), LDA (Linear Discriminant Analysis), Kernel methods or Trace transforms.

## HAAR cascade classifier:

The HAAR cascade classifier is a machine learning approach where a cascade function is trained from a lot of positive and negative images, positive images are those images that consists of faces and negative images are without faces.



#### SVM Algorithm:

Support vector machine is a popular supervised learning algorithm and it is used for classification and regression. This algorithm used for webpages, face detection, intrusion detection, email classification, hand writing recognitions worked for separating data points and it supports binary classification. From the training data, SVM takes out the related discriminatory information [4]. For face recognition SVM can be applied individually or can be used with the other techniques [5] like hybrid method and independent Component analysis (ICA).

#### CNN Algorithm:

Convolution Neural Network algorithm is a multilayer perceptron. It is the special design for discovery of twodimensional images details. It has more layers i.e., input layer, convolution layer and sample layer can have multiple. These are used for image classification and recognition due to its high accuracy. Scientist Yann Lecun had proposed this in the late 90s when he was inspired from the human visual perception of recognizing things.

### PCA Algorithm:

PCA (Principal Component Analysis) is a statistical approach used for reduce the huge number of datasets in facial recognition by transforming a large set of variables into small datasets containing with information. PCA is used to preprocess the data before other analyzes [6]. In PCA based feature extraction algorithms, the eigen face is one of the classical algorithms [7].



(fig.2) PCA Algorithm

Facial recognition related work is recent times:

| Sl.<br>No | Author                                                                  | Date                               | Title                                                                   | Objective                                                                                                     | Methods/<br>Tools                                                                          | Findings                                                                                                                                                                                                         |
|-----------|-------------------------------------------------------------------------|------------------------------------|-------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1.        | KH Teoh, RC<br>Ismail, SZM Nazari,<br>R Hussein, MNM<br>Isa, MSSM Baser | 19 <sup>th</sup><br>august<br>2020 | Face<br>recognition<br>and<br>identification<br>using Deep<br>learning. | It aims in<br>designing and<br>developing a<br>face<br>recognition<br>system through<br>OpenCV and<br>Python. | Deep<br>learning,<br>CNN, Haar<br>feature based<br>cascade<br>classifiers,<br>Tensor flow. | It is verified<br>that with the<br>large number<br>of face<br>images being<br>trained into a<br>classifier can<br>achieve<br>accuracy of<br>91.7% in<br>recognizing<br>image and<br>86.7% in real<br>time video. |

| 2. | Zhogang Yu,        | 5th                     | Research on                                                      | New face                                                                                     | IMDB WIKI                                      | In this paper                                                                                                                                                                                                                                                                                                           |
|----|--------------------|-------------------------|------------------------------------------------------------------|----------------------------------------------------------------------------------------------|------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | YunYun Dong,       | January                 | face                                                             | technology                                                                                   | Face dataset.                                  | the proposed                                                                                                                                                                                                                                                                                                            |
|    | Jihong Cheng, Feng | 2022                    | recognition                                                      | using Google                                                                                 |                                                | model                                                                                                                                                                                                                                                                                                                   |
|    | Su                 |                         | classification                                                   | Net.                                                                                         |                                                | developed the                                                                                                                                                                                                                                                                                                           |
|    |                    |                         | based on                                                         |                                                                                              |                                                | Google net                                                                                                                                                                                                                                                                                                              |
|    |                    |                         | improved                                                         |                                                                                              |                                                | and obtained                                                                                                                                                                                                                                                                                                            |
|    |                    |                         | Google Net.                                                      |                                                                                              |                                                | the Google                                                                                                                                                                                                                                                                                                              |
|    |                    |                         |                                                                  |                                                                                              |                                                | net -M                                                                                                                                                                                                                                                                                                                  |
|    |                    |                         |                                                                  |                                                                                              |                                                | network to                                                                                                                                                                                                                                                                                                              |
|    |                    |                         |                                                                  |                                                                                              |                                                | improve the                                                                                                                                                                                                                                                                                                             |
|    |                    |                         |                                                                  |                                                                                              |                                                | grouping                                                                                                                                                                                                                                                                                                                |
|    |                    |                         |                                                                  |                                                                                              |                                                | convolution                                                                                                                                                                                                                                                                                                             |
|    |                    |                         |                                                                  |                                                                                              |                                                | method under                                                                                                                                                                                                                                                                                                            |
|    |                    |                         |                                                                  |                                                                                              |                                                | multi-GPU                                                                                                                                                                                                                                                                                                               |
|    |                    |                         |                                                                  |                                                                                              |                                                | application                                                                                                                                                                                                                                                                                                             |
|    |                    |                         |                                                                  |                                                                                              |                                                | and used                                                                                                                                                                                                                                                                                                                |
|    |                    |                         |                                                                  |                                                                                              |                                                | regularization                                                                                                                                                                                                                                                                                                          |
|    |                    |                         |                                                                  |                                                                                              |                                                | and migration                                                                                                                                                                                                                                                                                                           |
|    |                    |                         |                                                                  |                                                                                              |                                                | learning                                                                                                                                                                                                                                                                                                                |
|    |                    |                         |                                                                  |                                                                                              |                                                | techniques to                                                                                                                                                                                                                                                                                                           |
|    |                    |                         |                                                                  |                                                                                              |                                                | improve                                                                                                                                                                                                                                                                                                                 |
|    |                    |                         |                                                                  |                                                                                              |                                                | model                                                                                                                                                                                                                                                                                                                   |
|    |                    |                         |                                                                  |                                                                                              |                                                |                                                                                                                                                                                                                                                                                                                         |
|    |                    |                         |                                                                  |                                                                                              | a                                              | performance.                                                                                                                                                                                                                                                                                                            |
|    |                    |                         | <u> </u>                                                         |                                                                                              | 2                                              | performance.                                                                                                                                                                                                                                                                                                            |
| 3. | Yuheng Guo         | 2nd                     | Effect on                                                        | A detailed                                                                                   | CNN, L2SR,                                     | performance.<br>In this paper,                                                                                                                                                                                                                                                                                          |
| 3. | Yuheng Guo         | 2nd<br>December         | Effect on<br>biometric                                           | A detailed<br>study of the                                                                   | CNN, L2SR,<br>LSTM,                            | In this paper, it is found that                                                                                                                                                                                                                                                                                         |
| 3. | Yuheng Guo         | 2nd<br>December<br>2021 | Effect on<br>biometric<br>recognition                            | A detailed<br>study of the<br>impact of                                                      | CNN, L2SR,<br>LSTM,<br>DeepSignDB              | In this paper,<br>it is found that<br>real masked                                                                                                                                                                                                                                                                       |
| 3. | Yuheng Guo         | 2nd<br>December<br>2021 | Effect on<br>biometric<br>recognition<br>systems of              | A detailed<br>study of the<br>impact of<br>covid 19 on<br>different                          | CNN, L2SR,<br>LSTM,<br>DeepSignDB<br>Database. | In this paper,<br>it is found that<br>real masked<br>faces are                                                                                                                                                                                                                                                          |
| 3. | Yuheng Guo         | 2nd<br>December<br>2021 | Effect on<br>biometric<br>recognition<br>systems of<br>covid 19. | A detailed<br>study of the<br>impact of<br>covid 19 on<br>different<br>biometric             | CNN, L2SR,<br>LSTM,<br>DeepSignDB<br>Database. | In this paper,<br>it is found that<br>real masked<br>faces are<br>more suitable<br>for training                                                                                                                                                                                                                         |
| 3. | Yuheng Guo         | 2nd<br>December<br>2021 | Effect on<br>biometric<br>recognition<br>systems of<br>covid 19. | A detailed<br>study of the<br>impact of<br>covid 19 on<br>different<br>biometric<br>systems  | CNN, L2SR,<br>LSTM,<br>DeepSignDB<br>Database. | performance.<br>In this paper,<br>it is found that<br>real masked<br>faces are<br>more suitable<br>for training<br>than                                                                                                                                                                                                 |
| 3. | Yuheng Guo         | 2nd<br>December<br>2021 | Effect on<br>biometric<br>recognition<br>systems of<br>covid 19. | A detailed<br>study of the<br>impact of<br>covid 19 on<br>different<br>biometric<br>systems. | CNN, L2SR,<br>LSTM,<br>DeepSignDB<br>Database. | performance.<br>In this paper,<br>it is found that<br>real masked<br>faces are<br>more suitable<br>for training<br>than<br>simulated                                                                                                                                                                                    |
| 3. | Yuheng Guo         | 2nd<br>December<br>2021 | Effect on<br>biometric<br>recognition<br>systems of<br>covid 19. | A detailed<br>study of the<br>impact of<br>covid 19 on<br>different<br>biometric<br>systems. | CNN, L2SR,<br>LSTM,<br>DeepSignDB<br>Database. | performance.<br>In this paper,<br>it is found that<br>real masked<br>faces are<br>more suitable<br>for training<br>than<br>simulated<br>faces. It also                                                                                                                                                                  |
| 3. | Yuheng Guo         | 2nd<br>December<br>2021 | Effect on<br>biometric<br>recognition<br>systems of<br>covid 19. | A detailed<br>study of the<br>impact of<br>covid 19 on<br>different<br>biometric<br>systems. | CNN, L2SR,<br>LSTM,<br>DeepSignDB<br>Database. | performance.<br>In this paper,<br>it is found that<br>real masked<br>faces are<br>more suitable<br>for training<br>than<br>simulated<br>faces. It also<br>proposed that                                                                                                                                                 |
| 3. | Yuheng Guo         | 2nd<br>December<br>2021 | Effect on<br>biometric<br>recognition<br>systems of<br>covid 19. | A detailed<br>study of the<br>impact of<br>covid 19 on<br>different<br>biometric<br>systems. | CNN, L2SR,<br>LSTM,<br>DeepSignDB<br>Database. | performance.<br>In this paper,<br>it is found that<br>real masked<br>faces are<br>more suitable<br>for training<br>than<br>simulated<br>faces. It also<br>proposed that<br>deep learning                                                                                                                                |
| 3. | Yuheng Guo         | 2nd<br>December<br>2021 | Effect on<br>biometric<br>recognition<br>systems of<br>covid 19. | A detailed<br>study of the<br>impact of<br>covid 19 on<br>different<br>biometric<br>systems. | CNN, L2SR,<br>LSTM,<br>DeepSignDB<br>Database. | performance.<br>In this paper,<br>it is found that<br>real masked<br>faces are<br>more suitable<br>for training<br>than<br>simulated<br>faces. It also<br>proposed that<br>deep learning<br>models are                                                                                                                  |
| 3. | Yuheng Guo         | 2nd<br>December<br>2021 | Effect on<br>biometric<br>recognition<br>systems of<br>covid 19. | A detailed<br>study of the<br>impact of<br>covid 19 on<br>different<br>biometric<br>systems. | CNN, L2SR,<br>LSTM,<br>DeepSignDB<br>Database. | performance.<br>In this paper,<br>it is found that<br>real masked<br>faces are<br>more suitable<br>for training<br>than<br>simulated<br>faces. It also<br>proposed that<br>deep learning<br>models are<br>expected to                                                                                                   |
| 3. | Yuheng Guo         | 2nd<br>December<br>2021 | Effect on<br>biometric<br>recognition<br>systems of<br>covid 19. | A detailed<br>study of the<br>impact of<br>covid 19 on<br>different<br>biometric<br>systems. | CNN, L2SR,<br>LSTM,<br>DeepSignDB<br>Database. | performance.<br>In this paper,<br>it is found that<br>real masked<br>faces are<br>more suitable<br>for training<br>than<br>simulated<br>faces. It also<br>proposed that<br>deep learning<br>models are<br>expected to<br>produce                                                                                        |
| 3. | Yuheng Guo         | 2nd<br>December<br>2021 | Effect on<br>biometric<br>recognition<br>systems of<br>covid 19. | A detailed<br>study of the<br>impact of<br>covid 19 on<br>different<br>biometric<br>systems. | CNN, L2SR,<br>LSTM,<br>DeepSignDB<br>Database. | performance.<br>In this paper,<br>it is found that<br>real masked<br>faces are<br>more suitable<br>for training<br>than<br>simulated<br>faces. It also<br>proposed that<br>deep learning<br>models are<br>expected to<br>produce<br>better result                                                                       |
| 3. | Yuheng Guo         | 2nd<br>December<br>2021 | Effect on<br>biometric<br>recognition<br>systems of<br>covid 19. | A detailed<br>study of the<br>impact of<br>covid 19 on<br>different<br>biometric<br>systems. | CNN, L2SR,<br>LSTM,<br>DeepSignDB<br>Database. | performance.<br>In this paper,<br>it is found that<br>real masked<br>faces are<br>more suitable<br>for training<br>than<br>simulated<br>faces. It also<br>proposed that<br>deep learning<br>models are<br>expected to<br>produce<br>better result<br>with the help                                                      |
| 3. | Yuheng Guo         | 2nd<br>December<br>2021 | Effect on<br>biometric<br>recognition<br>systems of<br>covid 19. | A detailed<br>study of the<br>impact of<br>covid 19 on<br>different<br>biometric<br>systems. | CNN, L2SR,<br>LSTM,<br>DeepSignDB<br>Database. | performance.<br>In this paper,<br>it is found that<br>real masked<br>faces are<br>more suitable<br>for training<br>than<br>simulated<br>faces. It also<br>proposed that<br>deep learning<br>models are<br>expected to<br>produce<br>better result<br>with the help<br>of more                                           |
| 3. | Yuheng Guo         | 2nd<br>December<br>2021 | Effect on<br>biometric<br>recognition<br>systems of<br>covid 19. | A detailed<br>study of the<br>impact of<br>covid 19 on<br>different<br>biometric<br>systems. | CNN, L2SR,<br>LSTM,<br>DeepSignDB<br>Database. | performance.<br>In this paper,<br>it is found that<br>real masked<br>faces are<br>more suitable<br>for training<br>than<br>simulated<br>faces. It also<br>proposed that<br>deep learning<br>models are<br>expected to<br>produce<br>better result<br>with the help<br>of more<br>pictures of                            |
| 3. | Yuheng Guo         | 2nd<br>December<br>2021 | Effect on<br>biometric<br>recognition<br>systems of<br>covid 19. | A detailed<br>study of the<br>impact of<br>covid 19 on<br>different<br>biometric<br>systems. | CNN, L2SR,<br>LSTM,<br>DeepSignDB<br>Database. | performance.<br>In this paper,<br>it is found that<br>real masked<br>faces are<br>more suitable<br>for training<br>than<br>simulated<br>faces. It also<br>proposed that<br>deep learning<br>models are<br>expected to<br>produce<br>better result<br>with the help<br>of more<br>pictures of<br>masked faces            |
| 3. | Yuheng Guo         | 2nd<br>December<br>2021 | Effect on<br>biometric<br>recognition<br>systems of<br>covid 19. | A detailed<br>study of the<br>impact of<br>covid 19 on<br>different<br>biometric<br>systems. | CNN, L2SR,<br>LSTM,<br>DeepSignDB<br>Database. | performance.<br>In this paper,<br>it is found that<br>real masked<br>faces are<br>more suitable<br>for training<br>than<br>simulated<br>faces. It also<br>proposed that<br>deep learning<br>models are<br>expected to<br>produce<br>better result<br>with the help<br>of more<br>pictures of<br>masked faces<br>in real |

## © 2023 IJCRT | Volume 11, Issue 2 February 2023 | ISSN: 2320-2882

| 4. | L. Vetrivendan,   | 4 <sup>th</sup> April, | Smart Voting | In this paper is | Eigen face   | It is found     |
|----|-------------------|------------------------|--------------|------------------|--------------|-----------------|
|    | Dr.R. Viswanathan | 2018                   | System       | used to          | algorithm    | that the        |
|    | J. AngelinBlessy  |                        | Support      | maintain high    | (using PCA   | proposed        |
|    |                   |                        | Through      | level            | projections  | model in this   |
|    |                   |                        | Face         | biometrics       | projections. | naper uses      |
|    |                   |                        | Pacconition  | security. The    |              | three labels of |
|    |                   |                        | Recognition. | details data of  |              |                 |
|    |                   |                        |              | voters are       |              | security for    |
|    |                   |                        |              | stored in the    |              | facial          |
|    |                   |                        |              | database         |              | authentication  |
|    |                   |                        |              | server. In this  |              | for a person    |
|    |                   |                        |              | voting system    |              | to vote.        |
|    |                   |                        |              | the voter        |              |                 |
|    |                   |                        |              | stands in front  |              |                 |
|    |                   |                        |              | of the PC and    |              |                 |
|    |                   |                        |              | the camera       |              |                 |
|    |                   |                        |              | reads the        |              |                 |
|    |                   |                        |              | image of the     |              |                 |
|    |                   |                        |              | voter and the    |              |                 |
|    |                   |                        |              | micro            |              |                 |
|    |                   |                        |              | controller       |              |                 |
|    |                   |                        |              | sends the        |              |                 |
|    |                   |                        |              | details to the   |              |                 |
|    |                   |                        |              | web              |              |                 |
|    |                   |                        |              |                  | 2            |                 |
|    |                   |                        | U.S.         | application      |              |                 |
|    |                   |                        |              | through the      |              |                 |
|    |                   |                        |              | serial port. The |              |                 |
|    |                   |                        |              | web              |              | -               |
|    |                   |                        |              | application      |              |                 |
|    |                   |                        |              | software         |              |                 |
|    |                   |                        |              | maintains the    |              |                 |
|    |                   |                        |              | person data      |              |                 |
|    |                   |                        |              | base.            | V            |                 |
|    |                   |                        |              | - ab <b>-</b> .  |              |                 |

| 6. | Nandan Gowda          | 8th    | Smart Voting  | In this paper is            |                          | In this paper |
|----|-----------------------|--------|---------------|-----------------------------|--------------------------|---------------|
|    | S H, Jayam Haresh     | August | System using  | used to                     |                          | the proposed  |
|    | Tharun, Ashik B N,    | 2020   | Face          | maintain high               |                          | model         |
|    | Deepak Lamani,        |        | Recognition.  | level                       |                          | developed a   |
|    | Priyadarshini J Patil |        | C             | biometrics                  |                          | secure        |
|    | A.                    |        |               | security. The               |                          | internet      |
|    |                       |        |               | server database             |                          | voting system |
|    |                       |        |               | stores the voter            |                          | which omits   |
|    |                       |        |               | details. In this            |                          | the           |
|    |                       |        |               | voting system               |                          | requirement   |
|    |                       |        |               | the voter                   |                          | of manual     |
|    |                       |        |               | of the PC and               |                          | voting        |
|    |                       |        |               | the camera                  |                          | system        |
|    |                       |        |               | reads the                   |                          | system.       |
|    |                       |        |               | image of the                |                          |               |
|    |                       |        |               | voter details               |                          |               |
|    |                       |        |               | and the                     |                          |               |
|    |                       |        |               | microcontroller             |                          |               |
|    |                       |        |               | sends the                   |                          |               |
|    |                       |        |               | details to the              |                          |               |
|    |                       |        |               | web                         |                          |               |
|    |                       |        |               | Application.                |                          |               |
| 7. | Pranav KB,            | 2020   | Design and    | In t <mark>his paper</mark> | HOG, RVM,                | In this paper |
|    | manikandan J,         |        | evaluation of | design and                  | PCA, MDC,                | the maximum   |
|    |                       |        | a real time   | evaluation of a             | KN <mark>N, ICA</mark> . | accuracy of   |
|    |                       |        | face          | real time face              |                          | 98.75% and    |
|    |                       |        | recognition   | recognition                 |                          | 98.00% is     |
|    |                       |        | system using  | system using                |                          | obtained from |
|    |                       |        | convolutional | neural network              | 0                        | the proposed  |
|    |                       |        | neural        | proposed                    | / C.N                    | system on     |
|    |                       |        | network.      | details about               |                          | using AT&T    |
|    |                       |        |               | the tuning of               | 13                       | and real time |
|    |                       |        |               | CNN                         |                          | inputs        |
|    |                       |        |               | parameters to               |                          | respectively. |
|    |                       |        |               | assess and                  |                          |               |
| L  | 1                     |        | L             | 1                           | 1                        |               |
|    |                       |        |               | enhance the                 |                          |               |
|    |                       |        |               | recognition                 |                          |               |
|    |                       |        |               | accuracy of the             |                          |               |
|    |                       |        |               | proposed                    |                          |               |

system are also

reported.

## © 2023 IJCRT | Volume 11, Issue 2 February 2023 | ISSN: 2320-2882

| 8.  | Xudong sun, Peng<br>chena Wu, Steven<br>C.H. hoi,                                              | 28 <sup>th</sup><br>January<br>2017  | Face<br>detection<br>using deep<br>learning: An<br>improved<br>faster RCNN<br>approach.                                            | In this report,<br>it presents a<br>new face<br>detection<br>scheme using<br>deep learning<br>and achieve the<br>state-of-the-art<br>detection<br>performance<br>on the<br>wellknown<br>FDDB.                | Feature<br>concatenation,<br>hard negative<br>mining,<br>multiscale<br>training,<br>model<br>pretraining. | In this paper<br>they extended<br>the state -<br>ofthe -art<br>faster<br>RCNN frame<br>work for<br>generic object<br>detection and<br>achieved the<br>state-of-theart<br>results.                                      |
|-----|------------------------------------------------------------------------------------------------|--------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 9.  | Preeti nagrath,<br>Rachna jain, agam<br>madan, rohan arora,<br>Piyush kataria, jude<br>Hemanth | 31 <sup>st</sup><br>December<br>2020 | Areal time<br>DNN based<br>face mask<br>detection<br>system using<br>single shot<br>multi box<br>detector and<br>mobile Net<br>V2. | The proposed<br>approach in<br>this paper is<br>used deep<br>learning. This<br>paper uses<br>single shot<br>multi box<br>detector as face<br>detector and<br>mobile Net V2<br>architecture as<br>frame work. | Dep learning,<br>tensor flow,<br>keras.                                                                   | In this paper<br>it helps the<br>concerned<br>authorities in<br>this great<br>pandemic<br>situation and<br>other<br>resources<br>provide<br>advanced<br>models such<br>as face<br>recognition,<br>facial land<br>mark. |
| 10. | Serign modou Bah,<br>Fang Ming                                                                 | 26 <sup>th</sup><br>December<br>2019 | An improved<br>face<br>recognition<br>algorithm<br>and its<br>application in<br>attendance<br>management<br>system.                | In this paper<br>experiment<br>show that the<br>method is very<br>accurate,<br>reliable and<br>robust for face<br>recognition<br>system that can<br>be practically<br>implemented<br>in real life            | LBP, SVM,<br>DCP, PCA                                                                                     | In this paper<br>the LBP code<br>improve and<br>the<br>experiment<br>result shows<br>that the<br>method is<br>very accurate<br>and robust for<br>facial<br>recognition                                                 |
|     |                                                                                                |                                      |                                                                                                                                    | environment as<br>an automatic<br>attendance<br>management<br>system.                                                                                                                                        |                                                                                                           | system in<br>attendance<br>management<br>system.                                                                                                                                                                       |

| 11. | Jamal Hussain shah, | 13 <sup>th</sup> | Robust face   | This paper                 | PCA, ICA, | In this paper  |
|-----|---------------------|------------------|---------------|----------------------------|-----------|----------------|
|     | Muhammad sharif,    | Februarv         | recognition   | addresses the              | SVM, LDA  | the            |
|     | mudassar raza,      | 2015             | technique     | issues.                    |           | recognition    |
|     | marryam murtaza     |                  | under         |                            |           | rate increases |
|     | and saeed-urrehman  |                  | varying       |                            |           | which          |
|     |                     |                  | illumination. |                            |           | minimizes the  |
|     |                     |                  |               |                            |           | within class   |
|     |                     |                  |               |                            |           | scatter and    |
|     |                     |                  |               |                            |           | achieve        |
|     |                     |                  |               |                            |           | almost 35%     |
|     |                     |                  |               |                            |           | to 50%         |
|     |                     |                  |               |                            |           | recognition    |
|     |                     |                  |               |                            |           | rate.          |
| 12. | V.Sathiyanarayanan, | 2020             | Automatic     | In this paper              | HAAR      | In this paper  |
|     | R. Karthick, R.     |                  | attendance    | we apply facial            | Cascade,  | the facial     |
|     | Gokul Nath, Yogesh  |                  | system using  | recognition                | LBPH, PCA | recognition    |
|     | kumar               |                  | face          | into an                    |           | technique      |
|     |                     |                  | recognition.  | attendance                 |           | used for the   |
|     |                     |                  |               | checking                   |           | purpose of     |
|     |                     |                  |               | system that                |           | making         |
|     |                     |                  |               | uses faces of              |           | attendance     |
|     |                     |                  |               | registered                 |           | and the        |
|     |                     |                  |               | people to                  |           | record of the  |
|     |                     |                  |               | check their                |           | student is     |
|     |                     |                  |               | atte <mark>ndan</mark> ce. |           | maintained     |
|     |                     |                  |               |                            |           | correctly.     |
| 13. | Nik ruslawati,      | 30 March         | Library       | In this paper              | HAAR      | In this paper  |
|     | Nik Mustapha,       | 2022             | reservation   | the user can               | Cascade.  | 100% of the    |
|     | Nur athikah         |                  | system using  | easily reserve             |           | respondents    |
|     |                     |                  | face          | room without               |           | understand     |
|     |                     |                  | detection.    | going to the               | 1.3       | and 70% of     |
|     |                     |                  |               | library and                |           | the            |
|     |                     |                  |               | don't have any             |           | respondents    |
|     |                     |                  |               | skin contact.              |           | answered       |
|     |                     |                  |               |                            |           | answered       |
|     |                     |                  |               |                            |           | good to        |
|     |                     |                  |               |                            |           | face into the  |
|     |                     |                  |               |                            |           | system and     |
|     |                     |                  |               |                            |           | 10% roomand    |
|     |                     |                  |               |                            |           | noor answer    |
|     |                     |                  |               | 1                          |           | poor answer.   |

#### **3.CONCLUSION:**

In recent years face detection has achieved considerable attention from researchers from in biometrics, paper recognition and computer vision groups. There is countless security and forensic applications requiring the use of face recognition technologies. As you can see, face detection and recognition system are the most accurate. In this paper, we have presented a survey of face recognition techniques and related work. We hope that this survey paper will further encourage researchers in this field to participates and pay more attention to use of local techniques for face recognition system.

References:

[1]. Automatic Attendance System Attendance System Using Face Recognition-Mr. P. Satyanarayana, Satyanarayana, R. Karthick, R. Gokul Nath , H. Yogesh Kumar-(ISSN-2349-5162)

[2]. Library Reservation System Using Face Detection- Nik Ruslawati Nik Mustapa, Nur Athikah Fatehah Rosli-JSRINN Vol-7, No-1(2022), (pp70-81)

[3]. <u>https://aws.amazon.com/what-is/facial-recognition/</u>

[4]. Face Recognition: A Survey, Muhammad Sharif, Farah Naz, Mussarat Yasmin, Muhammad Alyas Shahid, Amjad Rehman, JEST review 10(2) (2017) 166-177

[5]. Jonsson Kenneth, et al. "Support vector machines for face authentication". Image and vision computing 20.5(2002):369-375

[6]. A Review Of Face Recognition Technology, Lixiang Li, Xiaohui Mu, Siying, Hapeing Peng

[7]. J.Li. ,B. Zhao, H. Zhang and J. Jiao, "Face Recognition system using SV2009, M classifier and feature Extraction by PCA and LDA combination" in

Proc.Int.Conf.Comput.Intell.Softw.Eng., Dec.2009, pp.1-4

[8]. Face Recognition and Identification Using Deep Learning, KH Toeh, RC Ismail, SZM Naziri, R Hussin, MNM Isa, MSSM Basir

[9]. Impact On Biometric Identification Systems Of COVID-19, Yuheng Guo, Volume 2021/Article ID 3225687 [10]. Research On Face Recognition Classification Based on Improved Google Net, Zhigang Yu, YunYun Dong, Jihong Cheng, Miamio Sun, and Feng Su, Volume 2022, Article ID 7192306 [11]. Smart Voting System Support Through Face Recognition, L. Vetrivendan, Dr. R. Viswanathan, J. AngelinBlessy, ISSN(online)2394-2320, Vol-5, Issue-4, April 2018

[12]. Smart Voting System through Facial Recognition, Nilam Choudhuri, Shikhar Agarwal, Geerija Lavania, E-ISSN:7639, Vol-7, Issue -2, pp.7-10, April 2019

[13] Smart Voting System Using Face Recognition Nadan Gowda S H, Jayam Haresh Tharun,

Ashik B N Deepak Lamani, Priyadarshini J Patil A, e-ISSN:2395-0056, p-ISSN:2395-0072

[14]. Face Detection Using Deep Learning: An Improved Faster RCNN Approach, Xudong Sun, Pengcheng Wu, Steven C.H. Hoi, January 2017, Neurocomputing 299, DOI: 10.1016/j.neucom 2018.03.030

[15]. Design and Evaluation of a Real-Time Face Recognition System using Convolutional Neural Networks, Pranav K B, Manikandan J, Volume 171, 2020, Pages 1651-1659

[16]. SSDMNV2: A Real time DNN Based face mask detection system using single shot multibox detector and MobileNetV2, Preeti Nagrath, Rachna Jain, Agam Madan, Rohan Arora, Piyush Kataria, Jude Hemanth D, December 2020.Sustainable cities and society66(6789):102692, DOI: 10.1016/j.scs.2020.102692

[15]. An improved face Recognition algorithm and its application in attendance management system, Sering Modou Bah, Fang Ming, Volume 5, March 2020, 100014

[16]. Robust Face Recognition under Varying Illumination, Jamal Hussain Shah, Muhammad

Sharif, Mudassar Raza, Marryam Murtaza, Saeed-Ur-Rehman, Volume 13, Issue 1, February 2015, Pages 97-105