**IJCRT.ORG** 

ISSN: 2320-2882



# INTERNATIONAL JOURNAL OF CREATIVE RESEARCH THOUGHTS (IJCRT)

An International Open Access, Peer-reviewed, Refereed Journal

# SURVEY ON 3D MODELING OF X-RAY IMAGES USING VIRTUAL REALITY

Kevin Sheth<sup>1</sup>, Ajay Gaur<sup>2</sup>, Yash Paliwal<sup>3</sup>, Kadambari Kate<sup>4</sup>, Mrs. Sonal Fatangare<sup>5</sup> Department of Computer Engineering, Savitribai Phule Pune University, Pune, Maharashtra, India

*Abstract:* Virtual reality (VR) is computer-generated stereo visuals that replace the actual world surroundings of a consumer around them. Virtual reality may be supplied to consumers through headsets like HTC Vive, Oculus Rift, and Microsoft's HoloLens or through the camera of a mobile phone. Virtual reality can replace or lessen the consumer's belief in truth in practical and experimental implementations. Virtual reality has been adopted in various industries such as retail, healthcare, science education, and real estate. The motivation behind this project is to enhance the visualize the x-ray in a better way using the technology of virtual reality. The outcome of the project is to input an x-ray image into the system. The system will convert the 2D image to 3D and then the 3D model will be shown in a VR headset. So, the image can be easily visualized in 360 degrees and can get clear visualization from the image. There are many models that measure the bone size for replacement but some are less accurate. Still, our model gives proper measurement and can visualize the x-ray in a VR headset to get more information so this founds an innovation in our proposed model.

*Keywords:* Canny Edge detection, Image Processing & Digital Image, Digital, X-Ray, VR, Knee Arthroplasty, Google Cardboard.

# I. INTRODUCTION

Image processing is a method to perform some operations on an image to get useful information from it. Currently, the use of digital images for diagnosis of diseases in healthcare is very common. X-ray datasets are used for analysis in order to provide a clear diagnosis. The main idea here is to build a system using canny edge detection algorithm that can sketch the edges of knee bone present in a X-Ray image and identify the exact size of the bone for bone replacement by using virtual reality technique. In this system a 3D model of the bone which is to be replaced in place of original bone is to be built.

# 1.1 MOTIVATION:

The motivation behind this project is to enhance and visualize the x-ray in better way using the technology of AR/VR. We found knee bone replacement problem is very serious in real life. My father had injury of knee and it was very critical that, doctor told us about replacement of the knee bone with the artificial bone was necessary but there is one problem that occur after the replacement of bone is that it is difficult to match the artificial bone size with original bone size as replaced bone is not always accurate in size. So, we were motivated to solve this problem and by implementing VR in our system we will build accurate 3D model of the replacing bone.

# **1.2 GOALS AND OBJECTIVES:**

- To study and identify current VR application and Image processing.
- Creation of adaptive virtual 3D environments.
- To get a 3D model build using the unity tool.
- To create 3D image by use of Caney Edge image processing algorithm with improved accuracy.

# **1.3 MATHEMATICAL CALCULATIONS:**

# 1.3.1 Noise Reduction-

Edge detection results are very sensitive to image noise, as background computations are primarily based on derivatives. One way to denoise an image is to smooth it with Gaussian Blur. The formula for a Gaussian filter kernel of size  $(2k+1)\times(2k+1)$  is:

$$H_{ij} = \frac{1}{2\pi\sigma^2} \exp\left(-\frac{(i-(k+1))^2 + (j-(k+1))^2}{2\sigma^2}\right); 1 \le i, j \le (2k+1)$$
(1)

#### www.ijcrt.org

# 1.3.2 Gradient Calculation-

The Compute Gradients step finds the strength and direction of edges by computing the gradients of the image using the edge detection operator. The gradient magnitude G and gradient  $\theta$  are calculated as follows:

$$|\mathbf{G}| = \sqrt{I_x^2 + I_y^2}, \qquad (2)$$
  
$$\phi(x, y) = \arctan\left(\frac{I_y}{I_x}\right) \qquad (3)$$

# **II. LITERATURE SURVEY**

Table 1 Literature Survey

| SR. | PAPER TITLE         | PRE-            | FEATURE                | ACCURACY | POST PRE-         | RESEARCH        |
|-----|---------------------|-----------------|------------------------|----------|-------------------|-----------------|
| NO. | PUBLICATION         | PROCESSING      | EXTRACTION             |          | PROCESSING        | GAP             |
|     | DETAILS             |                 | AND                    |          |                   | IDENTIFIED      |
|     |                     |                 | CLASSIFICATION         |          |                   |                 |
| 1   | Image Segmentation  | Techniques used | Different techniques   | 90%      | By comparative    | Comparative     |
|     | Using Various Edge  | in the past     | used for segmentation  |          | study it is       | study can be    |
|     | DetectionTechniques | required        | of satellite images    |          | proved that       | explained &     |
|     |                     | extensive       | are:                   |          | Kiresh, emt and   | experiments     |
|     |                     | computation and | 1. Sobel operator      |          | perwitt           | can be carried  |
|     |                     | are time        | technique              |          | techniques        | out for         |
|     |                     | consuming.      | 2. Prewitt technique   |          | respectively are  | different       |
|     |                     |                 | 3. Kiresh technique    |          | the best          | techniques on   |
|     |                     |                 | 4. Laplacian           |          | techniques for    | different type  |
|     |                     |                 | technique              |          | edge detection    | of images.      |
|     |                     |                 | 5. Canny technique,    |          | of satellite      |                 |
|     |                     |                 | 6. Roberts technique   |          | image.            |                 |
|     |                     |                 | 7. Edge maximization   |          |                   |                 |
|     |                     |                 | technique (emt).       | 0.694    | A 6               | A 11            |
| 2   | Edge Detection      | An analysis of  | An overview of edge    | 86%      | A soft-           | A combination   |
|     | Techniques for      | recent soft     | detection theory for   |          | computing         | of techniques   |
|     | Image Segmentation  | computing       | image segmentation     | · 12     | approach          | can be further  |
|     | A Survey of Soft    | approaches to   | using soft computing   |          | demonstrates the  | used to         |
|     | Ammonohog           | edge detection  | approaches based on    |          | efficiency of     | forecase        |
|     | Approaches          | lor             | luzzy logic, genetic   |          | image             | lorecast        |
|     |                     | segmentation.   | algorithms, and        |          | segmentation.     | accuracy and    |
| 2   | Implementation of   | Drawiously used | Implemented and        | 0.20/    | The Conny edge    | This algorithm  |
| 3   | implementation of   | systems or      | avaluated different    | 92%      | detector gives    | has been        |
|     | detection technique | algorithms had  | edge detection         |          | better results    | improved and    |
|     | for real world      | poor accuracy   | techniques like        |          | compared to       | may be          |
|     | images              | poor accuracy.  | 1 Image canturing      |          | others in some    | improved        |
|     | iniuges.            |                 | 2. Application of      |          | positive          | further in the  |
|     |                     |                 | gaussian filter        |          | respects It is    | future The      |
|     |                     |                 | 3. Computing the       |          | less susceptible  | improved        |
|     |                     |                 | gradients and          |          | to noise, more    | Canny           |
|     |                     |                 | directions using sobel |          | adaptable.        | algorithm can   |
|     |                     |                 | operator.              |          | solves the        | detect edges in |
|     |                     |                 | 4. Non-maximum         |          | streaking         | color images    |
|     |                     |                 | suppression.           |          | problem,          | without         |
|     |                     |                 | 5. Hysteresis          |          | provides better   | converting to   |
|     |                     |                 | thresholding           |          | localization, and | gray images,    |
|     |                     |                 | 6. Robert's cross      |          | detects sharper   | and is an       |
|     |                     |                 | operator.              |          | edges compared    | improved        |
|     |                     |                 | 7. Prewitt's operator. |          | to others.        | Canny           |
|     |                     |                 |                        |          |                   | algorithm for   |
|     |                     |                 |                        |          |                   | automatic       |
|     |                     |                 |                        |          |                   | extraction of   |
|     |                     |                 |                        |          |                   | moving objects  |
|     |                     |                 |                        |          |                   | in image        |
|     |                     |                 |                        |          |                   | guides.         |
| 4   | Edge detection      | Very large      | The relative           | 87%      | Marr-Hildreth,    | Detecting       |
|     | techniques for      | amount of edge  | performance of         |          | Log, and Canny    | noise-free and  |
|     | Image segmentation. | detection       | various edge           |          | Edge detectors    | accurate        |
|     |                     | techniques were | detection techniques   |          | produce nearly    | images from     |
|     |                     | available, each | is carried out with an |          | identical edge    | original images |
|     |                     | technique       | image by using         |          | maps.             | is a difficult  |
|     |                     | designed to be  | MATLAB software.       |          |                   | task for the    |
| 1   |                     | perceptive to   |                        | 1        |                   |                 |

#### www.ijcrt.org

# © 2023 IJCRT | Volume 11, Issue 1 January 2023 | ISSN: 2320-2882

|           |                                                                                             | certain types of             |                        |      |                   | research            |  |
|-----------|---------------------------------------------------------------------------------------------|------------------------------|------------------------|------|-------------------|---------------------|--|
| 5         | Edge detection using                                                                        | eages.                       | The officiency of the  |      | Proposed          | This can prove      |  |
| 5         | simple image                                                                                | methods of edge              | edge detection         | 90%  | method makes      | to be a             |  |
|           | arithmetic                                                                                  | detection were               | algorithm using        | 2070 | the text in       | valuable            |  |
|           |                                                                                             | complex.                     | image arithmetic in    |      | pictures more     | resource in real    |  |
|           |                                                                                             | · · · · · · · · ·            | qualitative and        |      | clear as seen in  | world               |  |
|           |                                                                                             |                              | quantitative terms is  |      | the image of      | applications        |  |
|           |                                                                                             |                              | demonstrated.          |      | detected edges,   | such as             |  |
|           |                                                                                             |                              |                        |      | and therefore     | handwriting         |  |
|           |                                                                                             |                              |                        |      | makes it easier   | recognition and     |  |
|           |                                                                                             |                              |                        |      | to segment or     | text extraction.    |  |
|           |                                                                                             |                              |                        |      | extract.          |                     |  |
| 6         | Edge Detection                                                                              | Conventional                 | Comparing the sobel    | 87%  | According to      | Its research        |  |
|           | Based on Improved                                                                           | Sobel edges are              | operator with several  |      | comparisons       | findings that       |  |
|           | Sobel Operator.                                                                             | importactly                  | other edge detection   |      | among all kinds   | application         |  |
|           |                                                                                             | detected                     | frequently and         |      | operators the     | intelligent         |  |
|           |                                                                                             | detected.                    | making a further       |      | traditional sobel | decision-           |  |
|           |                                                                                             |                              | study on the classical |      | operator make a   | making              |  |
|           |                                                                                             |                              | sobel operator.        |      | better            | technology in       |  |
|           |                                                                                             |                              | 1                      |      | improvement.      | agriculture and     |  |
|           |                                                                                             |                              |                        |      |                   | animal              |  |
|           |                                                                                             |                              |                        |      |                   | husbandry.          |  |
| 7         | Medical image Edge                                                                          | Supe <mark>riority of</mark> | the experiments was    | 90%  | Computation       | The Gaussian        |  |
|           | detection using                                                                             | conventional                 | carried out on both    |      | time of the       | gradient            |  |
|           | Gauss Gradient                                                                              | edge detectors               | the berkeley           |      | gauss gradient    | operator can be     |  |
|           | operator.                                                                                   | like sobel,                  | segmentation dataset   |      | approach was      | a powerful tool     |  |
|           |                                                                                             | perwitt, roberts,            | (bsd) and real medical |      | then the log      | 10r<br>talamadiaina |  |
|           |                                                                                             | algorithm was                | the performance of     |      | than the log,     | applications        |  |
|           |                                                                                             |                              | the gauss gradient     | _    | prewitt           | applications.       |  |
|           |                                                                                             | 1055                         | edge detector.         | × 12 | approaches, and   |                     |  |
|           |                                                                                             |                              |                        |      | in terms of the   | J                   |  |
|           |                                                                                             |                              |                        |      | quality of edge   |                     |  |
|           |                                                                                             |                              |                        |      | tracing the gauss |                     |  |
|           |                                                                                             |                              |                        |      | gradient          |                     |  |
|           |                                                                                             |                              |                        |      | outperforms the   |                     |  |
|           |                                                                                             |                              |                        |      | other             |                     |  |
|           |                                                                                             |                              |                        |      | conventional      |                     |  |
| 0         | A novel adap                                                                                | <b>D</b> ecent image         | A noval annuagh to     | 900/ | Droposod          | A mail time         |  |
| 0         | detection method                                                                            | edge detection               | image edge detection   | 89%  | approach          | A real-time         |  |
|           | based on efficient                                                                          | methods are                  | using dual 2D          |      | improved a        | implementation      |  |
|           | Gaussian binomial                                                                           | based on                     | Gaussian binomial      |      | significant       | based fnga          |  |
|           | filter.                                                                                     | exploiting                   | filters.               |      | advantage of      | (field-             |  |
|           |                                                                                             | spatial high-                |                        |      | gaussian          | programmable        |  |
|           |                                                                                             | frequency are                |                        |      | binomial filter   | gate array) or      |  |
|           |                                                                                             | strictly sensitive           |                        |      | in terms of       | gpu (graphics       |  |
|           |                                                                                             | to noise, and                |                        |      | speed and         | processing          |  |
|           |                                                                                             | their                        |                        |      | efficiency in     | unit) is an issue   |  |
|           |                                                                                             | performance                  |                        |      | comparison than   | that deserves       |  |
|           |                                                                                             | the increasing               |                        |      | other known       | invostigation       |  |
|           |                                                                                             | noise level                  |                        |      | methods.          | investigation.      |  |
| 9         | An improved prewitt                                                                         | The traditional              | A Prewitt algorithm    | 88%  | The unoraded      | Next work is to     |  |
|           | algorithm for edge                                                                          | Prewitt edge                 | [2] for edge detection | 0070 | algorithm         | find a more         |  |
|           | detection based on                                                                          | detection                    | based on Otsu          |      | greatly improves  | efficient           |  |
|           | noised image.                                                                               | algorithm is                 | threshold is proposed  |      | anti-noise        | automatic           |  |
|           | C                                                                                           | sensitive to                 | in research, where the |      | performance and   | threshold and a     |  |
|           |                                                                                             | noise.                       | edge image is          |      | effectively       | more effective      |  |
|           |                                                                                             |                              | denoised by an 8-      |      | detects edges in  | denoising           |  |
|           |                                                                                             |                              | neighbour window.      |      | randomly noisy    | methodto            |  |
|           |                                                                                             |                              |                        |      | images.           | detect edges        |  |
| 10        | C 4                                                                                         | Edge date the                | To comment d'fferre (  | 050/ | Contra E 1        | better.             |  |
| 10        | Study and                                                                                   | Euge detection               | 10 compare different   | 93%  | Canny Edge        | we can carry        |  |
|           | of Different Edge                                                                           | nroblem in                   | operators and analyze  |      | produces higher   | experiments to      |  |
|           | Detectors for Image                                                                         | problem in                   | their performance      |      | object edge       | check               |  |
| · · · · · |                                                                                             | -                            | inch periormanee       |      |                   | Jucon               |  |
| l. I.     | IJCRT2301487 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org d855 |                              |                        |      |                   |                     |  |

| www.ijcrt.org |               |               | © 2023 IJCRT   Volu | ume 11, Issue 1 | January 2023    | ISSN: 2320-2882 |
|---------------|---------------|---------------|---------------------|-----------------|-----------------|-----------------|
|               | Segmentation. | image         | using MATLAB        |                 | detection       | performance     |
|               |               | segmentation. | software.           |                 | accuracy with   | and accuracy.   |
|               |               |               |                     |                 | higher entropy, |                 |
|               |               |               |                     |                 | Psnr, Mse and   |                 |
|               |               |               |                     |                 | running time    |                 |
|               |               |               |                     |                 | compared to     |                 |
|               |               |               |                     |                 | Sobel, Roberts, |                 |
|               |               |               |                     |                 | Prewitt, Zero   |                 |
|               |               |               |                     |                 | Crossing and    |                 |
|               |               |               |                     |                 | Log.            |                 |

# III. ALGORITHMIC SURVEY

Sr. **Paper Title** Author Algorithm Image BONET Performance Advantage and & Year Used Modalities YPE Metrics Disadvantages No. X-Ray Images 1 Analysis on Leg Myint, et Harris corner Leg 82% accuracy Fracture location is Bone Fracture detection, Bone pointed out by Harris al 2018 Detection and Decision Tree, corner points. Classification **KNN** Decision Tree is used Using X-ray to classify image as Images fractured or nonfractured. KNN is suitable for pattern recognition and supports to classify transverse, Oblique, and Comminuted fracture types. 2 Automatic Tripathi, Canny edge X-Ray Images Thigh 84.7% accuracy Canny edge detects detection of Ankur detection, bone. the bone edge fracture in Mani, et Support accurately and Sobel Vector operator detects the femur bones al 2017 Machine. clear fractured edge. using image processing SVM is used to classify image as fractured or nonfractured. 3 Bone Fracture Johari, et Canny Edge X-Ray Images Human 87.3% accuracy Sobel operator with **Detection Using** Detection Bone the parameter sigma al. Edge Detection 2018 4.75 is used to Technique enhance the efficiency of the system and it diagnoses the hairline fracture more effectively. Canny Edge X-Ray Images 4 Detecting leg Myint, et Leg Much higher bone fracture in Detection Bone accuracy can be al. x-ray images 2016 achieved by gaining a better dataset with high resolution images. X-Ray Images 5 **Bone Fracture** Kurniawa Canny Edge Bone 66.7% accuracy Performance and **Detection Using** detection accuration of the n. et al. OpenCV 2014 using OpenCV detection system affected by the quality of the image. The better the image quality, better the results. Anu, T. Sobel Edge X-Ray/CT 6 Detection of Leg 85% accuracy Gray Level Co-**Bone Fracture** C, et al. Detector using images Bone occurrence Matrix using Image 2015 GLCM (GLCM) method is Processing features. used to extract Methods textural features such

#### Table 2 Algorithmic Survey

IJCRT2301487 International Journal of Creative Research Thoughts (IJCRT) <u>www.ijcrt.org</u> d856

# © 2023 IJCRT | Volume 11, Issue 1 January 2023 | ISSN: 2320-2882

|    |                 |           |                |              |       |                 | as entropy, contrast,  |
|----|-----------------|-----------|----------------|--------------|-------|-----------------|------------------------|
|    |                 |           |                |              |       |                 | correlation,           |
|    |                 |           |                |              |       |                 | homogeneity. Results   |
|    |                 |           |                |              |       |                 | are evaluated based    |
|    |                 |           |                |              |       |                 | on GLCM features.      |
| 7  | Fracture        | Cao, Yu,  | Random         | X-Ray Images | Human | 81.2% accuracy  | This system can be     |
|    | Detection in X- | et al     | forests for    |              | Bone  |                 | used for various types |
|    | Ray Images      | 2015      | feature fusion |              |       |                 | of fractures over      |
|    | through Stacked |           |                |              |       |                 | different anatomical   |
|    | Random Forests  |           |                |              |       |                 | regions. SVM and       |
|    | Feature Fusion  |           |                |              |       |                 | single layer random    |
|    |                 |           |                |              |       |                 | forests increase the   |
|    |                 |           |                |              |       |                 | effectiveness.         |
|    |                 |           |                |              |       |                 | Accuracy could be      |
|    |                 |           |                |              |       |                 | further improved by    |
|    |                 |           |                |              |       |                 | incorporating more     |
|    |                 |           |                |              |       |                 | types of local         |
|    |                 |           |                |              |       |                 | features.              |
| 8  | Multiple        | Umadevi,  | Support        | X-Ray Images | human | SVM Accuracy –  | Experimental results   |
|    | classification  | N, et al  | Vector         |              | bone  | 91.89           | showed that the        |
|    | system for      | 2012      | Machine,       |              |       | BPNN            | ensemble model that    |
|    | fracture        |           | Back           |              |       | Accuracy— 90.46 | combines BPNN +        |
|    | detection in    |           | Propagation    |              |       | KNN Accuracy—   | SVM + KNN with         |
|    | human bone      |           | Neural         |              |       | 89.76           | both texture and       |
|    | xray images     |           | Network,       |              |       |                 | shape features         |
|    |                 |           | KNN            |              |       |                 | significant            |
|    |                 |           |                |              |       |                 | improvement in terms   |
|    |                 |           |                |              |       |                 | of accuracy and        |
|    |                 |           |                | THE T        | **    | 00 4404 4       | precision.             |
| 9  | Bone Fracture   | D.P.      | Deep Neural    | X-Ray Images | Human | 92.44% Accuracy | In the approach long   |
|    | Detection and   | Y adav et | Network        |              | Bone  |                 | bone, short bones and  |
|    | Classification  | al. 2020  |                |              |       | 12              | flat bones fracture    |
|    | using Deep      |           |                |              |       | P               | detection has been     |
|    | Learning        |           |                |              |       |                 | proposed using deep    |
|    | Approach        |           |                |              |       |                 | The approach.          |
|    |                 |           |                |              |       |                 | The classification     |
|    |                 |           |                |              |       |                 | model is 02 44%        |
|    |                 |           |                |              |       |                 | Inodel IS 92.44%,      |
|    |                 |           |                |              |       |                 | Large dataset not      |
| 10 | X-Ray Bone      | Leonardo  | Deen Learning  | X-Ray Images | Human | accuracy 94%    | achieved results       |
| 10 | Fracture        | Tanzi et  | Deep Learning  | A Ruy Inuges | Bone  | accuracy 5170   | comparable to those    |
|    | Classification  | al. 2020  |                |              | Done  | 13              | of humans in hone      |
|    | Using Deep      | ul. 2020  |                |              |       |                 | fracture               |
|    | Learning A      |           |                |              |       |                 | classification number  |
|    | Baseline for    |           |                |              |       |                 | of wrong diagnoses     |
|    | Designing a     |           |                |              |       |                 | er meng unghoud        |
|    | Reliable        |           |                |              |       |                 |                        |
|    | Approach        |           |                |              |       |                 |                        |
|    | **              |           |                |              |       |                 |                        |

# IV. PROPOSED METHODOLOGY

Below figure is the system architecture of the proposed system.



recommendations

#### Fig 1: system architecture.

4.1 The proposed system consists of the layers i.e Data layer, Logic Layer, Presentation Layer.

#### i. Data Layer:

First layer is the Data layer it is the starting phase of the system. In data layer the Knee bone X-Ray image input is given to the system.

#### ii. Logic Layer:

In this layer the system will find the edges and measurement of the bone using Canny Edge Detection Algorithm. The output of the algorithm is in the form of image that image will be convert into 3D Model.

#### iii. Presentation Layer:

In Presentation layer the 3D Model is shown in Google Cardboard VR.

By using this system you can get the measurement for bone implant and visualize the bone in more precisely.

4.2 The functional requirement of the system are as follows:

1. Python:

Python is a high-level, general-purpose programming language. His design philosophy uses clear indentation to emphasize code readability. Python is dynamically typed and garbage collected. It supports multiple programming paradigms, including structured programming, object-oriented programming, and functional programming.

#### 2. Unity: -

Unity is a cross-platform game engine developed by Unity Technologies and first announced and released as a Mac OS X game engine at the Apple Worldwide Developers Conference in June 2005. The engine has since been gradually expanded to support various desktop, mobile, console and virtual reality platforms.

#### 3. Google Cardboard SDK: -

The open-source Cardboard SDK lets you create immersive, cross-platform VR experiences for Android and iOS. Create entirely new VR experiences or enhance existing apps that support VR with essential VR features such as motion tracking, stereoscopic rendering, and user interaction.

# 4. Google Cardboard Goggle: -

Get it, fold it, take a look inside, and immerse yourself in the world of Cardboard. It's a VR experience that starts with a simple viewer that anyone can create or buy. Once you have it, you can explore the multitude of apps that surround you. And with so many viewers available, you're sure to find one that's right for you.

# V. 3D CONVERSION TOOL SURVEY

#### 1. Inkscape:

Inkscape is a free and open source vector graphics editor primarily for creating vector graphics in scalable vector graphics format. Other formats can be imported and exported. Inkscape can render primitive vector shapes and text

#### 2. Blender:

Blender is a free and open source 3D computer graphics software toolset used to create animated films, visual effects, art, 3D printed models, motion graphics, 3D interactive applications, virtual reality and early video games.

#### 3. SelfCAD:

SelfCAD is an online computer-aided design software for 3D modeling and 3D printing released in 2016. It's browser and cloud based. SelfCAD is a mesh-based design program.

# 4. FreeCAD:

FreeCAD is a general-purpose 3D parametric computer-aided design modeler and software application for modeling building information that supports the finite element method.

#### 5. Smoothie-3D:

Smoothie-3D was one of the first widely used image conversion tools. We recently switched from 100% free to a donation model. You can upload an image and draw an outline around it using the tools provided. The program will then generate a 3D rendering based on the outline image. This can be exported as a Slicer compatible file type such as OBJ or STL. Symmetrical images are recommended, as asymmetrical images can lose detail when tracing.

#### 6. Image to Lithophane:

Image to Lithophane is one of the easiest programs to use with lists. Simply upload your photo, select the shape you want (dome, semi-dome, heart, etc.) and download all new lithophanes for FREE! There are also customization options hidden at the top of the screen.

# VI. EXPECTED RESULT



#### VII. CONCLUSION

The digital images of X-Ray for the diagnosis of diseases in healthcare is very common. Digital X-Ray images are used for diagnosing and measuring bone size. But problems occur after the replacement of bone that does match accurately with the original bone size it was very difficult to live with replaced bone that was not accurate in size. Oversizing can result in causing anterior knee pain that can lead to problems such as instability. These techniques are costly and time-consuming. The proposed system has accurately measured the bone size of an X-Ray image that visualizes in VR application. The X-Ray digital data will be given to an application that will find the actual edge of the bone from an X-Ray image. Then the processed image will be converted into a 3D image and the measurement of accurate bone size is visualized in Google Cardboard VR.

#### VIII. REFERENCES

- [1] Stolojescu-Crisan, C., Holban, S.: An Interactive X-Ray Image Segmentation Technique for Bone Extraction. International Work-Conference on Bioinformatics and Biomedical Engineering, pp. 11641171 (2014).
- [2] Chernuhin, N. A.: On an approach to object recognition in X-ray medical images and interactive diagnostics process. IEEE Proceedings: Computer Science and Information Technologies (CSIT) (2013)
- [3] Dougherty, G.: Medical Image Processing: Techniques and Applications (Biological and Medical Physics, Biomedical Engineering). In: Dougherty, G. (eds.). Springer, New York (2011)
- [4] Mahendran, S. K., Baboo, S. S.: Enhanced Automatic X-Ray Bone Image Segmentation using Wavelets and Morphological Operators. In: International Conference on Information and Electronics Engineering, vol. 6, pp. 125–129. Singapore (2011)
- [5] Stolojescu-Crisan, C., Holban, S: A Comparison of X-Ray Image Segmentation Techniques. AECE 13(3),85–92 (2013)
- [6] Muthukrishman, R. and M. Radha., Edge Detection Techniques for Image Segmentation, International Journal of Computer Science & Information Technology (IJCSIT), Vol. 3, No. 6, Dec. 2011.
- [7] R. Maini, and, Dr. H. Aggarwal, Study and Comparison of Various Image Edge Detection Techniques, International Journal of Image Processing (IJIP), Vol. 3, Issue 1.
- [8] Lakshmi,S & V.Sankaranarayanan (2010) "A Study of edge detection techniques for segmentation computing approaches", Computer Aided Soft Computing Techniques for Imaging and Biomedical Applications, 35-41
- [9] Punam Thakare (2011) "A Study of Image Segmentation and Edge Detection Techniques", International Journal on Computer Science and Engineering, Vol 3, No.2, 899-904.
- [10] Chen L C, Papandreou G, Kokkinos I, et al. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs[J]. arXiv preprint arXiv:1606.00915, 2016
- [11] Chen L C, Papandreou G, Kokkinos I, et al. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs[J]. arXiv preprint arXiv:1606.00915, 2016
- [12] Mr. Salem Saleh Al-amri, Dr. N.V. Kalyankar and Dr. Khamitkar S.D :. "Image Segmentation By Using Edge Detection". International Journal on Computer Science and Engineering (IJCSE). (2010)

#### www.ijcrt.org

- [13] Yadav, D.P. and Rathor, S., 2020, February. Bone Fracture Detection and Classification using Deep Learning Approach. In 2020 International Conference on Power Electronics & IoT Applications in Renewable Energy and its Control (PARC) (pp. 282-285). IEEE.
- [14] Tanzi, Leonardo, Enrico Vezzetti, Rodrigo Moreno, and Sandro Moos. "X-Ray Bone Fracture Classification Using Deep Learning: A Baseline for Designing a Reliable Approach." Applied Sciences 10, no. 4 (2020): 1507.
- [15] Myint, Wint Wah, Khin Sandar Tun, and Hla Myo Tun. "Analysis on Leg Bone Fracture Detection and Classification Using Xray Images." Machine Learning Research 3.3 (2018): 49.
- [16] Tripathi, Ankur Mani, et al. "Automatic detection of fracture in femur bones using image processing." 2017 International Conference on Innovations in Information, Embedded and Communication Systems (ICIIECS). IEEE, 2017.
- [17] Johari, Nancy, and Natthan Singh. "Bone Fracture Detection Using Edge Detection Technique." Soft Computing: Theories and Applications. Springer, Singapore, 2018. 11-19.
- [18] Kurniawan, Samuel Febrianto, et al. "BONE FRACTURE DETECTION USING OPENCV." Journal of Theoretical & Applied Information Technology 64.1 (2014).
- [19] Anu, T. C., and R. Raman. "Detection of bone fracture using image processing methods." International Journal of computer applications 975 (2015): 8887.
- [20] Cao, Yu, et al. "Fracture detection in x-ray images through stacked random forests feature fusion." 2015 IEEE 12th international symposium on biomedical imaging (ISBI). IEEE, 2015.
- [21] Umadevi, N., and S. N. Geethalakshmi. "Multiple classification system for fracture detection in human bone x-ray images." 2012 Third International Conference on Computing, Communication and Networking Technologies (ICCCNT'12). IEEE, 2012.
- [22] Salem saleh al-amri1, dr. N.v. kalyankar2 and dr. Khamitkar s.d 'Image Segmentation by Using Thershod Techniques' journal of computing, volume 2, issue 5, may 2010, issn 2151-9617.
- [23] n. Senthilkumaran1 and r. Rajesh2, 'Edge detection techniques for image segmentation a survey of soft computing approaches' international journal of recent trends in engineering, vol. 1, no. 2, may 2009.
- [24] susmitha. A1, ishani mishra2, divya sharma3, parul wadhwa 4, lipsa dash5,' Implementation of canny's edge detection technique for real world images' international journal of engineering trends and technology (ijett) volume 48 number 4 june 2017.
- [25] muthukrishnan.r1 and m. Radha2,' Edge detection techniques for image segmentation,' international journal of computer science & information technology (ijcsit) vol 3, no 6, dec 2011.
- [26] ms. R. Swathika, dr. T. Sree sharmila, debadyuti bhattacharya,' Edge detection using simple image arithmetic' 2nd international conference on computer, communication, and signal processing (icccsp 2018).
- [27] chao-chao zhang, jian-dong fang,' Edge detection based on improved sobel operator' advances in computer science research, (acsr), volume 52, 2016 international conference on computer engineering and information systems (ceis-16).
- [28] s.n kumar\*1, a. Lenin fred2, ajay kumar h3, sebastin varghese4, s.n kumar et al,' Medical image edge detection using gauss gradient operator,' j. Pharm. Sci. & res. Vol. 9(5), 2017, 695-704.
- [29] ait mansour el houssain, francois bretaudeau,' A novel edge detection method based on efficient gaussian binomial filter,' researchgate publication november 2020.
- [30] lei yang; xiaoyu wu; dewei zhao; hui li; jun zhai,' An improved prewitt algorithm for edge detection based on noised image' 2011 4th international congress on image and signal processing.
- [31] pinaki pratim acharjya, ritaban das & dibyendu ghoshal,' Study and comparison of different edge detectors for image segmentation', global journal of computer science and technology graphics & vision volume 12 issue 13 version 1.0 year 2012.
- [32] San Myint, Aung Soe Khaing, Hla Myo Tun,' Detecting Leg Bone Fracture In X-Ray Images' international journal of scientific & technology research volume 5, issue 06, june 2016.