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Abstract:  Big datasets encompass a large volume of information, but they can be hard to decipher. Principal components 

analysis (PCA) is a reliable technique in multivariate data analysis reducing the number of parameters while retaining as much 

variance as possible. PCA is a technique for reducing data dimensionality and enhancing interpretability while helping to reduce 

information loss. It executes this by generating new uncorrelated variables that optimize variance in a sequential manner. PCA is 

an effective method of data analysis as it reduces seeking new variables, the principal components, to resolving an 

eigenvalue/eigenvector, and the new variables are represented by the dataset at the time of creation. To enhance regional level 

variations in multi-temporal sets of data, the PCA is being used as the first method of data transform technique. Cross-validation 

techniques may be used to determine the PCA model's value. PCA is commonly used to detect changes in time series data and 

is one of the most popular techniques due to its efficiency and ability to enhance even subtle modifications It's adaptable in 

another way, too, because different kinds of techniques were created for different data types and structures. And, after 

analyzing thousands of original variables, the first few components that account for the bulk of the variance in the data are 

investigated. These new variables can be visualized and statistically analyzed to find similarities and discrepancies between 

samples. 

 

 

Index Terms - Principal component analysis (PCA), Time-Series Remote Sensing, VHI, SMCI  

I. INTRODUCTION 

 

For several earth system processes, the vegetation cover is considered a significant variable (Hansen, DeFries, Townshend, 

& Sholberg, 2000). Sabins (1996) mentioned that natural and cultivated vegetation covers the earth and highly affects the ecosystem. 

Vegetation indices are key indicators illustrating the vigour of greenery. They are good at accurately sensing green vegetation as 

single spectral channels. (Campbell, 1987). In past years, data on the preparation, strength, and quantity of the globe's vegetation 

was also inadequate. Vegetation, soil light, carbon emission, darkness, soil color, and precipitation all contribute to the reflectance 

spectra of plant cover (Asrar et al.1984). The concept of a vegetation index is well fitted to representing vegetation over vast areas, 

such as regions that cover numerous pixels in a picture.. (Sabins, 1996) stated that satellite remote sensing gives the facility to 

regularly store the Land surface resources vegetation parameter extracted from long time-series multi-temporal NDVI datasets from 

the National Oceanographic Atmospheric Administration (NOAA). Advanced Very High-Resolution Radiometer (AVHRR) by 

using PCA may classify the natural vegetation depending on either the temporal differences of magnitude and seasonal variation of 

Normalized Difference Vegetation Index (NDVI) in the province of Arizona. (Yuji et al.,1996). It gathers data at varying 
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spatiotemporal scales and provides a plethora of data sets ranging from low spatial resolution MODIS data to finer-resolution 

satellite data sources like Worldview -2. Seasonal vegetation patterns being identified through the MODIS NDVI time-series 

covering two decades, and vegetation occurrences were detected (Richards, 1986) and analyzed by PCA. 

 PCA was carried out using the NDVI as an input variable. Using PCA as both an analytical and cost-effective method for mining-

related details in NDVI time-series research involving vegetation inter-annual anomalies. To enhance regional level variations in 

multi-temporal sets of data, the PCA is being used as the first method of data transform technique. (Lasaponara, 2006), (Howarth et 

al.2006). Geospatial analysis was used to better process the PCA results to classify and analyze the land degradation process. The 

monthly Maximum Value Composite (MVC) of NDVI obtained from onboard MODIS satellites are used in the study (Kundu et al., 

2018), (Wim 1999 ). The enhanced NDVI profiles are created using the S-G method's moving window algorithm, which eliminates 

outliers and corrects errors in time series data. (Chen et al.,2004). Timesat software is intended to practice time-series of vegetation 

index resulting from satellite spectral dimensions. The series of fiscal and communal assets in rural extents have impacts on alteration 

in land cover patterns by climatic variability and anthropogenic actions and it eventually disturbs the urban inhabitants (Mangiarotti 

et al. 2010). 

1.1 Time series remote sensing satellites 

Sabins (1996) mentioned that satellite remote sensing enables our first opportunity to systematically repetitively store the 

Earth's surface resources. The benefits of satellite-based remote sensing include high spatial resolution, which allows for reliable 

and comparable data to be collected from long-time series at a minimal price. (Foley et al.,1998). Landsat series 7 and 8 satellite 

systems, for instance, give open access to visible and multispectral datasets. The complexity to use these satellites for agricultural 

applications is attributed to the per-pixel resolution (30 m for Landsat and 500 m for MODIS) and the orbital period (16 days for 

Landsat and 26 days for SPOT). The WorldView-2 spacecraft from Digital Globe is the first-ever commercial high-resolution 

satellite means of supplying eight visible spectral sensors as well as near-infrared sensors. Almost every sensor is specifically 

based on a broad electromagnetic spectrum range, in addition to the four standard multispectral bands: blue (450–510 nm), green 

(510–580 nm), red (630–690 nm), and NIR (770–895 nm). The estimated revisited period of 16 days has been the next major 

limitation of satellite-based earth observation, which makes it more difficult for agricultural applications, especially plant nutrient 

and water conservations. (Jinru & Baofeng, 2017).  

Table 1.1 Satellite sensors and their characteristics 

Primary Use Band Bandwidth1 Spectral 

Radiance2 

Required SNR3 

Land/Cloud/Aerosols 

Boundaries 

1 620-670 21.8 128 

2 841-876 24.7 201 

 

 

Land/Cloud/Aerosols 

Properties 

3 459-479 35.3 243 

4 545-565 29.0 228 

5 1230-1250 5.4 74 

6 1628-1652 7.31 275 

7 2105-2155 1.0 110 

 

 

 

OceanColor/ 

Phytoplankton/ 

Biogeochemistry 

8 405-420 44.9 880 

9 438-448 41.9 838 

10 483-493 32.1 802 

11 526-536 27.9 754 

12 546-556 21.0 750 

13 662-672 9.5 910 

14 673-683 8.7 1087 

15 743-753 10.2 586 
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16 862-877 6.2 516 

 

Atmospheric 

Water Vapour 

17 890-920 10.0 167 

18 931-941 3.6 57 

19 915-965 15.0 250 

 

Primary Use Band Bandwidth1 Spectral 

Radiance2 

Required 

NE[]T(K)4 

 

Surface/Cloud 

Temperature 

20 3.660-3.840 0.45(300K) 0.05 

21 3.929-3.989 2.38(335K) 2.00 

22 3.929-3.989 0.67(300K) 0.07 

23 4.020-4.080 0.79(300K) 0.07 

Atmospheric 

temperature 

24 4.433-4.498 0.17(250K) 0.25 

25 4.482-4.549 0.59(275K) 0.25 

 

Cirrus clouds 

Water Vapour 

26 1.360-1.390 6.00 150(SNR) 

27 6.535-6.895 1.16(240K) 0.25 

28 7.175-7.475 2.18(250K) 0.25 

Cloud Properties 29 8.400-8.700 9.58(300K) 0.05 

Ozone 30 9.580-9.880 3.69(250K) 0.25 

Surface/Cloud 

Temperature 

31 10.780-11.280 9.55(300K) 0.05 

32 11.770-12.270 8.94(300K) 0.05 

 

Cloud Top 

Altitude 

33 13.185-13.485 4.52(260K) 0.25 

34 13.485-13.785 3.76(250K) 0.25 

35 13.785-14.085 3.11(240K) 0.25 

36 14.085-14.385 2.08(220K) 0.35 

 

2. PRINCIPAL COMPONENT ANALYSIS 

 

PCA is a linear transformation that eliminates redundancy by converting or rotating the original feature space axes, so the 

drought information can be shown in a new model space without correlation (Lasaponara, 2006). The first principal components, 

which have a higher proportion of variance than in the subsequent components, and also similar anomalies or spatial distributions, 

are vested. As a whole, it is frequently considering only a few principal components (Antonio et al., 2015). PCA transformation 

produces different core components (PC1, PC2, PC 3 ... etc.), which are uncorrelated and organized according to the proportion of 

variance they reflect in the original band collection. Those bands are often easier to interpret than the data from the source. PCA is 

commonly used to detect changes in time series data and is one of the most popular techniques due to its efficiency and ability to 

enhance even subtle modifications. The PCA method first calculates the covariance matrix, eigenvalues, and eigenvectors for all 

input data then calculates the percent of overall data set variance represented by each component, and finally generates a series of 

new data (called Eigen channels or components) by multiplying the original input data eigenvector (Lasaponara, 2006). The matrix 

of covariances measures both the Eigenvector and the values. Even if the PC transform greatly increases data variance in the first 

few PC bands, those bands typically make up a large part of the coherent image information and are used to distinguish common 

data features. (Richard, 1999). Mysterious functions and/or noise are common in higher-order PC images. PCA techniques are 

widely used in dimensionality reduction and also have hyperspectral image processing applications. The spectral component of 

PCA transformations is often defined by a significant level of spatial correlation with images in different bands for most 
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hyperspectral RS applications. ( Pu & Gong., 2004, Chaurasia & Dadhwal., 2004, Chen & Qian., 2011, Zhou et al., 2015). 

Considering the large amount of spectral similarity between the spectral reflectance of different leaves, it should be simple to 

reconstruct leaf spectra using a small number of main components by using sample dimension PCA transformation rather than 

spectral dimension transformation. The PCA method offers a precise and reliable computation technique for the reconstruction of 

leaf spectral reflectance as well as biochemical leaf material (Liangyun et al.,2017). The need for PCA methods to explain the 

temporal and spatial variations of vegetation cover is common. PCA may classify the peak relevant modes of variability in time 

and space. It uses a formula to calculate a collection of orthogonal principal components, resulting in data that is completely original 

despite all variance (Li and Kafatos,2000). In addition, PCA rotates the spot-scatter around its center pixel and integrates with the 

coordinate axes to optimize the propagation of the data projected onto them. For informative reasons, authors might state to PCA 

as a rotation of the coordinate axes (Pielou, 1984). This spread is the sum of squares of the data’s coordinate points along the axes, 

also known as principal component ratings. In addition, the new axes are not correlated. The scores individuated by centered data 

are expressed as deviations from the mean of the variable. The rotation translates mathematically in a weighted summation of the 

original dimensions. 

Table. 2.1 PCA techniques used in remote sensing studies 

 

 

 

 

 

S.No. Purpose PCA Technique Study 

conducted 

Formula / Software Reference 

 

1 Public Irrigation 

Schemes 

Linear aggregation 

method & orthogonal 

varimax method 

 

 

Kenya 

 

Faith et al.2018 

2 Leaf Reflectance 

Spectra &  

Biochemical 

Contents 

Partial least squares 

regression (PLSR) 

 

 

Italy 

 

Liangyun et 

al.2017 

3. Land cover 

Characterisation 

Correlation 

Matrix 

Arizona  Yuji et al.1996 

4. Vegetation 

Characteristics 

Cluster Analysis North America IDRISI32 Release 2 Shaw-wen, 2004 

5. Temporal analysis 

of rainfall and 

vegetation index 

Factorial Analysis 

method 

 

Pernambuco, 

Brazil 

 
 

Dantas et al.2016 

6. Vegetation 

dynamics 

Spectral analysis Zimbabwe IDRISI Selva Seth et al.2013 

7. Land cover change Multi-temporal image 

analysis 

 

Ghana 

 Nyamekye et 

al.2014 

8. Wetland Change 

Detection 

Correlation Matrix  

Zambia 

ERDAS IMAGINE Christopher,200

4 

9. Accuracy of 

Classification 

Maps 

Multi-Spectral band 

analysis 

North of Iran ENVI Masoumh & 

Amir.2016 

10. Remote sensing covariance matrixes Valencia 

province, Spain 

 

Javier et al.2013 

11. Evaluating 

Vegetation 

Anomalies 

covariance matrixes Italy 

 

Lanorte et 

al.2015 
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2.1 Adaptations of principal component Analysis 

The basic principle of PCA is obvious which leads to low-dimensional representations of complex sets of data adaptively 

and insightfully. The subsections also revealed several subtleties that add a layer of complexity. Besides that, PCA can be updated 

in a variety of ways to achieve different objectives or examine different types of data (Hotelling, 1993). Since PCA is used in 

many distinct aspects, there is a lot of testing into advancements and modifications from various disciplines. The four adaptations 

mentioned in the following subsections are functional PCA, PCA changes to simplify interpretations, RPCA, and symbolic data 

PCA, which were chosen at random from the many that remained. Functional PCA, PCA changes to enhance representations, 

RPCA, as well as symbolic data PCA are the four most common adaptations, which are briefly listed below. 

2.1.1 Functional principal component analysis 

Pioneering study on functional PCA (Rao, 1958) operated a standard PCA on a data matrix (n×p) acquired by sampling n 

curves x (t) at each p point in time (t, j=1, ... ,p), so that when the data matrix element in row I column j is x(t). Following that, the 

p-dimensional loading vectors obtained from a PCA of this data matrix are interpreted as sampled main functions, which can be 

filtered to recover functional form and interspersed in the observed curves as primary  variability (Ramsay & Silverman., 2006). 

And there is a correlation pattern, along with similarities between the p variables among the n observations. A 'dynamic' variant of 

functional PCA is recommended in  (Hormann et al.,2015), which is significant for correlations among the curves identified, and 

for the apparent correlation between the curves. 

This is focused on the concept for vector time series initially stated by (Brillinger, 1981) and use frequency domain analysis. 

2.2.2 Simplified principal components 

In the case of optimizing variance in q dimensions, PCA provides the strongest quality portrayal of a p-dimensional dataset 

in q dimensions (q < p). Even then, a drawback is that the new variables it describes are typically linear functions of all original 

variables in p. A set of PCA modifications were being indicated that attempt to construct a simpler interpretation of the q dimensions, 

even when minimizing loss of variance due to failure to use the PCs themselves. The idea of rotating PCs is borrowed from the 

factor analysis (Cattell, 1978). Rotation can facilitate faster understanding as no variation is lost when presented concerning the q-

dimensional space which is rotated, as the number of variances of the q rotated components is the same as those of unrotated 

components. A further approach to PC simplification is the application of a constraint on the new variables loads. Often there are 

several versions of this approach, including the one that adapts the LASSO (the least absolute shrinkage and selection operator) 

linear regression approach (Jolliffe, 2003). PCA modifications under which many coefficients are completely null under 

specifically identified as limited versions of PCA, and research on these PCs has been extensive in past years (Hastie et al.2015). 

A distinction between both the methods to rotation and constraints is that it still has the benefits of interpreting those loadings 

exactly to zero in linear functions, while rotation is generally not involved. 

 

2.2.3 Robust principal component analysis (RPCA) 

PCA is insensitive to outliers, and even to the presence of outliers for gross data-set errors. This led investigators to 

distinguish robust PCA variants, and the term RPCA was coined to refer to various approaches to this problem. Robust approaches 

to matrices (Huber, l977; Huber, 1981) of covariance or correlation, and ways to represent robust PCs, were studied. (Wright et 

al.2009 expressed RPCA as a division of the X data matrix n / p into two np components. (Zhao et al.2016) explored the role of 

alternative algorithms on image processing and image recognition problems in the presence of different types of 'noise'. Algorithms 

for component analysis are discussed in (Candeset al.2011),which is an important subject despite the mathematical complexities 

involved. 

2.2.4 Symbolic data principal component analysis 

Symbolic data refers to more complex data structures, such as intervals or histograms.  (Bock et al.2000; Brito, 2014). 

Interval data appears when it is necessary to keep track of an observation's internal variability.PCA modifications for most of these 

data (Ichino & Yaguchi, 1994) compute PCs that are often in the form of an interval and may also display ranges of 

values.Histograms, which can be interpreted as a conceptualization of interval-valued data, with multiple intervals and 

corresponding frequencies for each measurement, are perhaps common method of symbolic research. A recent analysis outlines 

several (Makosso, 2015) proposed principles for histogram data from PCA studies. 
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2.2.5 Standardization and correlation matrix 

PCs is initially believed to be a good estimate of the centered variables. The PCA variables also have some drawbacks 

because they use different measurement units. To resolve this undesirable feature, it is normal practice to standardize the variables. 

All data value of xij is centered and also divided by the standard deviation sj of the vector n observations of variable j (Jolliffe & 

Jorge., 2016). 

 

zij = xij − xj 

     sj 

The standardized data matrix Z, whose jth column is vector zj with the standardized n observations of variable j, replaces the current 

data matrix X. Since a standardized dataset's covariance matrix is literally the original dataset's correlation matrix R, the 

standardized data in a PCA is often known as a correlation matrix PCA.. In contrast, certain statistical software assumes that a PCA 

requires a PCA correlation matrix and, in a few situations, the normalization used for loading vectors ak of correlation matrix PCs 

is not akak = 1. The coefficient of correlation between the vector jth and the PC kth are set by in a matrix of correlation PCA. 

(Jolliffe, 2002). 

rvarj,PCk = λkajk. 

As a result, instead of using akak =λk the normalisation of aka=1 is often used, and the coefficients of the new loading vectors ak are 

the correlations in between original variable and kth PC. 

 

3. CONDITIONED INDICES AND VALIDATION PROCESS 

Onboard the TERRA satellites, NASA operated a Moderate Resolution Imaging Spectro-radiometer (MODIS) sensor with 

a sweeping swath of 2330 km and 1-2day temporal resolution in 36 multi-spectral bands, swiftly extending earth observation with 

a higher resolution  Series of NDVI data (http://terra.nasa.gov/). The NDVI was first developed as a tool for assessing the health 

and density of vegetation. (Tucker 1979) .The NDVI is computed with the formula 

NDVI = (NIR – red /NIR + red)    (1) 

where, NIR and red are the reflectances in the NIR and red bands, respectively. Plant vigor, green cover percentage, Leaf Area 

Index (LAI), and biomass content are all measured by the NDVI. While used to monitor vegetation cover on the earth's surface, 

the first two spectral bands of satellite data, Red (0.58 to 0.68 m) and Near-Infrared (0.75 to 1.1 m) are found to be useful for 

mapping clouds and land surfaces and illustrating surface water bodies, respectively. (Tucker et al., 2004, 2005). The NDVI value 

varies between -1 and +1. The presence of dense green leaves is highly likely if the NDVI value is close to +1. When the NDVI is 

close to zero, green leaves are absent, and the region may be densely populated. Healthy vegetation (chlorophyll) reflects more 

Near-Infrared (NIR) and green light than other wavelengths. It also holds the lighter red and blue. As a result, our eyes perceive 

plants as being green in color. The plants will be abundant if you could see near-infrared. Global vegetation dynamic trends studies 

using NDVI data have been perfectly-acknowledged (Tucker et al., 1985, 1986, 1991). The amount of photosynthetically active 

radiation (400-700 rim) absorbed by green vegetation is largely associated with the NDVI. (Asrar et al., 1984).Its logical forecaster 

of biomass production (Tucker, 1980; Prince, 1991)and carbon fixation(Fung et al., 1987) is its time elementary. 

 

In detail, it should be able to relentlessly expose by radiative transfer theory that NDVI reveals the health and movement 

of leaf chlorophyll pigments (Myneni et al., 1995). The NDVI is globally used as a remote sensing vegetation index due to its 

consistency in detecting vegetation dynamics and its ease of computation and analysis. That is the foremost reason for its broader 

use and larger acceptance compared to another satellite-based spectral vegetation index. The use of vegetation index specifies a 

considerable greening trend from cumulative seasonal amplitude and growing season spell in the northern high latitudes 

landscapes. (Myneni et al., 1998). The reason for seasonal phasing is to base a classification nonappearance of the spatial NDVI 

profile comparatively than on the NDVI values themselves (Lloyd 1990; Samson 1993). Such appearances consist of overall 

'greenness', measured by the combined NDVI all over the year beyond a threshold value; seasonality, measured by the amplitude 

of the NDVI profile and speediness of brown off and also measured by the maximum negative slope in the profile. The NDVI is 

a spectral vegetation index that depicts the variation in near-infrared and red reflectance bands defined by their sum. (Curran and 
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Steven 1983). The greater the NDVI value indicates more the concentration of green vegetation. The related studies of using NDVI 

have discovered a close association between NDVI and seasonal rainfall in semi-arid regions (Tucker and Nicholson 1999; 

Anyamba and Eastman 1996). PC1 describes the most variance in NDVI integrals and reflects the typical built-in NDVI pattern 

in space. PC1 shows the standard NDVI over the entire array. PC2 describes the overall remaining variance not described by PC1, 

and follows the same logic. Resultantly, the components after PC1 (particularly PC2) tend to represent specific events such as 

fires, drought periods, and, in specific, vegetation-related land degradation phenomena, instead of showing the general 

development over the period. 

The normalized vegetation difference index (NDVI)-based vegetation condition index (VCI) (Kogan and Sullivan, 1993; 

Kogan, 199) and Temperature condition index (TCI) (Kogan, 1995) are two effective tools for mapping the severity, extent, and 

impacts of drought at a regional or global level (Singh et al.2003). Earlier studies indicate that VCI is ideal for measuring large-

scale impacts of drought on vegetation, including agricultural drought, and that VCI has a strong correlation with crop yields (Liu 

and Kogan, 1996; Unganai and Kogan, 1998; Kogan et al., 2005; Salazar et al., 2007, 2008). Research in semi-arid areas of the 

Iberian Peninsula also noticed that the assessment of VCI was more challenging than other indices of drought because it provides 

an indirect measure of conditions of moisture (drought). VCI can represent everything that stresses the vegetation namely pests, 

diseases, and nutrient deficits (Vicente-Serrano, 2007). In addition, some studies observed that the VCI and TCI analyzing together 

will be better than individually, and formed a vegetation health index (VHI) (Kogan, 1997; Kogan et al., 2004). Moreover, in high-

latitude humid areas, where vegetation growth is predominantly restricted by lower temperatures in contrast to low-latitude regions, 

care has to be taken to monitor drought with VHI (Karnieli et al., 2006). Not all these indices include climate data, such as 

precipitation and variability in soil moisture, which is among the factors that caused drought in semi-arid regions. 

 

Table 3 1. Equations of conditioned indices used for PCA studies 

Indices Formula Source 

Vegetation Condition Index (VCI) (NDVIj – NDVImin) 

(NDVImax – NDVImin) 

(Kogan, 1995) 

Temperature Condition Index (TCI) (LST max – LST j) 

(LST max – LST min) 

(Du et al., 2013) 

Soil Moisture Condition Index (SMCI) (SM j – SM min) 

(SM max – SM min) 

(Hao et al., 2015) 

 

Precipitation Condition Index (PCI) (PCI j – PCI min) 

(PCI max – NDVImin) 

(Jiao et al., 2019) 

Vegetation Health Index 

(VHI) 

 

VHI 𝑎 ∗ VCI + (1 − 𝑎) ∗ TCI 

(Kogan, 1995) 

 

 The MODIS Terra data source can be used to measure VCI, TCI, and PCI, and SCI. The soil moisture index (SCI) has 

also been specified to detect the moisture in the soil deficits which affect crop stress and crop yield. The key component incorporates 

VCI, TCI, and PCI to describe Integrated Drought Severity Index (IDSI) that can detect drought occurrence, duration, and intensity 

(Jeganathan et al.,2015). The IDSI utilizes precipitation deficits, soil stress conditions, and plant growth progress in the cycle of 

drought, and it helps in observing severe drought. For instance, this method monitored the time series drought from 2000 to 2014 

to evaluate the output in selected locations, including Sri Lanka, and Southern Indian states, and its findings were consistent with 

the actual drought conditions in recent decades. (IWMI, 2005). 
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4. CONCLUSIONS 

 

The emission spectrum among vegetated areas poses a complex combination of vegetation, brightness of soil, environmental 

impacts, shadow, the color of the soil, and humidity. The concept of vegetation index was well apt for vegetation over massive 

areas, eg. Over regions that cover several pixels of an image. PCA-allied approaches are often provided with a substantial role in 

added statistical processes, like linear regression (with major component regression (Jolliffe, 2002) and smoothened the sequential 

clustering of individuals and variables (Vichi & Saporta, 2009). While methods like correspondence analysis, canonical correlation 

analysis, and linear discriminant analysis are only interrelated to PCA, they share a common methodology in that they are focused 

on factorial decompositions of some matrices. PCA can be used as a mapping tool that shows substantial interannual variations and 

unidirectional variations in vegetation studies. This adaptive analysis technique is among the oldest and broadly used due to its 

dimensionality reduction functionality making it easier to interpret complex data types for the user community. The satellite-based 

conditioned indices such as VCI, TCI, PCI, and SMCI can monitor the significance of vegetation growth and crop stress, duration, 

extent, and severity of drought-related conditions. 
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