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Abstract 

Geoscience is a vital social area that demands solutions to numerous pressing issues confronting 

humanity and the earth. As the geosciences enter the era of big data, machine learning (ML)—which has 

been extensively successful in commercial domains—offers enormous promise to help solve geosciences 

challenges.   This article introduces machine learning (ML) researchers to the challenges posed by 

geoscience problems and the potential for both machine learning and geosciences advancement. We 

begin by highlighting common sources of geoscience data and outlining their shared characteristics. 

Data science is gaining traction across a broad range of geosciences fields and applications.   To meet 

that requirement, this article presents a review from a data life cycle viewpoint. Numerous facets of the 

geosciences present unique difficulties for the study of intelligent systems. Geosciences data is 

notoriously difficult to analyze since it is frequently unpredictable, intermittent, sparse, multiresolution, 

and multiscale. The spatiotemporal boundaries of geosciences processes and objects are frequently 

amorphous. Due to the absence of ground truth, evaluating, testing, and comparing models becomes 

challenging. Overcoming these obstacles will need substantial advancements in intelligent systems, 

which will help the geosciences tremendously in turn. Numerous successful data-driven geoscience 

discoveries have been reported recently, and many geoscience conferences have begun to include 

geoinformatics and data science sessions. Across academia, industry, and government, there is a strong 

desire to learn more about the current state of data science in geoscience as well as its potential. To 

address that need, this article provides a review from a data life cycle perspective. The data life cycle's 

critical steps include concept generation, data collection, preprocessing, analysis, archiving, 

distribution, discovery, and repurposing. The first section discusses the fundamental concepts and 

theoretical underpinnings of data science, while the second section summarises key points and shareable 

experiences from existing publications centred on each stage of the data life cycle. Finally, a future 

vision for data science applications in geoscience is discussed, including topics such as open science, 

smart data, and team science science. We hope that this review will be beneficial to data science 

practitioners in the geoscience community and spark additional discussion about data science best 

practises and future trends in geoscience. 

 

Keyword: Geoscience, Data Science, Intelligent system, Machine learning, Big data, data life cycle, 

Recent development, Trends 

 

 

 

 

http://www.ijcrt.org/


www.ijcrt.org                                                     © 2022 IJCRT | Volume 10, Issue 6 June 2022 | ISSN: 2320-2882 

IJCRT22A6711 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org f773 
 

1. INTRODUCTION 

The goal of geosciences study is to get a better understanding of the Earth as a complex, highly 

interacting system of natural processes and their connections with human activities. Given the complexity 

of geosciences data, current methods have significant flaws. First and foremost, evidence alone is 

insufficient for the creation of models of the extremely complex processes under investigation; thus, 

preceding hypotheses must be taken into consideration. Second, data gathering can be most successful if 

it is guided by knowledge of current models in order to concentrate on data that will make a significant 

impact. Third, in order to integrate heterogeneous data and models from different disciplines, it is 

necessary to capture and reason about substantial qualifiers and context in order to make their integration 

feasible. The necessity for knowledge-rich intelligent systems that include substantial volumes of 

geosciences knowledge. Geosciences research seeks to comprehend the Earth as a complex, highly 

interactive system of natural processes and their interactions with human activities. Given the complexity 

of geoscience data, current approaches have fundamental flaws. To begin, using data alone is insufficient 

for developing models of the extremely complex phenomena under study; therefore, prior theories must 

be considered. Second, data collection can be most effective when guided by an understanding of existing 

models in order to concentrate on data that will make a difference. Third, integrating disparate data and 

models from disparate disciplines requires capturing and reasoning about extensive qualifications and 

context. These are all examples of the importance of knowledge-rich intelligent systems that incorporate 

a substantial amount of geoscience knowledge. Today, the speed of geosciences research is barely 

keeping up with the urgency created by societal requirements to manage natural resources, respond to 

geohazards, and comprehend the long-term implications of human actions on the globe.  

Numerous aspects of geosciences pose novel problems for the study of intelligent systems. Geoscience 

data is notoriously difficult to analyse because it is inherently uncertain, intermittent, sparse, 

multiresolution, and multiscale. Processes and objects in the geosciences frequently have amorphous 

spatio-temporal boundaries. Due to the absence of ground truth, evaluating, testing, and comparing 

models becomes difficult. Overcoming these obstacles would require technological breakthroughs in 

intelligent systems, which would benefit the geosciences enormously. A newly formed Research 

Coordination Network on Intelligent Systems for Geosciences was formed in response to a workshop on 

this subject held at the National Science Foundation. The growing network capitalises on the momentum 

generated by the National Science Foundation's EarthCube initiative for geosciences and is motivated by 
pressing issues in Earth, ocean, atmospheric, polar, and geospace sciences. 

As the deluge of big data continues to engulf virtually every commercial and scientific domain, 

geosciences has undergone a significant transformation from a data-poor to a data-rich field. This has 

been made possible by the advancement of sensing technologies (e.g., remote sensing satellites and deep 

sea drilling vessels), increases in computational resources for running large-scale simulations of Earth 

system models, and the Internet-based democratisation of data, which enables the collection, storage, and 

processing of data on crowd-sourced and distributed environments such as the Internet. The majority of 

geoscience data sets are freely accessible and do not present the privacy concerns that have stymied the 

adoption of data science methodologies in fields such as health care and cyber-security. The increasing 

availability of big geoscience data presents an enormous opportunity for machine learning (ML)—which 

has revolutionised almost every aspect of our lives (e.g., commerce, transportation, and entertainment)—

to make a significant contribution to solving geoscience problems of significant societal importance. 

2. Geoscience challenges requiring innovations in intelligent systems 

 
Numerous recent papers have evaluated and detailed the difficulties inherent in geoscience research.  

Geosciences is the field of study that spans and describes the immense scales of Earth's temporal and 

spatial systems. These scales are accompanied by a remarkable range of data, knowledge, and scientific 

methodologies. Geoscience problems are rarely simple and symmetrical. The phenomena of Earth's 

systems are nonlinear, diverse, and highly dynamic. Extreme occurrences and long-term alterations in 

Earth systems will also pose challenges to geosciences study. Additionally, recent exceptional 

improvements in data availability, along with a greater emphasis on societal causes, underline the 

importance of cross-disciplinary research. 
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We discuss the requirements and their potential impact on a variety of scales: 

 

2.1 Site-level requirements, for which recent research in intelligent sensors opens up new possibilities, 

particularly in difficult-to-reach regions. While collecting observations for all physical characteristics 

everywhere and at all times would be ideal, given resource and instrumentation limits, this is practically 

impracticable. Rather than that, the goal is to maximise the amount of science that can be accomplished 

within those restrictions, which requires enhancing the sophistication of existing data collection systems. 

 

2.2 Regional-level requirements, where efficient procedures are required to integrate data from various 

locations, data kinds, and collection efforts spread across a large geographic area. While Earth systems 

are connected, geoscience data and models are not. 

 

2.3 Global-level requirements, for which geoscience research can be both data-rich and data-deficient. 

That is, while it may be possible to collect enormous volumes of data about a phenomenon, the amount 

of information contained in the data may be trivial in comparison to the amount required to characterise 

the phenomenon for scientific or practical purposes. Scientists require novel ways that combine data with 

previously accumulated information about the underlying processes. 

 

3. A roadmap for intelligent systems research with benefits to geosciences 

 
Geosciences is fast transitioning from a small data to a big data age as a result of the enormous increase 

of observational and model data acquired about physical processes on the Earth. This has been made 

possible by technological breakthroughs in data collection and increased access to computing power. The 

increasing availability of data on the Earth system presents an enormous opportunity for intelligent 

systems research to speed developments in the geosciences, and vice versa. 

The promise of intelligent systems research in the geosciences is enhanced by the recent success of 

classical intelligent systems methods in various commercial sectors utilizing enormous datasets, such as 

product recommendation and advertising. Geoscience datasets, on the other hand, exhibit a number of 

distinct properties that set them apart from large datasets in commercial areas. Geoscience datasets are 

extremely heterogeneous, are frequently spatiotemporal in nature, and the events or objects of interest 
lack sharp boundaries. Ocean eddies and hurricanes, for example, have amorphous spatiotemporal 

boundaries that manifest as patterns in continuous variables such as sea surface height. Geoscience 

datasets contain information on both well-known and little-understood physical processes and 

connections, which exhibit various features across the globe due to changes in geographies, climatic 

conditions, and seasonal cycles, among other factors. Even relatively uniform 'big data' from remote 

sensing is fraught with ambiguity, incompleteness, and a dearth of user-friendly tools.  
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 Intelligent Systems for Geosciences: Vision and Research Agenda 

 

 
 

Figure 1. Needs and potential impact at different scales at which significant new avenues of research in 

geosciences would be open through advances in intelligent systems, illustrated with case examples. From 

left to right: 1) site-scale, 2) local scale, 3) global scale, and 4) layered wholistic scale. 

 

To handle geosciences difficulties involving complex multi-scale, multi-process phenomena, scientists 

will require intelligent systems that integrate cutting-edge technology with their expertise, context, and 

experiences. Intelligent systems must incorporate process-centered geoscience knowledge about 

processes including physical, geological, chemical, biological, ecological, and human components. This 

will result in a new generation of intelligent systems that are rich in information and capable of unique 

forms of reasoning and learning from geosciences data. 

3.1  Knowledge Representation and Capture 

In order to create geoscience-aware intelligent systems, scientific knowledge relevant to those geoscience 

processes must be explicitly represented, captured, and shared. 

 

3.1.1 Research Directions 

 

i. Representing Scientific Metadata:  
Geoscientists are collecting more data than ever before, yet raw data stored on isolated servers 

is useless. Recent work on semantic and linked open data standards permits the publication of 

datasets in Web standard formats with open access licences, as well as the description of their 

semantics via metadata that maps the data to a domain ontology. Additionally, they enable the 

creation of linkages between datasets to facilitate interoperability. New ways are required for 

automatically integrating data from disparate sources and conducting analysis on it without 

requiring extensive manual effort. Additionally, new techniques for automatically inferring 

semantic structure from raw data are required, as well as tools for integrating, analysing, and 

visualising big datasets. 
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ii. Capturing Scientific Knowledge. 
An even greater challenge is representing the ever-evolving, uncertain, complex, and dynamic 

aspects of scientific knowledge and information. While ontologies are growing in use to state 

basic relations between objects, existing ontologies need to be extended to represent 

geoscience processes with buy-in from many diverse communities and capabilities of 

documenting, versioning, and representing various forms, such as spatio-temporal processes 

interacting with each other and multi-scale phenomena. These representations can be broadly 

linked to existing data and ontological concepts with actionable authority. Important 

challenges will arise in representing mathematical concepts, dynamic processes,uncertainty, 

and other aspects of a constantly growing scientific knowledge base. These representations 

need to be expressive enough to capture complex scientific knowledge, but they also need to 

support scalable reasoning that integrates disparate knowledge at different scales, and 

scientists need to understand the representations enough to trust the outcomes. 
 

iii. Interoperation of Diverse Scientific Knowledge.  

Scientific knowledge comes in many forms that use different tacit and explicit 

representations: hypotheses, models, theories, equations, assumptions, data characterizations, 

etc. These representations are all interrelated, and it should be possible to translate knowledge 

fluidly as needed from one representation to another. A major research challenge is the 

seamless interoperation of alternativerepresentations of scientific knowledge, from descriptive 

to taxonomic to mathematical, from facts to interpretation and alternative hypotheses, from 

small to larger scale, and from isolated processes to complex integrated phenomena. 

 

3.1.2 Research Vision: Knowledge Maps 

We envision dense knowledge networks that comprise explicit interconnected representations of 

scientific information that are spatially and temporally related. These would result in five-dimensional 

knowledge maps (3D + time + knowledge annotations). Interpretations and assumptions shall be properly 

documented and corroborated by observational data and mathematical models. Today's semantic 

networks and knowledge graphs connect disparate facts on the Web (e.g., Wikidata), but they contain 

superficial facts that lack the depth and context necessary for scientific investigation. Knowledge maps 

will incorporate more detailed representations of spatiotemporal processes and will be physically 

grounded, integrating the various models of geoscience systems. 

3.2 Robotics and Sensing 

Collecting data is a common undertaking in the geosciences. Sensing and robotics research has the 

potential to have a significant impact on the geosciences through intelligent sensing and knowledge-

based data collection. 

3.2.1 Research Directions 

i. Data Collection Optimization: Geoscience data are required at a variety of spatial and 

temporal domains. Due to the impossibility of continuously monitoring all measurements at 

all scales, intelligent sensing technologies are critical. Prior to sensor deployment, additional 

research is needed to evaluate the cost of data collecting, whether in terms of storage capacity, 

energy consumption, or monetary cost. A related research topic is balancing the expense of 

data gathering against the utility of the data that will be obtained. 

 

ii. Sampling in Progress: Geoscience knowledge can be used to inform autonomous sensing 

systems, enabling not just long-term data collecting but also increasing sensing effectiveness 

by adaptive sampling, resulting in richer data sets at cheaper costs. In an adaptive sensing 

scheme, autonomous vehicles equipped with an embedded decision architecture assimilate 

data in order to produce and continually update an environmental model that is guided by 

geoscience knowledge and provides the sensing system with previous forecasts and 

estimations.  
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iii. Collecting Data Through Crowdsourcing: Citizen scientists can give valuable data (e.g., 

obtained via geolocated mobile devices) that would be extremely difficult to obtain otherwise. 

One problem in crowdsourcing data gathering is assuring the high quality of data required for 

geoscience research. A possible field of research is to enhance empirical methods for 

evaluating crowdsourced data collection and to acquire a better understanding of the biases 

inherent in the process. 

 

iv. Sensing Virtually: Existing repositories could be enhanced through the use of virtual reality 

and augmented reality user interfaces to enable "virtual data collection" through navigation 

and selection of relevant data. A method of collecting virtual reality data would be to visualise 

existing datasets, utilising a highly interactive virtual reality platform to sort through 

accessible data. 

 

3.2.2 Research Vision: Model-Driven Sensing 

Sensor research will result in the development of a new generation of devices that will have a better 

understanding of the scientific context for the data being collected; they will use this understanding to 

maximise their performance and efficacy in modelling the phenomena being investigated. This will result 

in the development of new model-driven sensors with increased autonomy and exploratory capabilities. 

3.3 Machine Learning 

The proposed bidirectional, collaborative research program's outcome might be a scientifically correct, 

valuable, and trustworthy landscape of data, models, information, and knowledge. Scientific discovery 

generates integrated large-scale data products from raw measurements. These items are discussed in 

detail to illustrate the derivations and assumptions made in order to boost other scientists' comprehension 

and trust. These well-established scientific lines will be easily navigable, queryable, and displayed. 

3.3.1 Modern machine learning tools 

This decade ushers in a paradigm shift in tooling, which is directly responsible for the recent surge in use 

and research in both shallow and deep machine learning. 

Historically, machine learning software has been dominated by proprietary applications such as 

MatlabTM with the Neural Networks Toolbox and Wolfram MathematicaTM, or by university-based 

efforts such as the Stuttgart Neural Network Simulator (SNNS). Shortly thereafter, LibSVM was released 
as free open-source software (FOSS), enabling the efficient implementation of support vector machines. 

It is still in use in a large number of other libraries, notably WEKA [Chang and Lin, 2011]. Torch, a 

machine learning framework with a focus on neural networks, was then released in 2002. While the 

original implementation in the computer language Lua has been discontinued [Collobert et al., 2002], 

PyTorch, the Python implementation, is one of the leading deep learning frameworks at the time of 

writing [Paszke et al., 2017]. Theano and scikit-learn were released as open-source Python libraries in 

2007 [Theano Development Team, 2016, Pedregosa et al., 2011]. Theano is a neural network library that 

was developed at the Montreal Institute for Learning Algorithms (MILA) and halted development in 

2017 following the availability of openly licenced deep learning frameworks by major industrial 

developers. Scikit-learn implements a variety of shallow machine learning algorithms, such as SVMs, 

Random Forests, and shallow neural networks, as well as utility functions such as cross-validation, 

stratification, metrics, and train-test splitting, which are required for the development and evaluation of 

robust machine learning models. 

By establishing an uniform application programming interface (API), scikit-learn formed the current 

machine learning software package [Buitinck et al., 2013]. The following code snippets demonstrate this 

API. To begin, we use a utility function to construct a categorization dataset. The make classification 

function accepts many arguments to change the desired arguments; in this case, we are creating 1000 

samples (n samples) with four features (n features), two of which are genuinely significant to the 

classification (n informative). X contains the data, whereas y contains the labels. 
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# Generate random classification dataset for example 

from sklearn.datasets import make_classification,  

X, y = make_classification(n_samples=5000, n_features=5 

                                           n_informative=3, n_redundant=0, 

                                           random_state=0, shuffle=False) 

 

It is recommended to divide the available labelled data into two sets: a training set and a validation or test 

set. This division enables models to be evaluated on previously unseen data in order to determine their 

generalizability to previously unseen samples. Train test split is a utility function that accepts an arbitrary 

number of input arrays and divides them according to provided arguments. 25% of the data is retained for 

the hold-out validation set and is not used in training in this circumstance. The random state variable is 

fixed to ensure reproducibility of these examples. 

 

# Split data into train and validation set 

from sklearn.model_selection import train_test_split 

X_train, X_test, y_train, y_test = train_test_split(X, y, 

                                                              test_size=.25, 

                                                         random_state=0) 

 

Then, in light of the prior discussion of high-impact machine learning models, we need to define a 

machine learning model. The first example is an SVM classifier. This example uses the SVM classifier's 

default parameters; for optimal performance on real-world issues, these values must be modified. 

Machine learning training is always performed by executing classifier.fit(X, y) on the classifier object, 

which is the SVM object in this case. 

 

# Define and train a Support Vector Machine Classifier 

from sklearn.svm import SVC 

svm = SVC(random_state=0) 

svm.fit(X_train, y_train) 

 

>>> SVC(C=1.0, break_ties=False, cache_size=200, 

               class_weight=None, coef0=0.0, degree=3, 

               decision_function_shape='ovr', gamma='scale', 

               kernel='rbf', max_iter=-1, probability=False, 

               random_state=0, shrinking=True, tol=0.001, 

             verbose=False) 

 

By using classifier.predict(data) on the learned classifier object, the trained SVM may be used to predict 

on new data. The new data must contain the same four characteristics as the training data. By and large, 

machine learning models must always be trained on the same set of input attributes as the data being 

predicted. 

 

# Predict on new data with trained SVM 

print(svm.predict([[0, 0, 0, 0, 0], 

                             [-1, -1, -1, -1, -1], 

                             [1, 1, 1, 1, 1]])) 

>>> [1 0 1] 

 

The classifier.score() function should be used to evaluate the blackbox model. Evaluating the model's 

performance on the training data set provides valuable insight into the model's performance. 
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Additionally, on the hold-out set, the trained model can be evaluated. The default score equals the 

accuracy, indicating that our model is around 90% accurate. Similar train and test scores show that the 

machine has developed a generalizable model, which enables prediction on unknown data without 

incurring performance degradation. 

 

# Score SVM on train and test data 
print(svm.score(X_train, y_train)) 
print(svm.score(X_test, y_test)) 

>>> 0.9098666666666667 

>>> 0.9032 

 

 

Support-vector machines are applicable to all categories of machine learning problems, including 

classification, regression, and clustering. In a two-class problem, the algorithm analyses the n-

dimensional input and seeks a (n -1)-dimensional hyperplane that separates the data points in the input. If 

the two classes are linearly separable, commonly known as a hard margin, the task is easy. The aircraft is 

capable of transmitting both sorts of data without ambiguity.  

 

 
 
Figure 1 : Example of Support Vector Machine separating two classes of data points in 2D, showing the decision 
boundary learnt from the data. 
 

Explainability is a critical concept in machine learning, as it examines the effect of input factors on the 

prediction. The mean values of the estimated importances indicate that three features are three orders of 

magnitude more significant, with the second feature providing the most information for label prediction. 
 

# Calculate permutation importance of SVM model 

from sklearn.inspection import permutation_importance 

importances = permutation_importance(svm, X_train, y_train, 

                                                n_repeats=10, random_state=0) 

# Show mean value of importances and the ranking 

print(importances.importances_mean) 

print(importances.importances_mean.argsort()) 

>>> [ 2.1787e-01 2.8712e-01 1.2293e-01 -1.8667e-04 7.7333e-04] 

>>> [3 4 2 0 1] 

  

 

Support-vector machines have been used in the analysis of seismic data [Li and Castagna, 2004] and in 

the automatic interpretation of seismic data [Liu et al., 2015, Di et al., 2017b, Mardan et al., 2017]. These 

techniques typically perform worse than convolutional neural networks, because SVMs treat each sample 

independently. Other prominent uses of SVM in Geoscience include seismic tremor categorization 

[Masotti et al., 2006, 2008] and ground-penetrating radar analysis [Pasolli et al., 2009, Xie et al., 2013]. 

Society of Exploration Geophysicists 2016 (SEG)   machine learning competition was organised with an 
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SVM as the baseline [Hall, 2016]. Several other authors examined well log analysis [Anifowose et al., 

2017, Caté et al., 2018, Gupta et al., 2018, Saporetti et al., 2018], as well as seismology for event 

classification [Malfante et al., 2018] and magnitude determination [Ochoa et al., 2018]. These rely on the 

ability of SVMs to perform regression on time-series data. SVMs' strong mathematical foundation has 

enabled a wide variety of applications in geoscience, including microseismic event classification [Zhao 

and Gross, 2017], seismic well ties [Chaki et al., 2018], landslide susceptibility [Marjanovic et al., 2011, 

Ballabio and Sterlacchini, 2012], and digital rock models [Ma et al., 2012]. 

 

3.3.2  Modern Deep Learning 

 
The decade of the 2010s saw a rebirth in deep learning, most notably convolutional neural networks. 

Historically, AlexNet [Krizhevsky et al., 2012] was the first convolutional neural network (CNN) 

architecture to enter the ImageNet challenge [Deng et al., 2009]. The ImageNet challenge is a benchmark 

competition and library of natural images for computer vision. This reduced the categorization error rate 

from 25.8% to 16.4%. (top-5 accuracy). This has sparked interest in CNN research, resulting in error 

rates of 2.25 percent on ImageNet's top-5 accuracy in 2017 [Russakovsky et al., 2015]. Tensorflow was 

introduced as an open source deep learning model library [Abadi et al., 2015], with a slightly different 

software design than the Theano and Torch libraries. 

 

 
Figure 2: Binary Decision Boundary for Random Forest in 2D 

 

The following example illustrates how deep learning is applied to the data supplied in the preceding 

examples. We employ independent samples in the categorization data set, which necessitates the usage of 

basic densely connected feed-forward networks. While it is great to feed image data or spatially linked 

datasets to a convolutional neural network (CNN), time series are frequently better tackled using 

recurrent neural networks (RNN). This example is created in Python and makes use of the Tensorflow 

package. While PyTorch is an excellent tool to use, the author prefers to write a succinct example using 

the Tensorflow API. 

The sample model is composed of Dense layers and a Dropout layer that are sequentially assembled. 

Densely linked layers contain a predetermined number of neurons with a predetermined activation 

function, as illustrated in the example below. Each neuron executes the calculation described in Equation 

1, with the activation defined. Nowadays, modern neural networks rarely employ sigmoid and tanh 

activations. Their activation property causes them to lose information at extreme positive and negative 

input values, which is referred to as saturation. This saturation of neurons hampered the performance of 

deep neural networks until new non-linear activation functions were introduced. The activation 

mechanism Due to their non-saturating qualities, the rectified linear unit (ReLU) is widely credited with 

aiding the creation of very deep neural networks [Hahnloser et al., 2000]. As seen in equation 6, it zeroes 

out all negative values and delivers a linear response for positive values. Numerous other rectifiers with 

varying qualities have been introduced since its start. 

 
_(a) = max(0; a) 
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The other activation function used in the example is the "softmax" function on the output layer. This 

activation is commonly used for classification tasks, as it normalizes all activations at all outputs to one. 

It achieves this by applying the exponential function to each of the outputs in ~a for class C and dividing 

that value by the sum of all exponentials: 

 
Figure 3: ReLU activation (red) and derivative (blue) for efficient gradient computation. 

 

 

 
Additionally, the example employs a Dropout layer, which is a widely used technique for regularising 

networks by randomly changing a preset percentage of nodes to zero for each iteration. Neural networks 

are particularly prone to overfitting, which can be mitigated using a variety of regularisation strategies, 

including input data augmentation, noise injection, L1 and L2 limitations, and early training loop 

termination [Goodfellow et al., 2016]. For regularisation, modern deep learning systems may even 

employ noisy student-teacher networks [Xie et al., 2019b]. 
 

import tensorflow as tf 

model = tf.keras.models.Sequential([ 

tf.keras.layers.Dense(32, activation='relu'), 

tf.keras.layers.Dropout(.3), 

tf.keras.layers.Dense(16, activation='relu'), 

tf.keras.layers.Dense(2, activation='softmax')]) 
 
 

3.3.3 The State of ML on Geoscience 

 
Geoscience, particularly geophysics, has closely followed breakthroughs in machine learning. Machine 

learning techniques have been applied across fields to a variety of challenges that may be broadly 

classified into three categories: 

 

1. Create a fictitious machine learning model of a well-understood process. This paradigm typically has a 

cost advantage in terms of computation. 

 

2. Create a machine learning model for a task that could previously only be accomplished through human 
contact, interpretation, or knowledge and experience. 

 
3. Create a fresh machine learning model capable of performing a previously impossible task. 

 

 

4. Data Science for Geosciences:- 

The last decade has seen a surge in interest in data-driven discovery in geoscience research, as seen by 

the increasing number of financed initiatives, new facilities, shared datasets, and published scientific 

findings. Cyberinfrastructure, data portals, databases, workflow platforms, statistical models, machine 

learning algorithms, data management, and data sharing are all becoming increasingly common in the 

daily work of many geoscientists. Numerous successful instances of data-driven geoscience discovery 

over the last few years have proven the data revolution's great potential. It is self-evident that data science 
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will play a critical role in the coming decades in order to scale up innovation and accelerate new 

discoveries in geoscience. Nonetheless, because data science's theoretical foundations are still being 

developed, there is little debate and review of data science in geoscience. By contrast, geoscientists are 

currently in high demand for data science methodologies and tools. To meet that requirement, the 

objective of this work is to synthesise recent advances in both data science and data-driven geoscience in 

order to give a review and anticipate future developments. 

 
4.1 Trends in data science 

To gain a better grasp of data science workflows, it is vital to comprehend a few key ideas. In recent 

years, the author has taught database and data science classes to senior undergraduate and graduate 

students. Even students majoring in computer science may become perplexed by the definitions of data, 

metadata, information, and knowledge, as experience has demonstrated. The term "data" refers to the 

documented representation of facts. Nowadays, in the digital era, records are typically stored digitally in 

formats such as plain text, spreadsheet, relational database, or graph database. The meaning or message 

extracted from data is referred to as information. The process of extracting information is frequently 

determined by the objective of the data analysis, the methodologies and instruments utilised, and the 

interpretation of the data analysis results. 
 
 

 
 
Figure 3. Different depictions of the data life cycle and the data science process. (a) the DIKW model; (b) the Data 

Documentation Initiative (DDI) data life cycle (DDI Alliance, 2021); (c) the cross-industry standard process for 

data mining (CRISP-DM) (Chapman et al., 2000); (d) the data life cycle in data science (Wing, 2020) (e) the data 

life cycle and surrounding data ecosystem (Berman et al., 2018); and (f) the data science process (Schutt and 

O’Neil, 2013). 

 

Data science emerged and evolved as a result of multidisciplinary collaboration. Donoho (2017) provided 

a comprehensive overview of the evolution of data science over the last three decades. He highlighted 

numerous statisticians' viewpoints on the importance of broadening the scope of classical statistics to 

include data preparation, presentation, and prediction. According to a recent report from the National 

Academies of Sciences, Engineering, and Medicine (NASEM, 2018a), a critical task of data science 

education is to develop data acumen, which encompasses the following key concepts: mathematical 

foundations, computational foundations, statistical foundations, data management and curation, data 

description and visualisation, data modelling and assessment, and workflow and analysis. These data 

literacy issues are mirrored in the data life cycle and data science methodology (Figure 1), which are 

designed to fulfil the real-world requirements of data science applications. Numerous colleges have 

already begun to offer courses in data science. For instance, the University of California, Berkeley's Data 

8: Foundations of Data Science course is designed for freshmen in any major (Adhikari and DeNero, 
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2017). Its curriculum encompasses the majority of the courses mentioned in the preceding list of data 

acuity. 

 

4.1 A reflection on the key steps of a data life cycle 

 

Focusing on the theme of data science for geoscience, the following sub-sections will review a list of 

recent publications for each key step in the data life cycle, and summarize the shareable experience from 

them. 

 
4.1.1 Business understanding and concept 

The steps labelled "concept" in Figure 1b and "business knowledge" in Figure 1c are meant to help define 

the data science project's objectives and estimate data requirements (Chapman et al., 2000; DDI Alliance, 

2021). They are concerned with translating business objectives into data science plans. If database 

development is part of the intended activities, this step will also include work on data structures such as 

conceptual models, logical models, physical models, and controlled vocabularies for data standards. 

Cyberinfrastructure researchers have realised that early consideration and action on data semantics can 

aid in improving data interoperability when data is generated, gathered, integrated, and shared (Reitsma 

et al., 2009; Narock and Shepherd, 2017). 

 

 
 

Figure 4. Comparing the layered structure of data interoperability with the Semantic Web architecture and the 

FAIR data principles 

 

Numerous academics have described the layered structure of data interoperability, which encompasses 

systems, syntax, schematics, semantics, and pragmatics (Bishr, 1998; Sheth, 1999; Ludäscher et al., 

2003; Brodaric, 2007, 2018). Several further studies defined these levels in layman's words, such as 

discoverable, accessible, decodable, intelligible, and useable (Wood et al., 2010; Ma et al., 2011). The 

layered structures of data interoperability and the FAIR principle are similarly comparable to the 

Semantic Web's technological design (Berners-Lee, 2000). Numerous examples of data interoperability 

best practises may be found in the domain of geoscience. 

 

The United States Geological Survey's (USGS) National Geologic Map Database has adopted the North 

American Geologic Map Data Model (NADM) (NADM Steering Committee, 2004) as a standardised 

schema for organising state-level geologic map databases. At the USGS, such efforts on standards are 

ongoing, as evidenced by the recently released Geologic Map Schema (GeMS) (USGS NCGMP, 2020). 

Similarly, NASA uses the Global Change Master Directory (GCMD) Keywords as a hierarchical 

collection of controlled vocabularies to ensure the interoperability of its data and services (GCMD, 

2020). In Europe, the INSPIRE Directive intends to establish a spatial data infrastructure for the 

European Union (Bartha and Kocsis, 2011; Ma and Fox, 2014). Its data and metadata guidelines span 34 

data topics in Earth and environmental sciences, and complete implementation across all participating 

European nations is required by 2021. 

 

4.1.2 Data understanding, generation and collection 
 

NASA manages about 100 missions and hundreds of platforms, equipment, and sensors orbiting the 

Earth and nearby space, and is one of the world's largest producers of geoscience data. According to 

Shannon (2019), NASA generated 12.1TB of data per day in 2016. Additionally, the same storey said 
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that NASA was installing new sensors capable of generating 24 terabytes of data every day. The same 

advancements in instrumentation and data generation, transmission, and management were observed in 

field-based geological survey (Mookerjee et al., 2015). Wing (2019) distinguished data generation from 

data collection, noting that not all data generated is captured (Figure 1d). This could be because we just 

want to capture a subset of the data, or because the velocity of data streams is too high for present 

technologies to process. 

 

4.1.3 Data preprocessing and preparation 
 

Preprocessing data is becoming an increasingly critical stage in data science. Additionally, it is referred 

to by various alternative terms, including data cleansing, data wrangling, and data munging. The goal of 

data preprocessing is to assure the quality of data prior to conducting any data analysis. It may include 

tasks such as clearing out noisy and unreliable records, lowering data dimensionality, changing data 

formats, choosing records of interest, enriching existing data with extra properties, and combining data 

from many sources to create a new piece of data (Wang, et al., 2018). Numerous new research 

discoveries have been made as a result of the upgraded database, including mineral evolution and ecology 

(Morrison et al., 2019, 2020) and the co-evolution of the geosphere and the biosphere (Spielman and 

Moore, 2020). Additionally, the database resulted in new designs for mineral species databases and talks 

about improved data curation and sharing methods (Prabhu et al., 2021). 

 
4.1.4 Data archive, distribution, and discovery 
 

Funding agencies increasingly demand researchers to provide a data management plan with their grant 

submissions (Dietrich et al., 2012; NSF, 2015). Data are increasingly being viewed as a formal research 

output on par with paper papers and receiving the same level of attention. The ideas of FAIR data 

(Wilkinson et al., 2016) are now widely accepted across practically all scientific disciplines, including 

geoscience (Stall et al., 2019; Lannom et al., 2020). The FAIR data principles build on a long history of 

data management and stewardship activities and provide a systematic way to sharing and reusing 

scientific data in open science. NASA, the US Geological Survey, the National Oceanic and Atmospheric 

Administration, and the United States Department of Agriculture all have their own data archives and 

portals that enable users to search for and retrieve relevant data. For example, through a central interface, 

the USGS supports federated querying of a large number of spatial datasets devoted to mineral resources 

(USGS MRDATA, 2021). With the increased use of workflow platforms such as Jupyter Notebook and R 

Markdown, many data portals have developed packages to facilitate data access from workflow 

platforms, such as the paleobioDB R package for the Paleobiology Database (Varela et al., 2015) and the 

neotoma R package for the Neotoma Paleoecology Database (Varela et al., 2015). (Goring et al., 2015). 

 

4.1.5 AI and Small Data Scalable 

Covid-19 severely disturbed the sorts of data accessible for analysis and, as a result, the utilization of that 

data. More individuals are accessible online to study a wider range of data, yet these data are quite 

different from past sets of big data. That is why the AI 'small data' approaches take primacy, based on 

fewer consumer behavior occurrences. Therefore, artificial intelligence (AI) must be scalable to 

respond, despite the knowledge that huge amounts of data are historically better at predicting accurately.  

Machine learning must also adapt to the new analytical limitations arising from increased internet 

activity. New privacy laws such as the California Consumer Privacy Act of 2020 will make it more 

difficult to focus on 'little data' and allow more past data to be accessible. 

 

4.1.6 Cloud Computing 

The transition to cloud-based data storage has made a difference for many companies that prefer the 

safety of local servers and simply see the cloud as a transaction tool, as its initial function was. However, 

as cloud technology develops fast, new data science trends have enticed many companies to replenish 

their data storage. Providers like Amazon, Microsoft and Google are now the main method organisations 

may store their data and offer built-in analytics to ease the process of data management. By the end of 

2022, Gartner says that 90% of innovation in data and analytics would need public cloud services, with a 

cloud-based AI five times as important as it was in 2019 within a year. 
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4.1.7 Real- time data 

Real-time automated testing is one of the largest new data analysis capabilities in 2021. This signifies a 

trend away from historical data that is out of date by definition. Companies may now connect more 

effectively with their product or service consumers, responding to customer behaviors, instead of 

analyzing their data at a later period. According to Seagate, 75% of the world's population will interact 

every 18 seconds with data by 2025, making it vital to speed up the data analysis and the following 

reaction. 

 

4.1.8 Progress in Data science 

The rapid growth of Big Data and Data Science has spurred greater ideas and goals for data-driven 

geosciences study. The Carnegie Institution for Science launched the "4D" programme in 2018. (4D 

Initiative, 2018). In 2019, the International Union of Geological Sciences started the major research 

initiative Deep-time Digital Earth (DDE) (Cheng et al., 2020). Open data and community of practices on 

cyber infrastructure requirements and progress were made as part of the major recommendation in the 

vision (NASEM, 2020) for the next ten earth-science goals for the U.S. National Science Foundation 

(NSF). We are at a major turning point in science—a moment in which the way geoscientists do research 

will be altered by open data resources, cyber-infrastructure facility and new data science methods of 

analysis and visualization. Caps to uncover are the ongoing creation, integration and exploitation of 

facilities, data and knowledge to create and explore methods to understand the Earth more deeply (Hazen 

et al., 2019). 

 

5. Conclusion 

In the world of data science, it is new, and we are still figuring out what it is. For the time being, the term 

is best defined by the work of a data scientist. A data scientist is someone who utilizes programming as 

the foundation for a more in-depth and flexible approach to data analysis. Researchers in intelligent 

systems and geosciences collaborate to develop knowledge-rich frameworks, algorithms, and user 

interfaces that are easy to use and understand. Understanding that these connections are unlikely to occur 

without considerable assistance, a new Research Coordination Network on Intelligent Systems for 

Geosciences has been established to facilitate sustained communication across various areas that do not 

normally cross paths with one another. Enabling these advancements will require collaboration between 
academics in intelligent systems and geosciences to develop knowledge-rich frameworks, algorithms, and 

user interfaces. Recognizing that these linkages are unlikely to occur without major facilitation, a new 

Research Coordination Network on Intelligent Systems for Geosciences has been established to facilitate 

sustained communication across these domains that rarely intersect. This network is focused on three 

primary objectives. To begin, collaborative workshops and other platforms will facilitate synergistic talks 

and reveal shared interests. Second, repositories of challenge issues and datasets with succinct challenge 

statements are intended to minimise the entry barriers. Third, a curated archive of educational materials 

will be established to assist researchers and students in overcoming the steep learning curve associated 

with advanced topics in the other discipline. In geoscience, machine learning has a lengthy history. 

Kriging has evolved into more generic machine learning techniques, and geology has made tremendous 

strides with the application of deep learning. Applying deep convolutional networks to autonomous 

seismic interpretation has advanced these systems beyond what was previously conceivable, however this 

area of research remains active. Developing custom neural networks and shallow machine learning 

pipelines has become increasingly simple with new tools, enabling widespread applications in every 

subject of geoscience. Nonetheless, it is critical to recognise machine learning's limitations in geoscience. 

These are cutting-edge technologies, but developing fully tested models takes time, which might be 

disadvantageous when working in a hot scientific subject. While none of these applications are totally 

automated, as the allure of artificial intelligence would suggest, substantial new discoveries have been 

provided in applied geoscience. These applications make use of machine learning as a pre-processing tool 

for data, extending previous insights beyond theory and synthetic instances, or the model itself enabling 

previously unimaginable applications in geoscience. In general, applied machine learning has developed 

into a well-established tool in computational geoscience and has the ability to throw new light on 

geoscience theory. 
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