
www.ijcrt.org © 2022 IJCRT | Volume 10, Issue 6 June 2022 | ISSN: 2320-2882

IJCRT22A6624 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org f116

Query Optimization For Performance Gain With

Index Joins In Hive

Sowmya Chunduru, Dr.M.Akkalakshmi

#Authors designation

Department of Computer Science & Systems Engineering

GITAM University

Abstract --Index joins is crucial for efficiency and adaptability

when processing queries in big data. HIVE is a batch oriented

big data management engine which is well accepted for data

analysis applications and for an OLAP. For very “selective”

queries whose outputs are tiny fraction from the data

contribution, there the brute- force suffers with poor

performance because of dispensable disk I/O operations or

lead to initiations of added map operations. Here, An attempt

is made and propose to speed up the query process and

integrate it with index joins technique in Hive by mapping our

design to the ideational optimization flow. To evaluate the

performance, we generate and estimate test queries on datasets

generated using TPC-H benchmark. And the results indicate

notable performance gain over proportional large data sets

and /or highly select queries having a two-way join and a

single join condition.

Keywords — Indexing Techniques, Map and Reduce functions,

Join Operation, Hive, Hadoop

I. INTRODUCTION

With the origin of web 2.0, roles of the users and

web applications went through a uprise. The

unassertive view- is that the users have become

content creators. The chance to interconnect over the
internet granted to users, get shut of all the data from

social media, social sites, videos and other web.2.0

technologies to web sites has caused in increase of

loads to the already assembled large amount of data

on servers. This change demands in the innovation

of solutions to store the huge amount of data and

support coherent querying over it. The raw data to

extract the worthwhile information need to be

queried from it. This gives new horizons for the

development of novel algorithms, tools, and services

to process queries over this vast amount of data in a

equitable time frame.

Hive is a data warehouse software suites for OLAP

caseload to handle and the query over huge volume

of data to be conferred in a distributed storage. The

HDFS is the ecosystem in which Hive sustains the

data dependability and get through from hardware

failures. The only SQL-like relational big data

warehousing process developed on top of Hadoop to

the best of our knowledge is Hive. A high-level

programming model, called mapreduce [3], erect on

top of Hadoop [1] empower it to stream the data at a

high bandwidth and perform massive manipulation

of data.

 As joins are salient operations in databases,

which depend on the predicate, data, etc., granting

information “combined” from different relations. It

also gives us more data analysis and mining tasks

which are important in the factor of business

intelligence for finding gripping and useful patterns

in large amount of data. Therefore, upgrading

various join operations can result in consequential

performance improvement. In relational databases,

the join operations are through indexing or external

sort techniques, without which the brute-force scan

of the entire table is incompetent for large data. This

is more crucial in particular when a small fraction of

the tuples participate in the join operation.

 The major aspects impact the performance gain

in Hive with index joins contains very large data

volume and low index maintenance cost.

 Though Hive is anticipated to work well with

huge amount of data, indexing can further upgrade

the performance by lessen the amount of data

retrieves from the contributing tables. Having few

updates, as a characteristic of big data, makes the

cost of index maintenance of less importance or

affordable. Additionally, the index types proposed

and developed in Hive take up a pretty small space.

 The output of this paper gives a procedure to

perform join with MapReduce operations, over huge

http://www.ijcrt.org/

www.ijcrt.org © 2022 IJCRT | Volume 10, Issue 6 June 2022 | ISSN: 2320-2882

IJCRT22A6624 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org f117

sets of data stored in a Hadoop-based cloud.

Estimating analytically the performance of the

suggested approach, gives a recent indexing feature

in Hive to improve staging over non-indexed

queries. The go on paper is sorted as follows. Section

II details Hive Architecture and Section III evaluates

related work. Query Optimization using Index joins

is given in Section IV, and its experimental

evaluation and outputs are presented in Section V.

Ending remarks and subsequent work are discussed

in Section VI.

II. HIVE ARCHITECTURE

 Hive system architecture contains of several parts

and their relations, and the Hadoop Map-reduce

framework. The high effective view of the data-

warehouse architecture is shown in Figure 1.

At the end of Figure 1, we can see the Hadoop

system. At the start of Figure 1, the highlighted part

of Hive is placed in associate with its fundamental

elements. A brief of these elements and their usage

are as follows:
 Meta-store: Hive system catalog consists of

schemas, tables, columns, and their types, tables’

locations, statistics and other essential information

for data management. Since meta data is fast, Hive

uses a traditional RDBMS (e.g., Derby SQL

Server, MySQL Server, etc.) to manage meta data

rather using the HDFS.

 For example, in index joins, we need to know if a

table given in the query is indexed or not. Or we have

to know if the index rounds all the parts of a table. Such

details are stored in the meta-store and is pleaded by

the query compiler only once, but the vital part of this

data is sent to several trackers.

 Driver: The component that obtains the

query, once it is received by the UI from the user, and

directs the existance of a query inside Hive. It also

executes the conviction of session controls and reclaim

the session statistics.

 In Figure 1, the Driver comprises of three main

components, Compiler, Optimizer, and Executor. The

compiler interprets HiveQL into a DAG (Directed

Acyclic Graph) of mapreduce tasks that are

implemented by the executor or effect engine in the

order of their addictions. The optimizer occupies at

some point in between the compiler and executor to

enhance the performance. The index joins the

algorithm with the compiler and optimizer modules,

which will be described in more detail.

 Figure 1 Hive System Architecture [7].

 Hive Server: Hive server or Thrift Server

permits approach to Hive with a single port, like,

it allows access to Hive remotely. And it provides

means to joins Hive with other applications.

 Thrift is a efficient cross-language service

development framework; or clearly, a binary

communication protocol. Clients in various

programming languages can communicate logically

with Hive using the “thrift interface”.

 JDBC/ODBC: JDBC (Java Database

Connection) and ODBC (Open Database

Connection) which are applied on top of Thrift

sever are some more access points to Hive.

These Application Programming Interfaces

(API) gives access to Hive from other

applications. JDBC is committed to provide

access to Java applications.

 Command Line Interface/Hive Web

Interface: CLI and HWI, are the

Used to issue a query (usually by a human user) to

Hive. CLI is the most significant way to use Hive

which can work both collectively and with a batch

of scripts.We used CLI in our executions.

How the components of Hive architecture interacts?

 A user presents the query via Hive CLI/Hive web

Interface, JDBC/ODBC, or Thrift interface. The Driver

gets the query and process it to the compiler. Compiler

do the typical parsing, type checking, semantic

analysis, and signals the meta-store if needed. At last it

generates a query plan that is sent to the optimizer. The

optimized query plan is transformed to a DAG of

http://www.ijcrt.org/

www.ijcrt.org © 2022 IJCRT | Volume 10, Issue 6 June 2022 | ISSN: 2320-2882

IJCRT22A6624 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org f118

mapreduce jobs. The user runs these jobs in the order

of priority on Hadoop.

III. RELATED WORK

Before going to the related work, it is needed to point

the generic optimization flow in Hive, as many

optimizations abides to it.

 The DAG of operator goes to the optimizer to opt

for the best feasible order of operations on the original

data in the query plan. Many RDBMSs today profits

from a cost-based query optimizer. Hive offers a clear

yet rule-based optimizer where the operator tree is

recursively traversed and further divided into series of

mapreduce sterilisable tasks, each summarizing a part

of the query plan, acceptable to be executed on HDFS.

The plan even has the essential samples/partitions such

are by the query itself. Hive optimization contains a

chain of variations in which the DAG results one of the

transformation step is fed as an input to the next. Start

to change the optimizer or adding new optimization

algorithm is the Transform interface. For this, one

should applies the Transform interface using their logic

for the chain of optimizations in Hive Optimizer. Hive

optimizer invoking all the transformations, one after

other, to modify the query plan. Start to change the

optimizer or adding new optimization algorithm is the

Transform interface. For this, one should applies the

Transform interface using their logic for the chain of

optimizations in Hive Optimizer. Hive optimizer

invoking all the transformations, one after other, to

modify the query plan.

 Below is the description of modules and their roles[7].

 Figure 2 Hive optimization flow [2]

 Node: As the input/output of the optimizer

is in a tree form, This is representing the elements

of a tree called nodes.

 GraphWalker: GraphWalker can be said as

mechanism to traverse the tree fed to the optimizer.

This is GraphWalker and it picks up the nodes for

visiting and maintains track of the already visited

ones.

 Rule: Rule is a pattern in the query which is

Used for regular expressions notation. As the

 elements in the DAG are operators, the very basic

 tokens used here in regular expressions are also

 of the same type.

 Dispatcher: Dispatcher is generally the rule

matching and, some cases a certain rule is

equal with a Node, it calls for the

corresponding processor.

 Processor: The processor simply, defines and

includes the optimization logic.

Figure 2 The optimization flow in Hive is as below:

The optimizer module gets the query plan in the form

of a DAG of operators. The GraphWalker brings a node

and the dispatcher checks for any rule is similar with a

node, If it is so, it calls for the appropriate processor

and gets the next node.

 Any optimization in Hive observes to the above

flow.Below, we will discuss a few optimization

techniques associates to indexes in Hive.HIVE-1644

[4] is the application of processing the WHERE clause

with the index.
 SELECT column_list

 FROM table_name

 WHERE predicate;
and re-writes it into:

 INSERT INTO intermediate_file_name

 SELECT _BUCKETNAME, _OFFSETS

 FROM table_index

 WHERE

 relevent_part_of_the_predicate;

 The new query returns the table with the index table

and looks for the address of the values. The appropriate

part of the predicate is the part which can be processed

by the indexes, is a conjunction of the binary

expressions .The revised query is compiled and the

processed root tasks are added to the raw query root

tasks. Then the initial query runs over the transitional,

where results are produced from the revised query. All

column references in HIVE-1644 should refer to the

same table (no joins or sub-queries). Another

optimization in HIVE-1694 [5] speed up the queries

with GROUP BY clauses. It re-writes the below query:

http://www.ijcrt.org/

www.ijcrt.org © 2022 IJCRT | Volume 10, Issue 6 June 2022 | ISSN: 2320-2882

IJCRT22A6624 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org f119

 SELECT COUNT (key)

 FROM TABLE

 GROUP BY k

 WHERE predicate;

into the following query:

 SELECT SUM (_COUNT_OF_key)

 FROM index_table

 GROUP BY key

 WHERE predicate;

1.Sppeding up a query with a Where clause with index

 HIVE-1644 [4] is the execution of a query consists

a WHERE clause that holds the index to get the tuples.

The important questions are: when/where the

optimization is applied, how it is applied, what the

constraints are, and how it can be triggered? HIVE-

1644 is a physical query optimization. As mentioned in

the Hive architecture, the optimizer receives an

operator DAG and performs the enabled or possible

optimizations. This means optimization is applied at

the end of or during the logical plan generation stage.

The case for HIVE-1644 is slightly different. As a

physical optimization it happens more precisely after

the logical plan operation when the complete operator

tree is being transferred to the tree of tasks, but Hive

optimizer and physical optimizer have the same

components we already discussed and consequently

the tree goes through similar steps.

The physical plan optimizer invokes all the physical

optimizations in turn.

2. Acclerating a query with a GROUP BY clause using index

 The goal of HIVE-1694 is to accelerate queries

containing GROUP BY clauses.As in HIVE-1644, it

uses query re-writing technique,but its core design is

not limited to re-writing only.Though this optimizatio

seem intuitively as physical, in the code it is not

organized in the physical optimization package, and as

a result its optimizer implements the Transform

interface.

 In its optimizer called RewriteGBUsingIndex.java,

it first checks if the query meets all the constraints

such as:
 The presence of the index over the join key

 Validation of the index

 Coverage of the index over partitions (if any)

 Having only one table (no joins) in the query

 Having a single COUNT (index_key)

function in the query

 Addressing barely the columns that are in the
index key

3. Using indexing over mapreduce

 Hive merges all required facilities need to perform

queries over mapreduce. This means one can issue a

query without Hive by writing their own map and

reduce methods and managing the query lifecycle

themselves.

 A recent work integrated the index into mapreduce

framework, which tries to reduce the number of maps

generated to access the initial data using an index with

random access. The index structure is a B+-tree, which

is not built using a conventional create-by-insert in a

top-down fashion. Instead, since the data and

accordingly the index is not supposed to be updated,

the data is read in batch-mode using the mapreduce

framework itself; afterwards it is sorted on the

(index_key,offset) pairs and written sequentially to a

file. These sets form the leaf nodes for the index tree.

In the next step, all the leaf nodes are scrutinized and

the half way index nodes are created in a bottom-up

manner. In a conventional B+-tree, pointers connect the

leaves while this method keeps all the leaves in a

consecutive space.

4. Query optimization using statistics

 Statistics play a vital role in the factor of query

optimization. Statistics either help the optimizer to

select the more economical plan such as join reordering

or work for the query output like the COUNT(*) clause

in a query. Hive provides table and partition level

statistics as well as column-level statistics.

 A current work proposed storing column-level

meta data in Hive tables to get benefit during query

execution.Column-level statistics or more

distinctively, histograms that indicate value

distribution within a table gives more exact

information than just the table size to estimate the

output size. A new table is added to Hive meta-store

that carries the number of distinct values, number of

null values, min and max values and most periodic

values as its fields.

There are few defects about their work as follows:

 Collection of meta data at any levels like
partition, table or column put out extra above in

terms of time and space for the database

management system though it is not often

updated.

 The executed elements are rather a
different element than a detailed embedded

constituent in Hive. Other optimization techniques

need more advanced implementation that requires

additional comprehensive knowledge over the

architecture and dependencies.

 The time taken to extract the statistics, done
by supplies direct queries to Hive, is totally

abandoned.

http://www.ijcrt.org/

www.ijcrt.org © 2022 IJCRT | Volume 10, Issue 6 June 2022 | ISSN: 2320-2882

IJCRT22A6624 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org f120

5. Hive joins

 Hive has distinct join operation implementations:

Common Join, Map Join, Bucket Map Join, Sort Merge

Bucket Map Join and Skew Join. Common Join is the

basic implementation of the join which reads the entire

tables and has the greatest number of comparisons.

Based on the data distribution, tables’ sizes, and being

sorted, one of the another implementations enhances

the best choice to manage the join. We decided to

execute our tests and differentiations using the

Common Join because (1) using the index reduces the

number of comparisons and Common Join has the

greatest number of it. (2) Other implementations are

necessarily built and used for data with specific

features.

IV. PROPOSED INDEX JOINS

 The already used indexes in Hive are built only for

single tables. Please note that the already used index is

different than“Join index”, which would be an erection

of an index built over more than one table that

continues pairs of identifiers of tuples from two or

more relations that equals in case of a join [9][10].

 This work speeds up a two-way join query indicates

in HiveQL as below:

 SELECT column_list

 FROM table1 JOIN table2

 ON (table1.col1 = table2.col1)

 WHERE ...]

 [GROUP BY];

in which WHERE and GROUP BY clauses are

discretionary. All our changes are clear to the user and

the syntax of the query remains flawless. For the sake

of instance we review only two tables, but our

implementation works easily for multiple tables as

well.

 The synopsis is, given two tables A and B with B

having been indexed and a query to join these two

tables, execute the join by search then whole A and for

each row in A analysis the index on B. This is available

by revise the above query into:

 SELECT column_list

 FROM table1_index JOIN table2

 ON (table1.col1 = table2.col1)

 [WHERE ...]

 [GROUP BY ..];

 This optimization flow observes to the regular

optimization flow reported in Section II. Our

implementation utilizes the ideas in HIVE-1694 and

handles the internal data structures in the query

processor; even so, to adjust it to process joins we

included the extension presented in Fig. 3. As the first

step shown in the figure, the optimizer explores for a

JoinOperator. If this step is excluded, the optimization

is allowed for any query.

 The reason the JoinOperator gets first is, based on

the different operators, various design decisions have

to be made. A query contains a WHERE clause uses a

separable different design to benefit from the index

from the one contains a GROUP BY does. Then, the

optimizer searches the query for a two-way join.

Our technique can be simply extended to support

multiway joins, by exit this check out, but since we

have controls over the SELECT column list we get to

represent our work for a two-way join. In the other step

we obtains the TableScanOperator which points to the

table it should handle. We have to see that the table has

an index and the index is correct. An index is logical if

(1) it is of type compact (2) it encloses all the partitions

of the table. The index sustainability check returns true

if a table is not partitioned, or if it has partitions and

they are not refered in the WHERE clause. If and only

if it has partitions and they are mentioned in the

WHERE clause, it restores true if all the mentioned

partitions are enclosed by the index. After this step the

optimizer seeks to revise the query. Final query looks

like:

 SELECT column_list
 FROM index_table JOIN table2 ON

 (table1.col1 = table2.col1)

 [WHERE ..]

 [GROUP BY];

 The first or the second table (whichever that has the

index) is restored by its corresponding index table. This

means that table must be deleted from every internal

data structure in the DAG of operators and the new

table has to be added. Other data structures does not

equals with the new DAG of operators. Even so, since

there is no dependency on them, this is not an issue

when the query performs. Since the table is revised, the

schema is also revised. This requires the modification.

 If any of these context does not met the flow

defined in Fig. 3, the process ends in “Exit” which then

leads that the performance proceeds as usual without

using the index. It is necessary to mention that, since

there is no longer any permit to the base table, there is

no permit to all of its columns either. Rather, a subset

of the attributes (the ones that are indexed) is

accessable after the revise. This controls the queries

that can be maintained to only queries refers those

specific columns. Our executions and outputs are

described next.

http://www.ijcrt.org/

www.ijcrt.org © 2022 IJCRT | Volume 10, Issue 6 June 2022 | ISSN: 2320-2882

IJCRT22A6624 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org f121

Figure 3. Optimization flow for index-based join

V. EXPERIMENTS AND TEST RESULTS

 A. Environment

 The test environment contains a two-node Hadoop

cluster, each node has a Intel Core i5-2400 3.10GHz

6MB Quad Core, 250GB SATA HDD and 8GB of

RAM. Both were running Ubuntu v10.04 as the OS.

B. Test data

 We pre owned the standard benchmark TPC-H

version 2.14.4[8] to execute data used in our

experiments. We have taken only the lineitem and

orders tables. We generated database smaples of

various sizes reaching from 1GB to 20GB for

Experiments 1, and 1GB to 90GB for Experiments 2.

C. Test queries

 We execute a two-way join with optional

WHERE and GROUP BY clauses. The cause for this

is,such clauses are the nodes of the TableScanOperator.

 Since we handle the TableScanOperator in our

present solution, we have taken queries 2-4 to make

sure that our process does not affect any of the likely

relates of TableScanOperator. Here are the queries:

 1. SELECT DISTINCT o.O_ORDERKEY,

 o.O_TOTALPRICE, o.O_ORDERDATE FROM

 orders o JOIN lineitem l ON

 o.O_ORDERKEY =l.L_ORDERKEY;

 2. SELECT DISTINCT o.O_ORDERKEY,

 o.O_TOTALPRICE, o.O_ORDERDATE FROM

 orders o JOIN lineitem l ON

 o.O_ORDERKEY = l.L_ORDERKEY WHERE

 o.O_TOTALPRICE >15000;

 3. SELECT o.O_ORDERKEY, o.O_TOTALPRICE,

 o.O_ORDERDATE FROM orders o JOIN

 lineitem l ON o.O_ORDERKEY =

 l.L_ORDERKEY GROUP BY

 o.O_ORDERKEY, o.O_TOTALPRICE,

 o.O_ORDERDATE;

 4. SELECT o.O_ORDERKEY, o.O_TOTALPRICE,

 o.O_ORDERDATE FROM orders o JOIN

 lineitem l ON o.O_ORDERKEY =

 l.L_ORDERKEY WHERE

 o.O_TOTALPRICE > 15000 GROUP BY

 o.O_ORDERKEY, o.O_TOTALPRICE,

 o.O_ORDERDATE;

D. Run-time parameters

 The parameter mapred.map.tasks runs the number

of map tasks and mapred.reduce.tasks handles the

number of reduce tasks. In our executions, these

parameters were set to 20 and 4, respectively.

E. Evaluation metrics

 In all of our experiments, we measure performance

using the query response time in seconds(s). In

Experiments 2, we measure performance by also

considering query selectivity since it becomes

important in the presence of indexes.

F. Experiments 1

 Experiments 1 includes execution of the 4 query

types,each one is executed 5 times, on a multi-node and

a singlenode Hadoop cluster using 5 different dataset

sizes 1GB, 5GB, 10GB, 15GB, 20GB with lineitem

holding almost 5/6 of the total data and number of

tuples ranging from about 7×106 to 150×106. Figures 4

to 7 depict the average response time for each data size.

 In the multi-node setup, moving from 1GB of data

to 20GB, in all steps our index-based approach

outperforms the existing one. The larger the data are,

the bigger the gap between the index-less and index-

based approaches becomes. Our index method is

almost two times faster than the index-less approach in

all graphs.

 In the single-node setup, we see the same behavior;

for each data size, our proposed method outperforms

http://www.ijcrt.org/

www.ijcrt.org © 2022 IJCRT | Volume 10, Issue 6 June 2022 | ISSN: 2320-2882

IJCRT22A6624 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org f122

the normal one and the larger the data are, the bigger

the gap between the index-less and index approaches

becomes. The index method is almost about two times

faster than the index-less approach.

 Comparing the results from both setups, we note

that the single-node setup works faster than the multi-

node setup for the data size 1GB in both approaches.

For the data size of 5GB, the multi-node setup is

slightly faster than the singlenode case. Afterwards,

multi-node is almost two times faster than the single-

node. The performance difference between the two

setups indicates the networking overhead only pays

off when the data size is relatively big. In our

experiments, the data size over 5GB is suitable for the

multi-node setup. We say ‘relatively’ because this

measure depends on the hardware configuration of the

computers as well as the networking equipment.

 Experiments showed that repeating the same

query over the same dataset does not lead to

significantly different response times. The reason is,

Hive does not cache the query plan and starts from

scratch for each query. This causes the first response

time not to be always the longest one. With the growth

of data size, the deviation from the average response

time in each step grows.

 To better study the performance of our technique, in

the rest of Experiments 1, we conduct the same test

with different queries, which are extensions of query1.

 Looking at Figures 4 to 7, the graphs show similar

curves, using which we concluded that the 4 types of

queries have almost the same behavior and they did not

lead to significantly different response times in neither

approaches.

 The most expensive operator in all the queries is the

JOIN. Neither WHERE nor GROUP BY, which where

extra clauses added to queries 2-4, initiates a new

mapreduce job. The number of mapreduce jobs in all

the queries is equal to 1. As a result, in the rest of the

experiments we only use Query 1.

 We also studied the cost of index creation in terms of

time and space to decide whether or not to use index.

Figures 8 and 9 compare the size of the index with the

size of the data and the time taken for creating the index

with the average time taken for an index-less Query1

execution on multimode setup respectively.

 As shown in Fig. 8, the size of the index is less than

15% of the input dataset size, which is relatively small.

This is due to the simple tiny structure of indexes in

Hive which only stores pairs of values and their relative

locations from the beginning of the index file.

 However, the index size can vary based upon the

number of columns on which the index is created. In

all our tests, the index had been built over the join

attribute, L_ORDERKEY.

 Depending on the dataset size, the index creation

time increases as the data size grows. As shown in Fig.

9, the time grows from 60% to 75% of the time taken

for executing the query itself. This is because

processing the query and creating the index scan the

entire dataset for both which takes the major part of the

process. This scan operation is considerably reduced

for the queries when base table is replaced by the index

table. Recall that indexes are built only once, and its

cost is amortized over many executions of queries

using the index.

Figure 4. Query 1 response time with/out index on multi-

node and single-node setups

Figure 5. Query 2 response time with/out index on multi-

node and single-node setup

Figure 5. Query 3 response time with/out index on multi-

node and single-node setups

http://www.ijcrt.org/

www.ijcrt.org © 2022 IJCRT | Volume 10, Issue 6 June 2022 | ISSN: 2320-2882

IJCRT22A6624 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org f123

Figure 7. Query 4 response time with/out index on multi-

node and single-node setups

Figure 8. Index size vs. data size

Figure 9. Index creation time vs. query response time

G. Experiments 2

 The second set of executions we manages for

performance measurement gives different value for the

query discrimination ratios. For this, we used Query1

over the tables orders having a specific size of 164 MB

with 15 ×105 tuples and also table lineitem of size

reaching from 0.71 GB to 90.6 GB and with the number

of tuples reaching from 6×106 to 7×108. After expands

the specificity, the lineitem different join key or the

output size of the query was kept at 1,500,000 while

the data is two times each time. In this execution, we

were specified to get the point at

which our index-based proceedure works detectable

better than the index-less proceedure on our current

multi-node setup.

Fig. 10 describe the graphs for average response times

sustained. As we move from case 1 to 8 in this figure,

the index-less proceedure grows uncertainly, while the

indexbased proceedure remains less or more at an

average of about 87 seconds. In case 7, with 45GB of

data and 0.3% as query specificity, the index-based

proceedure is an order of magnitude speeden than the

index-less proceedure. The next iteration, case 8, with

double query specificity (0.1%) and double data size

(90GB), our proceedure is 20 times faster than the

index-less method. The epidemic efforts of the

index-less graph in Fig. 10, started at iteration 6 with

0.7% as the query specificity. If the curve has the same,

our index-based proceedure can perhaps be 2 orders of

magnitude faster than the index-less proceedure at

45TB of data with very specific (0.0007%) queries.

 As shown in Fig. 12, the index size gently drops

from 18% of the data size to 9% over the 8 iterations.

The Hive index size highs or decreases proportional to

the data size . In Experiments 2, the lower index rate is

due to the data dispensation, as at each iteration, the

number of different values of all attributes, was kept

the same while the volume of data was doubled.

 In regard to index, in Fig. 12, we can observe that,

up to iteration 5, index creation time is a bit less than

the performing of Query 1 without index, and surpasses

the query run-time later.

Figure 10. Query 1 response time with/out index on multi-

node and single-node setup (Experiments 2).

VI. CONCLUSION AND FUTURE WORK

 Indexes have been throughout for long time and

the profit of using them is well known. Though,

deciding when to use indexes in a scenario requires

huge estimation and commutation between its cost and

execution. In this exeperiment, we used the present

Hive indexing structure to faster up join queries. From

researches 1, we have seen, larger the data are, larger

the performance gain becomes. Our proceedure grew

straight in all cases shown in Figures 4 to 7. In

Experiments 2, we expand the sizes of the datasets with

increasing specificity ratios. The outputs of these

executions said that our proceedure is mounting faster

than the present Hive

approach.

http://www.ijcrt.org/

www.ijcrt.org © 2022 IJCRT | Volume 10, Issue 6 June 2022 | ISSN: 2320-2882

IJCRT22A6624 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org f124

 We observed in Fig. 8, that the index size was

fixed at only 15% of the data size in Experiments 1;

and in Fig. 11, it has taken an average of 12% of the

data in execution 2. Even though the index size hangs

on the data grouping and the number of attributes for

indexing, our executions presented the Hive index

space usage is logical. Index constructing time graphs

illustrated in Figures 9 and 12 has shown the time

necessary on building an index rely on the data

distribution, the more equivalent tuples gives the

output in a minimal index creation process became. In

Fig. 11, the maximum time case (iteration 8) index

creation took almost twice the query execution time.

Index creation contains of reading the whole data,

classifying it, and remove the duplicates, which is a bit

lengthy process. Till the data in the base table is

unwanted, any group of queries that have the right to

make use of the index, nevertheless the index

construction cost is only sustained once.

 With reference to approach the index, present Hive

indexes do not give an immediate approach to values,

which unquestionalbly comes with heavy space

projected. What they provide rather is, examine a huge

amount of data that replaces with a highly small set of

it that handles the values that are desired for. The cost

of detecting a value in the present index Hive is O(n),

where n is the number of tuples. Let’s suppose a Hive

table of n tuples and its index with entries, permitting a

particular value in the index is decreased from O(n) to

O(m) with m much lesser than n.

 Hive index maintenance cost is considerably low,

Noticing the few updates and batch-mode data

insertion as the specifications of big data. If new data

are inserted into a new parting of a base table, indexes

can be inserted statically for that parting and kept

individually without any requirement to execute update

operations.

 The indexing proceedure in Hive is instead new and

the progress has been controlled to present index

structure and also the query life cycle. There are a

number of optimization ideas to additional raise Hive

index-based joins, including:

 Plotting a cost-based optimizer, which can

estimate a query plan to help determine to use indexes

or not, likely by using column level statistics.

 Auto-indexing or the capable for the compiler

to construct indexes inside if demonstrated to be more

logical than the brute-force scanning of the data.

 Index creation in which the best index out of

all of the presented ones is selected to be used. The best

index could be the lesser or the one with the optimal set

of attributes. Present Hive naively selects the first

relevant index to execute a query plan.

 Not taking index creation time by establish the

index when inserting the data into a table. Noticeably,

in Hive managed tables data are read twice. One for

copying it to the base table and one for creating the

index. The previous can be removed if the index can

created in the background while inserted data into a

table.

 Execution of a hash-based index at the

bucket level. Buckets, the smallest data model units in

Hive, are probable candidate for the fast hash-based

index structure.

Figure 11 . Index size vs. data size

Figure 12. Index creation vs. query response

Times

ACKNOWLEDGMENT

 This work is supported in part by Department of

Computer Science & System Engineering, GITAM

University, Hyderabad.

http://www.ijcrt.org/

www.ijcrt.org © 2022 IJCRT | Volume 10, Issue 6 June 2022 | ISSN: 2320-2882

IJCRT22A6624 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org f125

REFERENCES

[1 Apache Hadoop [Online].

 Available: http://hadoop.apache.org/

[2] Chansler, R., Kuang, H., Radia, S., Shvachko, K. ”The

 Hadoop Distributed File System,” in Proc. IEEE Conf.

 Mass Storage Systems and Technologies (MSST),

 Incline Village, NV, 2010, pp.1

[3] Dean, J., Ghemawat, S. “MapReduce: Simplified Data

 Processing on Large Clusters,” Mag. Commun. ACM

 50th anniversary, vol. 51, issue 1, 2008, pp.107-113

[4] An, M., Wang, W., Wang, Y., “Using Index in the

 MapReduce Framework, ”, 12th Intl. Asia Pacific Web

 Conf. (APWEB), Beijing, China, 2010, pp. 52-58

[5] Antony, S., Chakka, P., Jain, N., J., Liu, Murthy, R.,

 Sarma, J. S., Thusoo, A., Zhang, N “Hive – A Petabyte

 Scale Data Warehouse Using Hadoop,” IEEE 26th Intl.

 Conf. Data Engineering (ICDE), Long Beach, CA, 2010,

 pp. 996 – 1005

[6] TPC-H[Online]. http://www.tpc.org/tpch/

[7] Valduriez, P. “Join Indicies,” in ACM Trans. Database

 Systems (TODS), vol. 12, issue 2, 1987, pp. 218-264

[8] Li, Z., Ross, K. A. “Fast joins using join indices,” in The

 International Journal on Very Large Data Bases, vol. 8,

 issue 1, 1999, pp.1–24

[9] Gruenheid, A., Mark, L., Omnecinski, E. “Query

 Optimization using column statistics in Hive,” in Proc.

 15th Symp. Intl. Database Engineering & Applications

 (IDEAS), Lisbon, Portugal, 2011, pp. 97-105, 2011

http://www.ijcrt.org/

