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Abstract --Index joins is crucial for efficiency and adaptability 

when processing queries in big data. HIVE is a batch oriented 

big data management engine which is well accepted for data 

analysis applications and for an OLAP. For very “selective” 

queries whose outputs are tiny fraction from the data 

contribution, there the brute- force suffers with poor 

performance because of dispensable disk I/O operations or 

lead to initiations of added map operations. Here, An attempt 

is made and propose to speed up the query process and 

integrate it with index joins technique in Hive by mapping our 

design to the ideational optimization flow. To evaluate the 

performance, we generate and estimate test queries on datasets 

generated using TPC-H benchmark. And the results indicate 

notable performance gain over proportional large data sets 

and /or highly select queries having a two-way join and a  

single join condition. 
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I. INTRODUCTION  

With the origin of web 2.0, roles of the users and 

web applications went through a uprise. The 

unassertive view- is that the users have become 

content creators. The chance to interconnect over the 
internet granted to users, get shut of all the data from 

social media, social sites, videos and other web.2.0 

technologies to web sites has caused in increase of 

loads to the already assembled large amount of data 

on servers. This change demands in the innovation 

of solutions to store the huge amount of data and 

support coherent querying over it. The raw data to 

extract the worthwhile information need to be 

queried from it. This gives new horizons for the 

development of novel algorithms, tools, and services 

to process queries over this vast amount of data in a 

equitable time frame. 

 

Hive is a data warehouse software suites for OLAP 

caseload to handle and the query over huge volume 

of data to be conferred in a distributed storage. The 

HDFS is the ecosystem in which Hive sustains the 

data dependability and get through from hardware 

failures. The only SQL-like relational big data 

warehousing process developed on top of Hadoop to 

the best of our knowledge is Hive. A high-level 

programming model, called mapreduce [3], erect on 

top of Hadoop [1] empower it to stream the data at a 

high bandwidth and perform massive manipulation 

of data.  

       As joins are salient operations in databases, 

which depend on the predicate, data, etc., granting 

information “combined” from different relations. It 

also gives us more data analysis and mining tasks 

which are important in the factor of business 

intelligence for finding gripping and useful patterns 

in large amount of data. Therefore, upgrading 

various join operations can result in consequential 

performance improvement. In relational databases, 

the join operations are through indexing or external 

sort techniques, without which the brute-force scan 

of the entire table is incompetent for large data. This 

is more crucial in particular when a small fraction of 

the tuples participate in the join operation. 

       The major aspects impact the performance gain 

in Hive with index joins contains very large data 

volume and low index maintenance cost.  

        Though Hive is anticipated to work well with 

huge amount of data, indexing can further upgrade 

the performance by lessen the amount of data 

retrieves from the contributing tables. Having few 

updates, as a characteristic of big data, makes the 

cost of index maintenance of less importance or 

affordable. Additionally, the index types proposed 

and developed in Hive take up a pretty small space. 

    The output of this paper gives a procedure to 

perform join with MapReduce operations, over huge 
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sets of data stored in a Hadoop-based cloud. 

Estimating analytically the performance of the 

suggested approach, gives a recent indexing feature 

in Hive to improve staging over non-indexed 

queries. The go on paper is sorted as follows. Section 

II details Hive Architecture and Section III evaluates 

related work. Query Optimization using Index joins 

is given in Section IV, and its experimental 

evaluation and outputs are presented in Section V. 

Ending remarks and subsequent work are discussed 

in Section VI. 

 

II. HIVE ARCHITECTURE 

     Hive system architecture contains of several parts 

and their relations, and the Hadoop Map-reduce 

framework. The high effective view of the data-

warehouse architecture is shown in Figure 1.  

At the end of Figure 1, we can see the Hadoop 

system. At the start of Figure 1, the highlighted part 

of Hive is placed in associate with its fundamental 

elements. A brief of these elements and their usage 

are as follows: 
 Meta-store: Hive system catalog consists of  

schemas, tables, columns, and their types, tables’ 

locations, statistics and other essential information 

for data management. Since meta data is fast, Hive 

uses a traditional RDBMS (e.g., Derby SQL 

Server, MySQL Server, etc.) to manage meta data 

rather using the HDFS. 

 

     For example, in index joins, we need to know if  a 

table given in the query is indexed or not. Or we have 

to know if the index rounds all the parts of a table. Such 

details are stored in the meta-store and is pleaded by 

the query compiler only once, but the vital part of this 

data is sent to several trackers.  

  Driver: The component that obtains the  

query, once it is received by the UI from the user, and 

directs the existance of a query inside Hive. It also 

executes the conviction of session controls and reclaim 

the session statistics.  

   In Figure 1, the Driver comprises of three main 

components, Compiler, Optimizer, and Executor. The 

compiler interprets HiveQL into a DAG (Directed 

Acyclic Graph) of mapreduce tasks that are 

implemented by the executor or effect engine in the 

order of their addictions. The optimizer occupies at 

some point in between the compiler and executor to 

enhance the performance. The index joins the 

algorithm with the compiler and optimizer modules, 

which will be described in more detail.  

 

 
               Figure 1 Hive System Architecture [7]. 

 

 Hive Server: Hive server or Thrift Server  

permits approach to Hive with a single port, like, 

it allows access to Hive remotely. And it provides 

means to joins Hive with other applications.  

    Thrift is a efficient cross-language service         

development framework; or clearly, a binary 

communication protocol. Clients in various 

programming languages can communicate logically 

with Hive using the “thrift interface”.  

 

 JDBC/ODBC: JDBC (Java Database 

Connection) and ODBC (Open Database 

Connection) which are applied on top of Thrift 

sever are some more access points to Hive. 

These Application Programming Interfaces 

(API) gives access to Hive from other 

applications. JDBC is committed to provide 

access to Java applications.  

 

 Command Line Interface/Hive Web 

Interface: CLI and HWI, are the  

Used to issue a query (usually by a human user) to 

Hive. CLI is the most significant way to use Hive 

which can work both collectively and with a batch 

of scripts.We used CLI in our executions. 

 

 

How the components of Hive architecture interacts? 

 

     A user presents the query via Hive CLI/Hive web 

Interface, JDBC/ODBC, or Thrift interface. The Driver 

gets the query and process it to the compiler. Compiler 

do the typical parsing, type checking, semantic 

analysis, and signals the meta-store if needed. At last it 

generates a query plan that is sent to the optimizer. The 

optimized query plan is transformed to a DAG of 
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mapreduce jobs. The user runs these jobs in the order 

of priority on Hadoop.  

III.  RELATED WORK 

 

Before going to the related work, it is needed to point 

the generic optimization flow in Hive, as many 

optimizations abides to it. 

 The DAG of operator goes to the optimizer to opt 

for the best feasible order of operations on the original 

data in the query plan. Many RDBMSs today profits 

from a cost-based query optimizer. Hive offers a clear 

yet rule-based optimizer where the operator tree is 

recursively traversed and further divided into series of 

mapreduce sterilisable tasks, each summarizing a part 

of the query plan, acceptable to be executed on HDFS. 

The plan even has the essential samples/partitions such 

are by the query itself. Hive optimization contains a 

chain of variations in which the DAG results one of the 

transformation step is fed as an input to the next. Start 

to change the optimizer or adding new optimization 

algorithm is the Transform interface. For this, one 

should applies the Transform interface using their logic 

for the chain of optimizations in Hive Optimizer. Hive 

optimizer invoking all the transformations, one after 

other, to modify the query plan. Start to change the 

optimizer or adding new optimization algorithm is the 

Transform interface. For this, one should applies the 

Transform interface using their logic for the chain of 

optimizations in Hive Optimizer. Hive optimizer 

invoking all the transformations, one after other, to 

modify the query plan.  

 

 Below is the description of modules and their roles[7]. 

 
 

 

                     Figure 2 Hive optimization flow [2] 
 

 Node: As the input/output of the optimizer  

is in a tree form, This is representing the elements 

of a tree called nodes. 

 

 GraphWalker: GraphWalker can be said as   

mechanism to traverse the tree fed to the optimizer. 

This is GraphWalker and it picks up the nodes for 

visiting and maintains track of the already visited 

ones. 

 

 Rule: Rule is a  pattern in the query which is 

Used for regular expressions notation. As the                   

       elements in the DAG are operators, the very basic           

       tokens used here in regular expressions are also         

       of the same type. 

 

 Dispatcher: Dispatcher is generally the rule 

matching and, some cases a certain rule is 

equal with a Node, it calls for the 

corresponding processor. 

 

 Processor: The processor simply, defines and   

includes the optimization logic. 

 

Figure 2 The optimization flow in Hive is as below: 

The optimizer module gets the query plan in the form 

of a DAG of operators. The GraphWalker brings a node 

and the dispatcher checks for any rule is similar with a 

node, If it is so, it calls for the appropriate processor 

and gets the next node.  

      Any optimization in Hive observes to the above 

flow.Below, we will discuss a few optimization 

techniques associates to indexes in Hive.HIVE-1644 

[4] is the application of processing the WHERE clause 

with the index.  
           SELECT column_list 

           FROM table_name 

         WHERE predicate;  
and re-writes it into: 
 

           INSERT INTO intermediate_file_name 

           SELECT _BUCKETNAME, _OFFSETS 

           FROM table_index 

           WHERE                  

           relevent_part_of_the_predicate; 

 

      The new query returns the table with the index table 

and looks for the address of the values. The appropriate 

part of the predicate is the part which can be processed 

by the indexes, is a conjunction of the binary 

expressions .The revised query is compiled and the 

processed root tasks are added to the raw query root 

tasks. Then the initial query runs over the transitional, 

where results are produced from the revised query. All 

column references in HIVE-1644 should refer to the 

same table (no joins or sub-queries). Another 

optimization in HIVE-1694 [5] speed up the queries 

with GROUP BY clauses. It re-writes the below query: 
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      SELECT COUNT (key) 

      FROM TABLE 

      GROUP BY k 

      WHERE predicate; 

 

into the following query: 
 

      SELECT SUM (_COUNT_OF_key) 

      FROM index_table 

      GROUP BY key 

      WHERE predicate; 

 
 
1.Sppeding up a query with a Where clause with index 

 

     HIVE-1644 [4] is the execution of a query consists 

a WHERE clause that holds the index to get the tuples. 

The important questions are: when/where the 

optimization is applied, how it is applied, what the 

constraints are, and how it can be triggered? HIVE-

1644 is a physical query optimization. As mentioned in 

the Hive architecture, the optimizer receives an 

operator DAG and performs the enabled or possible 

optimizations. This means optimization is applied at 

the end of or during the logical plan generation stage. 

The case for HIVE-1644 is slightly different. As a 

physical optimization it happens more precisely after 

the logical plan operation when the complete operator 

tree is being transferred to the tree of tasks, but Hive 

optimizer and physical optimizer have the same 

components we already discussed and consequently 

the tree goes through similar steps.  

The physical plan optimizer invokes all the physical 

optimizations in turn. 

 
2. Acclerating a query with a GROUP BY clause using index 

 

    The goal of HIVE-1694 is to accelerate queries 

containing GROUP BY clauses.As in HIVE-1644, it 

uses query re-writing technique,but its core design is 

not limited to re-writing only.Though this optimizatio 

seem intuitively as physical, in the code it is not 

organized in the physical optimization package, and as 

a result its optimizer implements the Transform 

interface.  

     In its optimizer called RewriteGBUsingIndex.java, 

it first checks if the query meets all the constraints 

such as:  
 The presence of the index over the join key  

 Validation of the index  

 Coverage of the index over partitions (if any)  

 Having only one table (no joins) in the query  

  Having a single COUNT (index_key) 

function in the query  

 Addressing barely the columns that are in the 
index key  

3. Using indexing over mapreduce 

 

 Hive merges all required facilities need to perform 

queries over mapreduce. This means one can issue a 

query without Hive by writing their own map and 

reduce methods and managing the query lifecycle 

themselves.  

      A recent work integrated the index into mapreduce 

framework, which tries to reduce the number of maps 

generated to access the initial data using an index with 

random access. The index structure is a B+-tree, which 

is not built using a conventional create-by-insert in a 

top-down fashion. Instead, since the data and 

accordingly the index is not supposed to be updated, 

the data is read in batch-mode using the mapreduce 

framework itself; afterwards it is sorted on the 

(index_key,offset) pairs and written sequentially to a 

file. These sets form the leaf nodes for the index tree. 

In the next step, all the leaf nodes are scrutinized and 

the half way index nodes are created in a bottom-up 

manner. In a conventional B+-tree, pointers connect the 

leaves while this method keeps all the leaves in a 

consecutive space. 

 
4. Query optimization using statistics 

  

     Statistics play a vital role in the factor of query 

optimization. Statistics either help the optimizer to 

select the more economical plan such as join reordering 

or work for the query output like the COUNT(*) clause 

in a query. Hive provides table and partition level 

statistics as well as column-level statistics.   

       A current work proposed storing column-level 

meta data in Hive tables to get benefit during query 

execution.Column-level statistics or more 

distinctively, histograms that indicate value 

distribution within a table gives more exact 

information than just the table size to estimate the 

output size. A new table is added to Hive meta-store 

that carries the number of distinct values, number of 

null values, min and max values and most periodic 

values as its fields. 

 

There are few defects about their work as follows:  

 Collection of meta data at any levels like  
partition, table or column put out extra above in 

terms of time and space for the database 

management system though it is not often 

updated.  

 
 The executed elements are rather a  
different element than a detailed embedded 

constituent in Hive. Other optimization techniques 

need more advanced implementation that requires 

additional comprehensive knowledge over the 

architecture and dependencies.  

 
 The time taken to extract the statistics, done  
by supplies direct queries to Hive, is totally 

abandoned.  
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5. Hive joins 

 

     Hive has distinct join operation implementations: 

Common Join, Map Join, Bucket Map Join, Sort Merge 

Bucket Map Join and Skew Join. Common Join is the 

basic implementation of the join which reads the entire 

tables and has the greatest number of comparisons. 

Based on the data distribution, tables’ sizes, and being 

sorted, one of the another implementations enhances 

the best choice to manage the join. We decided to 

execute our tests and differentiations using the 

Common Join because (1) using the index reduces the 

number of comparisons and Common Join has the 

greatest number of it. (2) Other implementations are 

necessarily built and used for data with specific 

features. 

 

IV.  PROPOSED INDEX JOINS 

 

    The already used indexes in Hive are built only for 

single tables. Please note that the already used index is 

different than“Join index”, which would be an erection 

of an index built over more than one table that 

continues pairs of identifiers of tuples from two or 

more relations that equals in case of a join [9][10]. 

    This work speeds up a two-way join query indicates 

in HiveQL as below: 

 
       SELECT column_list 

       FROM table1 JOIN table2 

       ON (table1.col1 = table2.col1) 

       WHERE ...] 

       [GROUP BY ]; 

 

in which WHERE and GROUP BY clauses are 

discretionary. All our changes are clear to the user and 

the syntax of the query remains flawless. For the sake 

of instance we review only two tables, but our 

implementation works easily for multiple tables as 

well. 

     The synopsis is, given two tables A and B with B 

having been indexed and a query to join these two 

tables, execute the join by search then whole A and for 

each row in A analysis the index on B. This is available 

by revise the above query into: 

 
      SELECT column_list 

      FROM table1_index JOIN table2 

      ON (table1.col1 = table2.col1) 

      [WHERE ...] 

      [GROUP BY ..]; 

 
      This optimization flow observes to the regular 

optimization flow reported in Section II. Our 

implementation utilizes the ideas in HIVE-1694 and 

handles the internal data structures in the query 

processor; even so, to adjust it to process joins we 

included the extension presented in Fig. 3. As the first 

step shown in the figure, the optimizer explores for a 

JoinOperator. If this step is excluded, the optimization 

is allowed for any query. 

      The reason the JoinOperator gets first is, based on 

the different operators, various design decisions have 

to be made. A query contains a WHERE clause uses a 

separable different design to benefit from the index 

from the one contains a GROUP BY does. Then, the 

optimizer searches the query for a two-way join. 

 

Our technique can be simply extended to support 

multiway joins, by exit this check out, but since we 

have controls over the SELECT column list we get to 

represent our work for a two-way join. In the other step 

we obtains the TableScanOperator which points to the 

table it should handle. We have to see that the table has 

an index and the index is correct. An index is logical if 

(1) it is of type compact (2) it encloses all the partitions 

of the table. The index sustainability check returns true 

if a table is not partitioned, or if it has partitions and 

they are not refered in the WHERE clause. If and only 

if it has partitions and they are mentioned in the 

WHERE clause, it restores true if all the mentioned 

partitions are enclosed by the index. After this step the 

optimizer seeks to revise the query. Final query looks 

like: 

         
           SELECT column_list 
      FROM index_table JOIN table2 ON 

     (table1.col1 = table2.col1) 

     [WHERE ..] 

     [GROUP BY ]; 

 

     The first or the second table (whichever that has the 

index) is restored by its corresponding index table. This 

means that table must be deleted from every internal 

data structure in the DAG of operators and the new 

table has to be added. Other data structures does not 

equals with the new DAG of operators. Even so, since 

there is no dependency on them, this is not  an issue 

when the query performs. Since the table is revised, the 

schema is also revised. This requires the modification. 

 

      If any of these context does not met the flow 

defined in Fig. 3, the process ends in “Exit” which then 

leads that the performance proceeds as usual without 

using the index. It is necessary to mention that, since 

there is no longer any permit to the base table, there is 

no permit to all of its columns either. Rather, a subset 

of the attributes (the ones that are indexed) is 

accessable after the revise. This controls the queries 

that can be maintained to only queries refers those 

specific columns. Our executions and outputs are 

described next. 
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Figure 3. Optimization flow for index-based join 

 

V. EXPERIMENTS AND TEST RESULTS 

 

 A. Environment 

       The test environment contains a two-node Hadoop 

cluster, each node has a Intel Core i5-2400 3.10GHz 

6MB Quad Core, 250GB SATA HDD and 8GB of 

RAM. Both were running Ubuntu v10.04 as the OS. 

 
B. Test data 

       We pre owned the standard benchmark TPC-H 

version 2.14.4[8] to execute data used in our 

experiments. We have taken only the lineitem and 

orders tables. We generated database smaples of 

various sizes reaching from 1GB to 20GB for 

Experiments 1, and 1GB to 90GB for Experiments 2. 

 

C. Test queries 

        We execute a two-way join with optional 

WHERE and GROUP BY clauses. The cause for this 

is,such clauses are the nodes of the TableScanOperator.  

       Since we handle the TableScanOperator in our 

present solution, we have taken queries 2-4 to make 

sure that our process does not affect any of the likely 

relates of TableScanOperator. Here are the queries: 

 
     1. SELECT DISTINCT o.O_ORDERKEY, 

        o.O_TOTALPRICE, o.O_ORDERDATE FROM   

        orders o JOIN lineitem l ON   

        o.O_ORDERKEY =l.L_ORDERKEY; 

 

     2. SELECT DISTINCT o.O_ORDERKEY,       

        o.O_TOTALPRICE, o.O_ORDERDATE FROM  

        orders o JOIN lineitem l ON        

        o.O_ORDERKEY = l.L_ORDERKEY WHERE   

        o.O_TOTALPRICE >15000; 

 

     3. SELECT o.O_ORDERKEY, o.O_TOTALPRICE, 

        o.O_ORDERDATE FROM orders o JOIN   

        lineitem l ON o.O_ORDERKEY =        

        l.L_ORDERKEY GROUP BY 

        o.O_ORDERKEY, o.O_TOTALPRICE, 

        o.O_ORDERDATE; 

 

     4. SELECT o.O_ORDERKEY, o.O_TOTALPRICE, 

        o.O_ORDERDATE FROM orders o JOIN   

        lineitem l ON o.O_ORDERKEY =  

        l.L_ORDERKEY WHERE 

        o.O_TOTALPRICE > 15000 GROUP BY 

        o.O_ORDERKEY, o.O_TOTALPRICE, 

        o.O_ORDERDATE; 

 
D. Run-time parameters 

      The parameter mapred.map.tasks runs the number 

of map tasks and mapred.reduce.tasks handles the 

number of reduce tasks. In our executions, these 

parameters were set to 20 and 4, respectively. 
 

 

E. Evaluation metrics 

     In all of our experiments, we measure performance 

using the query response time in seconds(s). In 

Experiments 2, we measure performance by also 

considering query selectivity since it becomes 

important in the presence of indexes. 

 
F. Experiments 1 

 

      Experiments 1 includes execution of the 4 query 

types,each one is executed 5 times, on a multi-node and 

a singlenode Hadoop cluster using 5 different dataset 

sizes 1GB, 5GB, 10GB, 15GB, 20GB with lineitem 

holding almost 5/6 of the total data and number of 

tuples ranging from about 7×106 to 150×106. Figures 4 

to 7 depict the average response time for each data size. 

     In the multi-node setup, moving from 1GB of data 

to 20GB, in all steps our index-based approach 

outperforms the existing one. The larger the data are, 

the bigger the gap between the index-less and index-

based approaches becomes. Our index method is 

almost two times faster than the index-less approach in 

all graphs.  

      In the single-node setup, we see the same behavior; 

for each data size, our proposed method outperforms 
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the normal one and the larger the data are, the bigger 

the gap between the index-less and index approaches 

becomes. The index method is almost about two times 

faster than the index-less approach. 

      Comparing the results from both setups, we note 

that the single-node setup works faster than the multi-

node setup for the data size 1GB in both approaches. 

For the data size of 5GB, the multi-node setup is 

slightly faster than the singlenode case. Afterwards, 

multi-node is almost two times faster than the single-

node. The performance difference between the two 

setups indicates the networking overhead only pays 

off when the data size is relatively big. In our 

experiments, the data size over 5GB is suitable for the 

multi-node setup. We say ‘relatively’ because this 

measure depends on the hardware configuration of the 

computers as well as the networking equipment. 

        Experiments showed that repeating the same 

query over the same dataset does not lead to 

significantly different response times. The reason is, 

Hive does not cache the query plan and starts from 

scratch for each query. This causes the first response 

time not to be always the longest one. With the growth 

of data size, the deviation from the average response 

time in each step grows. 

 

   To better study the performance of our technique, in 

the rest of Experiments 1, we conduct the same test 

with different queries, which are extensions of query1. 

   Looking at Figures 4 to 7, the graphs show similar 

curves, using which we concluded that the 4 types of 

queries have almost the same behavior and they did not 

lead to significantly different response times in neither 

approaches. 

   The most expensive operator in all the queries is the 

JOIN. Neither WHERE nor GROUP BY, which where 

extra clauses added to queries 2-4, initiates a new 

mapreduce job. The number of mapreduce jobs in all 

the queries is equal to 1. As a result, in the rest of the 

experiments we only use Query 1. 

   We also studied the cost of index creation in terms of 

time and space to decide whether or not to use index. 

Figures 8 and 9 compare the size of the index with the 

size of the data and the time taken for creating the index 

with the average time taken for an index-less Query1 

execution on multimode setup respectively. 

     As shown in Fig. 8, the size of the index is less than 

15% of the input dataset size, which is relatively small. 

This is due to the simple tiny structure of indexes in 

Hive which only stores pairs of values and their relative 

locations from the beginning of the index file. 

     However, the index size can vary based upon the 

number of columns on which the index is created. In 

all our tests, the index had been built over the join 

attribute, L_ORDERKEY.  

     Depending on the dataset size, the index creation 

time increases as the data size grows. As shown in Fig. 

9, the time grows from 60% to 75% of the time taken 

for executing the query itself. This is because 

processing the query and creating the index scan the 

entire dataset for both which takes the major part of the 

process. This scan operation is considerably reduced 

for the queries when base table is replaced by the index 

table. Recall that indexes are built only once, and its 

cost is amortized over many executions of queries 

using the index. 

 
Figure 4. Query 1 response time with/out index on multi-

node and single-node setups 

 

 
 

Figure 5. Query 2 response time with/out index on multi-

node and single-node setup 

 

 
 
Figure 5. Query 3 response time with/out index on multi-

node and single-node setups 
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Figure 7. Query 4 response time with/out index on multi-

node and single-node setups 

 

 
Figure 8. Index size vs. data size 

 

 
Figure 9. Index creation time vs. query response time  

 
G. Experiments 2 

    The second set of executions we manages for 

performance measurement gives different value for the 

query discrimination ratios. For this, we used Query1 

over the tables orders having a specific size of 164 MB 

with 15 ×105 tuples and also table lineitem of size 

reaching from 0.71 GB to 90.6 GB and with the number 

of tuples reaching from 6×106 to 7×108. After expands 

the specificity, the lineitem different join key or the 

output size of the query was kept at 1,500,000 while 

the data is two times each time. In this execution, we 

were specified to get the point at 

which our index-based proceedure works detectable 

better than the index-less proceedure on our current 

multi-node setup. 

Fig. 10 describe the graphs for average response times 

sustained. As we move from case 1 to 8 in this figure, 

the index-less proceedure grows uncertainly, while the 

indexbased proceedure remains less or more at an 

average of about 87 seconds. In case 7, with 45GB of 

data and 0.3% as query specificity, the index-based 

proceedure is an order of magnitude speeden than the 

index-less proceedure. The next iteration, case 8, with 

double query specificity (0.1%) and double data size 

(90GB), our proceedure is 20 times faster than the 

index-less method. The epidemic efforts of the 

index-less graph in Fig. 10, started at iteration 6 with 

0.7% as the query specificity. If the curve has the same, 

our index-based proceedure can perhaps be 2 orders of 

magnitude faster than the index-less proceedure at 

45TB of data with very specific (0.0007%) queries. 

     As shown in Fig. 12, the index size gently drops 

from 18% of the data size to 9% over the 8 iterations. 

The Hive index size highs or decreases proportional to 

the data size . In Experiments 2, the lower index rate is 

due to the data dispensation, as at each iteration, the 

number of different values of all attributes, was kept 

the same while the volume of data was doubled.  

     In regard to index, in Fig. 12, we can observe that, 

up to iteration 5, index creation time is a bit less than 

the performing of Query 1 without index, and surpasses 

the query run-time later. 

 
 
Figure 10. Query 1 response time with/out index on multi-

node and single-node setup (Experiments 2). 

 

VI.  CONCLUSION AND FUTURE WORK 

 
       Indexes have been throughout for long time and 

the profit of using them is well known. Though, 

deciding when to use indexes in a scenario requires 

huge estimation and commutation between its cost and 

execution. In this exeperiment, we used the present 

Hive indexing structure to faster up join queries. From 

researches 1, we have seen, larger the data are, larger 

the performance gain becomes. Our proceedure grew 

straight in all cases shown in Figures 4 to 7. In 

Experiments 2, we expand the sizes of the datasets with 

increasing specificity ratios. The outputs of these 

executions said that our proceedure is mounting faster 

than the present Hive 

approach.  
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       We observed in Fig. 8, that the index size was 

fixed at only 15% of the data size in Experiments 1; 

and in Fig. 11, it has taken an average of 12% of the 

data in execution 2. Even though the index size hangs 

on the data grouping and the number of attributes for 

indexing, our executions presented the Hive index 

space usage is logical. Index constructing time graphs 

illustrated in Figures 9 and 12 has shown the time 

necessary on building an index rely on the data 

distribution, the more equivalent tuples gives the 

output in a minimal index creation process became. In 

Fig. 11, the maximum time case (iteration 8) index 

creation took almost twice the query execution time. 

Index creation contains of reading the whole data, 

classifying it, and remove the duplicates, which is a bit 

lengthy process. Till the data in the base table is 

unwanted, any group of queries that have the right to 

make use of the index, nevertheless the index 

construction cost is only sustained once. 

    With reference to approach the index, present Hive 

indexes do not give an immediate approach to values, 

which unquestionalbly comes with heavy space 

projected. What they provide rather is, examine a huge 

amount of data that replaces with a highly small set of 

it that handles the values that are desired for. The cost 

of detecting a value in the present index Hive is O(n), 

where n is the number of tuples. Let’s suppose a Hive 

table of n tuples and its index with entries, permitting a 

particular value in the index is decreased from O(n) to 

O(m) with m much lesser than n. 

     Hive index maintenance cost is considerably low, 

Noticing the few updates and batch-mode data 

insertion as the specifications of big data. If new data 

are inserted into a new parting of a base table, indexes 

can be inserted statically for that parting and kept 

individually without any requirement to execute update 

operations. 

     The indexing proceedure in Hive is instead new and 

the progress has been controlled to present index 

structure and also the query life cycle. There are a 

number of optimization ideas to additional raise Hive 

index-based joins, including: 

 

 Plotting a cost-based optimizer, which can 

estimate a query plan to help determine to use indexes 

or not, likely by using column level statistics. 

 

 Auto-indexing or the capable for the compiler  

to construct indexes inside if demonstrated to be more 

logical than the brute-force scanning of the data. 

 

 Index creation in which the best index out of  

all of the presented ones is selected to be used. The best 

index could be the lesser or the one with the optimal set 

of attributes. Present Hive naively selects the first 

relevant index to execute a query plan. 

 

 Not taking index creation time by establish the 

index when inserting the data into a table. Noticeably, 

in Hive managed tables data are read twice. One for 

copying it to the base table and one for creating the 

index. The previous can be removed if the index can 

created in the background while inserted data into a 

table. 

 Execution of a hash-based index at the  

bucket level. Buckets, the smallest data model units in 

Hive, are probable candidate for the fast hash-based 

index structure. 

 
 

Figure 11 . Index size vs. data size 

 
Figure 12. Index creation vs. query response 

Times 
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