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ABSTRACT 
Malware detection developer faced a problem for a generation of new signature of malware code. 

A very famous and recognized technique is pattern based malware code detection technique. This leads 

to the evasion of signatures that are built based on the code syntax. In this paper, discuss some well known 

method of malware detection based on semantic feature extraction technique. In current decade, most of 

authors focused on malware feature extraction process for generic detection process. The effectiveness of 

the Malicious Sequence Pattern Matching technique for malware detection invites for moderation and 

improvement of the current system and method. Some authors used rule mining technique, some other used 

graph technique and some also focused on feature clustering process of malware detection. 
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1.INTRODUCTION 

1.1 DATA MINING 
Data mining is an interdisciplinary subfield of computer science. It is the computational process of 

discovering patterns in large data sets involving methods at the intersection of artificial intelligence, 

machine learning, statistics, and database systems. The overall goal of the data mining process is to extract 

information from a data set and transform it into an understandable structure for further use. Aside from the 

raw analysis step, it involves database and data management aspects, data pre-processing, model and 

inference considerations, interestingness metrics, complexity considerations, post-processing of discovered 

structures, visualization, and online updating. Data mining is the analysis step of the "knowledge 

discovery in databases" process, or KDD. The term is a misnomer, because the goal is the extraction of 

patterns and knowledge from large amounts of data, not the extraction (mining) of data itself. It also is a 

buzzword and is frequently applied to any form of large-scale data or information   processing (collection, 

extraction, warehousing, analysis, and statistics) as well as any application of computer decision support 

system, including artificial intelligence, machine learning, and business intelligence.  

The book Data mining:  Practical machine learning tools and techniques with Java (which covers 

mostly machine learning material) was originally to be named just Practical machine learning, and the term 

data mining was only added for marketing reasons. Often the more general terms (large scale) data analysis 

and analytics – or, when referring to actual methods, artificial intelligence and machine learning – are more 

appropriate. The actual data mining task is the automatic or semi-automatic analysis of large quantities of 
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data to extract previously unknown, interesting patterns such as groups of data records (cluster analysis), 

unusual records (anomaly detection), and dependencies (association rule mining). This usually involves 

using database techniques such as spatial indices. These patterns can then be seen as a kind of summary of 

the input data, and may be used in further analysis or, for example, in machine learning and predictive 

analytics. For example, the data mining step might identify multiple groups in the data, which can then be 

used to obtain more accurate prediction results by a decision support system.  Neither the data collection, 

data preparation, nor result interpretation and reporting is part of the data mining step, but do belong to 

the overall KDD process as additional steps. The related terms data dredging, data fishing, and data snooping 

refer to the use of data mining methods to sample parts of a larger population data set that are (or may be) 

too small for reliable statistical inferences to be made about the validity of any patterns discovered. 

These methods can, however, be used in creating new hypotheses to test against the larger data populations. 

 

1.2 CLASSIFICATION AND PREDICTION: 
Classification is the process of finding a model that describes the data classes or concepts. This 

derived model is based on the analysis of sets of training data. The derived model can be presented in the 

following forms: 

Classification (IF-THEN) Rules 

Decision Trees 

Mathematical Formulae 

Neural Networks 

The list of functions involved in these processes is as follows: 

Classification - It predicts the class of objects whose class label is unknown. 

Its objective is to find a derived model that describes and distinguishes data classes or concepts. The 

Derived Model is based on the analysis set of training data i.e. the data object whose class label is well known. 

Prediction -  It is used to predict missing or unavailable numerical data values rather than class labels. 

Regression Analysis is generally used for prediction.  Prediction can also be used for identification of 

distribution trends based on available data. 

Outlier Analysis - Outliers may be defined as the data objects that do not comply with the general 

behavior or model of the data available.  Evolution Analysis - Evolution analysis refers to the description and 

model regularities or trends for objects whose behavior changes over time. 

 
The list of steps involved in the knowledge discovery process: 

Data Cleaning - In this step, the noise and inconsistent data is removed. 

Data Integration - In this step, multiple data sources are combined. 

Data Selection - In this step, data relevant to the analysis task are retrieved from the database.  Data 

Transformation - In this step, data is transformed or consolidated into forms appropriate for mining by 

performing summary or aggregation operations. 

Data Mining - In this step, intelligent methods are applied in order to extract data patterns. Pattern 

Evaluation - In this step, data patterns are evaluated. 

Knowledge Presentation - In this step, knowledge is represented. 

 

1.3 BACKGROUND OF THE PROJECT 
It   discovers   malicious   sequential   patterns   based   on   the   mechanism instruction sequences 

extracted from the Windows Portable Executable (PE) files, then use it to construct a data mining 

framework, called MSPMD (Malicious Sequential Pattern based Malware Detection), to detect new 

malware samples, and then NAIVE BAYES classifier is constructed for malware detection based on the 

discovered patterns. The residential data mining framework composed of the proposed sequential pattern 

mining method and NAIVE BAYES classifier can well portray the malicious patterns from the composed 

file sample set to effectively detect newly unseen malware samples. it can reduce the execution time for 

detect the malicious sequences affected files. The multi-classification method also detects the types of 

malware affect the file. 
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2. LITERATURE SURVEY 

2.1 TITLE: DLL MINER: STRUCTURAL MINING FOR MALWARE DETECTION. AUTHOR: 

MASOUD NAROUEI, MANSOUR AHMADI. 
Existing anti-malware products usually use signature-based techniques as their main detection 

engine. Although these methods are very fast, they are unable to provide effective protection against newly 

discovered malware or mutated variant of old malware. Heuristic approaches are the next generation of 

detection techniques to mitigate the problem. These approaches aim to improve the detection rate by 

extracting more behavioral characteristics of malware.  Although these approaches cover the disadvantages 

of signature-based techniques, they usually have a high false positive, and evasion is still possible from 

these approaches. In this paper, we propose an effective and efficient heuristic technique based on static 

analysis that not only detect malware with a very high accuracy, but also is robust against common evasion 

techniques such as junk injection and packing. Our proposed system is able to extract behavioral features 

from a unique structure in portable executable, which is called dynamic-link library dependency tree, 

without actually executing the application. 

 

2.2 TITLE: AN INTELLIGENT PE-MALWARE DETECTION SYSTEM BASED ON 

ASSOCIATION MINING AUTHOR: YANFANG YE · DINGDING WANG · TAO LI. 
The proliferation of malware has presented a staid threat to the security of computer systems. 

Traditional signature-based anti-virus systems fail to identify polymorphic metamorphic and new, 

previously unseen malicious executables. Data mining methods such as Naive Bayes and Decision 

Tree contains studied on small collections of executables. In this paper, hidden on the analysis of Windows 

APIs called by PE files, we extend the Intelligent Malware Detection System (IMDS) using Objective-

Oriented Association m i n i n g  based classification. IMDS is an integrated structure consisting of three 

major modules: PE parser, OOA rule maker, and rule based classifier. An OOA_Fast_FP-Growth algorithm 

is adapted to competently generate OOA rules for classification. A broad experimental study on a large 

group of PE files obtained from the anti-virus laboratory of King Soft Corporation is performed to evaluate 

various malware detection approaches. Promising investigational results demonstrate that the precision and 

efficiency of our IMDS system outperform popular anti-virus software such as Norton Antivirus and 

McAfee Virus Scan, as well as preceding data mining based finding systems which employed Naive Bayes, 

Support Vector Machine (NAIVE BAYES) and Decision Tree techniques. 

 

2.3 TITLE: DATA MINING METHODS FOR DETECTION OF NEW MALICIOUS 

EXECUTABLES AUTHOR: MATTHEW G. SCHULTZ AND ELIZA ESKIN 
A serious safety threat today is malicious executables, especially new, unseen malicious 

executables often arriving as email attachments. These new- fangled malicious executables are formed at 

the rate of thousands every year and pose a serious safety threat. Current anti-virus systems attempt to detect 

these new malicious programs with heuristics generated by hand. This approach is costly and oftentimes 

hopeless. In this paper, we present a data-mining framework that detects new, before unseen malicious 

executables accurately and mechanically. The data- mining framework mechanically found patterns in our 

data set and second-hand these patterns to detect a set of new malicious binaries. Comparing our 

finding methods with a usual signature based method; our method more than doubles the current detection 

rates for new malicious executables. Data, such as byte code, and use these patterns to detect future instances 

in similar data. Our framework uses classifiers to identify new malicious executables. A classifier is a rule 

set, or detection model, generated by the data mining algorithm that was skilled over a given set of training 

data. 

2.4 TITLE: AUTOMATIC MALWARE CATEGORIZATION USING CLUSTER 

ENSEMBLE AUTHOR: YANFANG YE, TAO LI 
Malware categorization is significant problem in malware analysis and has attracted a lot of 

attention of computer safety researchers and anti-malware industry recently. Today’s malware samples 

are created at a rate of millions per day with the expansion of malware writing techniques. There is 

thus an urgent need of effective methods for routine malware categorization. The last few years, many 

clustering techniques have been employed for automatic malware classification. However, such techniques 

have isolated successes with partial effectiveness and efficiency, and few have been applied in actual anti-
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malware industry.  In this paper, resting on the analysis of instruction frequency and function-based 

instruction sequences, we increase an Automatic Malware Categorization System (AMCS) for mechanically 

grouping malware samples into families that share some common distinctiveness using a cluster ensemble 

by aggregating the clustering solutions generated by dissimilar base clustering algorithms. We propose a 

principled cluster group framework for combining individual clustering solutions based on the agreement 

partition. The domain knowledge in the form of sample-level constraints can be naturally included in the 

collection framework. In addition, to account for the characteristics of quality representations, to 

propose a hybrid hierarchical clustering algorithm which combines the virtues of hierarchical clustering’s. 

The classification results of our AMCS system can be used to create signatures for malware families that 

are useful for malware detection. 

 

2.5 TITLE: AUTOMATIC MALWARE CATEGORIZATION USING CLUSTER 

ENSEMBLE AUTHOR: YANFANG YE, TAO LI 
Scanning files for signatures is an established technology, but exponential growth in unique malware 

programs has caused a detonation in signature database sizes. One solution to this problem is to use string 

signatures, each of which is a next byte sequence that potentially can match many variants of a malware 

family. However, it is not clear how to routinely generate these string signatures with a sufficiently low 

false positive rate. Hancock is the first string signature creation system that takes on this challenge on a 

large scale. To minimize the false positive rate, Hancock features a scalable model that estimates the 

occurrence possibility of arbitrary byte sequences in good ware programs, a set of library code recognition 

techniques, and diversity-based heuristics that ensure the contexts in which a signature is implanted in 

containing malware files are similar to one another. With these techniques shared, Hancock is able to 

mechanically generate string signatures with a false positive rate below 0.1%. 

 

3. SYSTEM ANALYSIS 

3.1 EXISTING SYSTEM 
Due   to its damage to Internet   security, malware (e.g., virus, worm, Trojan) and its finding has 

caught the attention of both anti malware industry and researchers for decades. To protect genuine users 

from the attacks, the most significant line of defense against   malware is anti-malware software products, 

which mostly use signature-based method for detection. However, this method fails to recognize new, 

unseen malicious executable. To solve this problem, in this paper, based on the instruction sequences 

extracted from the file sample set, we propose an effective sequence mining algorithm to discover malicious 

sequential patterns, and then J48 classifiers constructed for malware detection based on the discovered 

patterns. The developed data mining framework composed of the proposed s e q u e n t i a l  p a t t e r n  

m i n i n g  m e t h o d  a n d  J 48        classifier c a n  w e l l  characterize the malicious patterns from the collected 

file samples to effectively detect newly unseen malware samples. 

 

3.2 PROPOSED SYSTEM 
Sequence mining algorithm to discover malicious sequential patterns based on the machine 

instruction sequences extracted from the Windows Portable Executable (PE) files, then use it to construct a 

data mining frame work, called MSPMD (Malicious Sequential Pattern based Malware Detection), to detect 

new malware samples. The main contributions of this paper can be summarized as follows: Instruction 

sequences are extracted from the PE (Portable Executable) files as the preliminary features, based on 

which the malicious sequential patterns are mined in the next step. The extracted instruction sequences 

can well indicate the potential malicious patterns at the micro level. In addition, such kind of features can 

be easily extracted and used to generate signatures for the traditional malware detection systems. An 

effective sequential pattern mining algorithm, called MSPE (Malicious Sequential Pattern Extraction), to 

discover malicious     sequential patterns from instruction sequence. 

MSPE introduces the concept of objective- oriented to learn patterns with strong abilities to 

distinguish malware from benign files. Moreover, we design a filtering criterion in MSPE to filter the 

redundant patterns in the mining process in order to reduce the costs of processing    time    and search 

space. This strategy greatly enhances the efficiency of our algorithm. NAIVE BAYES classifier for malware 

detection: We propose NAIVE BAYES classifier as detection module to identify malware.  Different from 
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the traditional k-nearest-neighbor method, NAIVE BAYES chooses k automatically during the algorithm 

process. 

More importantly, the NAIVE BAYES classifier is well-matched with the discovered sequential 

patterns, and is able to obtain better results than other classifiers in malware detection. To conduct a series 

of experiments to evaluate each part of our framework and the whole system based on real sample 

collection, containing both malicious and benign PE files. The results show that MSPMD is an effective 

and efficient solution in detecting new malware samples. 

 

3.3 SYSTEM ARCHITECTURE 
The ML is constructed by using Koras and opencv2 architecture. These frameworks give us 

two advantages. First, they allow us to plan neural networks and secondly they help us precompile the 

training algorithms so that an execution on GPU is possible which generally runs at a very fast rate for 

neural networks. 

The malware files have an identifying hash value which consists of 20 characters. The hash 

value is unique for each malware fi le.  Each file also has a   class identifier. This is an   integer that 

indicates the family of each malware family. The raw data in each file is the hexadecimal form of 

binary contents of each malware. The dataset also has some metadata information such as function calls 

extracted from binaries using the IDA disassembler tool. 

Malware poses a serious threat to the computers of individuals, enterprises and other organizations. 

In the Windows operating system (OS), Application Programming Interface (API) calls are an attractive and 

distinguishable feature for malware analysis and detection as they can properly reflect the actions of portable 

executable (PE) files. 

 

4.1 HARDWARE REQUIREMENTS: 
PROCESSOR  :  Any Processor above 500 MHz 

RAM   :  128MB. HARD 

DISK  :  10 GB. COMPACT DISK :  

650 MB. 

INPUT DEVICE : Standard Keyboard, Mouse. OUTPUT 
DEVICE :  VGA Monitor 

4.2 SOFTWARE REQUIREMENTS:  

OPERATING SYSTEM : Windows OS 

FRONT END  : JAVA 

 

5.SYSTEM TESTING 

5.1 STATIC VS DYNAMIC TESTING 
There        are        many        approaches        available        in        software testing. Reviews, 

walkthroughs,  or inspections are  referred  to  as static  testing, whereas  actually executing  programmed  

code  with  a  given  set  of test  cases is referred to as dynamic testing. Static testing is often implicit, as 

proofreading, plus when programming tools/text editors check source code structure or compilers (pre-

compilers) check syntax and data flow as static program analysis. Dynamic testing takes place when the 

program itself is run. Dynamic testing may begin before the program is 100% complete in order to test 

particular sections of code and are applied to discrete functions or modules. Static      testing      involves 

verification,      whereas      dynamic      testing involves validation.  Together  they  help  improve software  

quality.  Among  the techniques for static analysis, mutation testing can be used to ensure the test-cases 

will detect errors which are introduced by mutating the source code. 

 

The box approach 
Software testing methods are traditionally divided into white- and black-box testing. These two 

approaches are used to describe the point of view that a test engineer takes when designing test cases. 
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5.2 TESTING LEVELS 
There are generally four recognized levels of tests: unit testing, integration testing, system testing, 

and acceptance testing. Tests are frequently grouped by where they are added in the software development 

process, or by the level of specificity of the test. The main levels during the development process as 

defined by t h e  S W E B O K  guide a r e  u n i t -, i n t e g r a t i o n -, a n d  s y s t e m  t e s t i n g  t h a t  a r e  

distinguished by the test target without implying a specific process model. Other test levels are classified 

by the testing objective. 

  

5.2.1 UNIT TESTING 
Unit testing, also known as component testing, refers to tests that verify the functionality of a 

specific section of code, usually at the function level. In an object-oriented environment, this is usually 

at the class level, and the minimal unit tests include the constructors and destructors. Unit testing is a 

software development process that involves synchronized application of a broad spectrum of defect 

prevention and detection strategies in order to reduce software development risks, time, and costs. It is 

performed by the software developer or engineer during the construction phase of the software development 

lifecycle. 

 

5.2.2 INTEGRATION TESTING 
Integration testing is any type of software testing that seeks to verify the interfaces between 

components against a software design. Software components may be integrated in an iterative way or all 

together ("big bang"). Normally the former is considered a better practice since it allows interface issues to 

be located more quickly and fixed. Integration testing works to expose defects in the interfaces and 

interaction between integrated components (modules). Progressively larger groups of tested software 

components corresponding to elements of the architectural design are integrated and tested until the software 

works as a system.
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5.2.3 WHITE-BOX TESTING 
White-box     testing (also     known     as clear     box     testing, glass     box testing, transparent 

box testing and structural testing) tests internal structures or workings of a program, as opposed to the 

functionality exposed to the end-user. In white-box testing an internal perspective of the system, as well as 

programming skills, are used to design test cases. The tester chooses inputs to exercise paths through the 

code and determine the appropriate outputs. This is analogous to testing nodes in a circuit, e.g. in-circuit 

testing (ICT). While          white-box          testing          can          be          applied          at the unit, integration 

and system levels of the software testing process, it is usually done at the unit level. It can test paths within 

a unit, paths between units during integration, and between subsystems during a system–level test.  Though 

this method of test design can uncover many errors or problems, it might not detect unimplemented parts of 

the specification or missing requirements. 

Techniques used in white-box testing include: 

API testing ( application p r o g r a m m i n g  i n t e r f a c e ) –   testing o f  t h e  application using public 

and private APIs 

 Code c o v e r a g e  –  creating t e s t s  t o  s a t i s f y  s o m e  c r i t e r i a  o f  c o d e  coverage (e.g., the 

test designer can create tests to cause all statements in the program to be executed at least once) 

Fault injection methods – intentionally introducing faults to gauge the efficacy of testing strategies 

Mutation testing methods 

Static testing methods 

Code coverage tools can evaluate the completeness of a test suite that was created with any method, 
including black-box testing. This allows the software team to examine parts of a system that are rarely 

tested and ensures that the most important function points have been tested. Code coverage as a software 

metric can be reported as a percentage for: Function coverage, which reports on functions executed Statement 

coverage , which reports on the number of l ines executed to complete the test 100% statement 

coverage ensures that all code paths or branches (in terms of control flow) are executed at least once. 

This is helpful in ensuring correct functionality, but not sufficient since the same code may process different 

inputs correctly or incorrectly. 

 

5.2.4 BLACK-BOX TESTING 
Black-box   testing treats   the   software   as   a   "black   box”, examining functionality without 

any knowledge of internal implementation. The testers are only aware of what the software is supposed to 

do, not how it does it. Black-box testing methods include:  equivalence partitioning, boundary value 

analysis, all- pairs t e s t i n g , state t r a n s i t i o n  t a b l e s , decision t a b l e  testing, fuzz t e s t i n g , m o d e l - 

based testing, use case testing, exploratory testing and specification-based testing. 

 

5.2.5 GREY-BOX TESTING 
Grey-box t e s t i n g  (American s p e l l i n g : gray-box t e s t i n g ) i n v o l v e s  h a v i n g  

knowledge of internal data structures and algorithms for purposes of designing tests, while executing 

those tests at the user, or black-box level. The tester is not required to have full access to the software's 

source code. Manipulating input data and formatting output do not qualify as grey-box, because the input 

and output are clearly outside of the "black box" that we are calling the system under test. This distinction 

is particularly important when conducting integration testing between two modules of code written by 

two different developers, where only the interfaces are exposed for test. 

 

5.2.6 SOFTWARE PERFORMANCE TESTING 
Performance testing is generally executed to determine how a system or sub- system performs in 

terms of responsiveness and stability under a particular workload. It can also serve to investigate measure, 

validate or verify other quality attributes of the system, such as scalability, reliability and resource usage. 

 

5.2.7 USABILITY TESTING 
Usability  testing is  to  check  if  the  user  interface  is  easy  to  use  and understand. It is 

concerned mainly with the use of the application. 
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5.2.8 VALIDATION TESTING 

Lot of module are available in the billing system, there are define in below concepts. In this software 

each module and particularly every, entity it should be tested, the particular input it could be got a correct 

input and correct out put it should be showed, at the same time the mobile no’s only gotten digits only more 

than values not be supported. The report module and upload module and the user register module every 

module and this activity, performance to be tested in every entity successfully tested. 

 

6. SCREENSHOTS 

 
 

 
 

FIG 1 HOME PAGE OF MALWARE 

 
 

FIG 2 FILE SELECTION 

 
 

 

FIG 3 INPUT DATASET 
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FIG 4 CLASSIFICATION OF RNN 

 

 
 

 

FIG 5 CLASSIFICATION OF NAIVE BAYESS 

 

 
FIG 6 PAGE OF ACCURACY RESULTS 
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7.CONCLUSION 
To develop a data-mining- based detection framework called Malicious Sequential Pattern based 

Malware Detection (MSPMD), which is composed of the proposed sequential pattern mining algorithm 

(MSPE) and NAIVE BAYES classifier.  It first extracts instruction sequences from the PE file samples 

and conducts feature selection before mining; then MSPE is applied to generate malicious sequential 

patterns. For the testing file samples, after feature representation, NAIVE BAYES classifier is constructed 

for malware detection. The promising experimental results on real data collection demonstrate that our 

frame works out performs other alternate data mining base detection methods in identifying new malicious 

executables. Unlike the previous researches which are unable to mined is criminative features, we propose 

to use sequence mining algorithm on instruction sequence to extract well representative features. 
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