
www.ijcrt.org © 2022 IJCRT | Volume 10, Issue 6 June 2022 | ISSN: 2320-2882

IJCRT22A6539 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org e451

Engine Recognizable proof and Counting

Strategy Based on Computerized Picture

Handling in Python

Rani Ingle
Mtech in Department of Computer Science

G H Raisoni University,

Amravati, India

Summary:The vehicle counting process provides good

information about traffic flow, vehicle accident occurrences, and

peak traffic times on the road. An acceptable technique for achieving

these goals is the use of digital image processing techniques in the

video output of roadside cameras. This paper introduces a vehicle

counter classifier based on a combination of different video image

processing methods such as object detection, edge detection, frame

difference, and Kalman filter. The implementation of the proposed

technique was performed using the Python programming language.

This white paper describes the methods used for image processing for

traffic flow counting and classification using various libraries and

algorithms with real-time images.

INTRODUCTION
Summary: The vehicle counting process provides good

information about traffic flow, vehicle accident occurrences, and

peak traffic times on the road. An acceptable technique for achieving

these goals is the use of digital image processing techniques in the

video output of roadside cameras. This paper introduces a vehicle

counter classifier based on a combination of different video image

processing methods such as object detection, edge detection, frame

difference, and Kalman filter. The implementation of the proposed

technique was performed using the Python programming language.

This white paper describes the methods used for image processing for

traffic flow counting and classification using various libraries and

algorithms with real-time images.

However, image processing is time consuming and needs automation

to save time counting and classifying images. In the current era of

Python-type programming languages, significant time savings have

been added for image processing and vehicle detection, counting,

and classification. This paper provides information on the path to

image processing, the types of filters used, and the techniques

proposed to accurately detect, count, and classify images.

BACKGROUND INFORMATION

Video Processing
Video processing is a subcategory of digital signal processing

technology where the input and output signals are video streams. For

computers, one of the best ways to reach your video analysis goals is

to use image processing methods at each video frame. In this case,

the movement is achieved simply by comparing successive frames

Video processing includes a pre-filter that can provide contrast

changes and noise reduction along with pixel size conversion of

video images. Highlighting specific areas of the video, removing

improper lighting effects, eliminating camera movements, and

removing edge artifacts are all feasible with video processing

methods. Python's OpenCv library is loaded with functions that

allow you to work with videos and images. OpenCV Python uses

Numpy, a library for math operations that uses MATLAB-style

syntax. All OpenCV array structures are converted to and from

numpy arrays. This also facilitates integration with other libraries that

use Numpy, such as SciPy and Matplotlib.

RGB to Grayscale Conversion:
In video analysis, the conversion of RGB color images to grayscale

mode is done by image processing methods. The main purpose of this

conversion is to process grayscale images with more acceptable

results compared to the original RGB image. Video processing

techniques require the sequence of captured video frames to be

converted from RGB color mode to a gray level from 0 to 255. When

converting an RGB image to grayscale mode, you need to get the

RGB value for each pixel and prepare a single value as output that

reflects the percentage of brightness for that pixel.

Power-Law Transformation:
Emphasis on an image gives you better contrast and more detail
than an unenhanced image. There are several image enhancement
techniques such as power law transformation, linear programming,
and logarithmic programming. Image enhancement can be
performed by one of these grayscale transformations. Among them,
the power law conversion method is a suitable method, and its basic
form is as follows.
V = A v γ
If V and v are the gray levels of the outputs and inputs, then γ is the

gamma value and A is a positive constant (generally if A = 1). The

Python code that implements power law conversion is-

power_law_transformation = cv2.pow (grey, 0.6)

The second argument is the gamma value. Therefore, choosing the

right value for γ plays an important role in the image enhancement

process and can provide the right details that can be identified in the

image.

http://www.ijcrt.org/

www.ijcrt.org © 2022 IJCRT | Volume 10, Issue 6 June 2022 | ISSN: 2320-2882

IJCRT22A6539 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org e452

The Kalman Filter

Detection Zone

Definition

Motion Analysis

Classification

Edge Detection

Video Frames

 Canny Edge Detection:
Object detection can be performed using the image matching feature

and edge detection. Edges are the points of a digital image where the

brightness and height of the gray level of the image suddenly change.

The main task of edge detection is to find all the pixels in the image

that correspond to the edges of the object displayed in the image.

Among the various edge detection methods, the Canny algorithm is a

simple and powerful edge detection method. Edge detection is prone

to noise in the image, so the first step is to use a 5x5 Gaussian filter

to remove the noise in the image. The smoothed image is then filtered

using the Sobel kernel both horizontally and vertically to obtain first-

order derivatives in the horizontal (Gx) and vertical (Gy) directions.

From these two images, you can find the edge gradient and

orientation for each pixel as follows:

 Edge gradient (G) = √ G2x + G2y (2)

 Angle (θ) = tan-1 (Gy / Gx) (3)

The direction of the gradient is always perpendicular to the edge. It is

rounded to one of four angles that represent the vertical, horizontal,

and two diagonal directions. After the gradient size and orientation

are determined, a full scan of the image is performed to remove

unwanted pixels that may not form edges. For this purpose, each

pixel is checked to see if it is a maximum near the gradient direction.

OpenCV wraps all of the above in one function cv2.Canny.

The Kalman Filter:
Images usually have a lot of speckles caused by noise and should be

removed by filtering. The Kalman filter is a powerful and useful tool

for estimating a particular process using some kind of feedback

information [14]. The Kalman filter is used to provide an improved

estimate based on a series of noisy estimates. This filter shows that

the basic process needs to be modeled with a linear dynamic

structure.

 xk = Fk-1xk-1 + wk-1 (4)

 yk = Hkxk + vk (5)

 where xk and yk are state and measurement vectors, wk and vk are

process and measurement noise, Fk and Hk are transition and

measurement values, and k is the desired time step. The Kalman filter

also shows that the measurements and error terms represent a

Gaussian distribution. That is, in vehicle detection, each vehicle can

only be tracked with one Kalman filter. Therefore, the number of

Kalman filters applied to each video frame depends on the number of

vehicles detected.

PREVIOUS WORKS

The use of image / video processing and object recognition methods

for vehicle detection and traffic flow estimation has received a great

deal of attention for several years. The vehicle detection / tracking

process was performed using one of the following methods.

 • Adjustment

 • Thresholds and segmentation

 • Point detection

 • Edge detection

 • Frame identification

 • Optical flow method

 It can be said that one of the most important studies in the field of

object recognition that led to the Autoscope video recognition system

is shown in. Some works, such as, use the forward and backward

image diff method to extract moving vehicles in the road view. Some

studies, such as have shown that using feature vectors from the image

area for vehicle detection targets can be very efficient. Some have

provided accurate estimates of vehicle dimensions using a set of

coordinate mapping functions, as seen in addition, some studies have

developed various object detection boosting algorithms using

machine learning techniques that can detect and classify moving

objects by both type and color. The named approach has both

advantages and disadvantages.

PROPOSED TECHNIQUE
Unlike previous work, the method proposed in this article uses a

combination of frame differentiation and edge detection algorithms to

improve the quality and accuracy of vehicle detection. By using the

Kalman filter, the position of each vehicle is correctly estimated and

tracked. This filter is also used to classify detected vehicles into

different fixed groups and count them individually to provide useful

information for traffic flow analysis. A flow chart of this method is

shown in Figure 1.

Fig. 1. Flowchart of the Technique

Based on Figure 1, this technique involves the following steps: Image

enhancement process, edge detection, motion analysis using a

combination of different techniques, detection zone definition,

Kalman filter, vehicle classification and counting. It must be said

that some assumptions were made in this work.

 • No sudden changes in direction are expected

 • No car accidents or accidents expected

 • Vehicles have physical and legal restrictions

 • Motion scenes are recorded with the road surface viewed from

above

The proposed procedure to distinguish and check vehicles is

displayed as underneath:

Grayscale Image Generation and Image Enhancement:
To get better results, vehicle detection process should be

performed in the grayscale image domain. Hence a RGB to grayscale

conversion is performed on each video frame. To achieve an

appropriate threshold level and make results more suitable than the

input image, each frame should be brought in contrast to background.

Among several grayscale transformations, power-law method has

been used in this work. For color conversion we use the function

cv2.cvtColor(input_image,flag) where flag determines the type of

conversion. Use the cv2.COLOR_BGR2GRAY flag to convert to

grayscale. Experimental results in various situations show that the

best results are obtained when the γ value is set to 0.6, as shown in

Figure 2. This figure shows the result of applying various γ values to

a grayscale converted image. Here, Section A is the input RGB color

frame, and B and C are grayscale versions with gamma values of 0.6

and 0.9, respectively. The implementation of the result in Figure 2

can be obtained using the Python code shown in Figure 3.

http://www.ijcrt.org/

www.ijcrt.org © 2022 IJCRT | Volume 10, Issue 6 June 2022 | ISSN: 2320-2882

IJCRT22A6539 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org e453

Fig. 2. Input RGB Video Frame (A) and Grayscale Converted With

Different Γ Values (B and C)

Fig. 3. Code for Conversion from RGB to Grayscale and Image

Enhancement

Edge Detection:
To achieve detection aims, each picture (video frame) comprises

three key features. Edges, curves, and points are examples of these

features. Among the attributes stated, edge pixels are a good choice.

We can detect edge pixels, which are the major features of passing

automobiles in a roadway video frame, by processing picture pixels.

The Canny operator, which has been employed in this study, is one of

the most used approaches to detect the edges of a picture. Figure 4

shows the result, while Figure 5 shows the code that goes with it. The

output of the edge detection procedure is shown in a binary picture

(threshold) with the identified edge pixels, as can be seen.

Fig. 4. A: Original Image B: Edge Detection Result

Fig. 5. Code for Canny Edge Detection

The following step is to extract moving edges from sequential video

frames and analyse the edge data to produce quantitative geometric

measurements of passing cars.

Background Subtraction:
The static parts of the sequential video frame should be cleaned up

using the provided thresholds. The main challenge here is that the

performance of image analysis algorithms can be degraded under

darkness, glare, long shadows, or poor lighting at night, leading to

excessive noise. Therefore, in these situations, the grayscale image

may not be specified, which complicates the recognition task a bit.

Edges basically separate two different areas: static areas (roads) and

dynamic areas (moving vehicles). Then erase the static background

to find the moving object in each frame. The result zone leaves only

the vehicle and some details as moving objects within a continuous

frame that change from frame to frame. This task used a combination

of forward and backward frame diffs and Sobel edge detectors. With

this method, three consecutive frames are selected and the middle

frame is compared with the previous and next frames. Therefore, we

will use the extracted edges of each frame detected by the cany edge

detection obtained in the previous section. You can then get the frame

difference by subtracting two consecutive pairs of generated binary

images, as in Equation 6.

Where Fn-1 is previous frame, Fn is current frame and Fn+1 is the

next frame. This process continues to the last three sequential video

frames. The output result is demonstrated in Figure 6. The python

code is represented in Figure 7. In this figure A, B and C represent

three sequential frames, where D demonstrates the output background

subtraction method. Using this technique moving vehicles are

detected in three sequential frames.

Fig. 6. Proposed Moving Vehicle Detection Technique and

Background Subtraction (A,B,C and D)

Fig. 7. Code for Background Subtraction

Detection Zone:
As an observation (detection) zone, a region should be defined to

display moving vehicle’ s edges in a bounding box at the time that

the vehicle enters it. This zone is in the middle of the screen and

covers 1/3 of its height and 3/5 of its width (considering minimum

and maximum available size of detectable passing vehicles in pixels).

This area which contains the most traffic can embed both small and

long vehicles and the main goal of defining it is to avoid perspective

challenges and wrong type counts. Based on proposed method in

background subtraction level, a vehicle is detected in three sequential

frames. When a moving vehicle is detected, a bounding box

whelming vehicle borders in binary image is drawn.

The Kalman Filter:
The bounding box can also be used to count and classify passing

vehicles. This can be done with Kalman filter technology. In road

video, the edge detection feature provides an incorrect position for

the moving vehicle, but you need to improve your knowledge of the

vehicle's current position. Since we cannot guarantee a perfect

measurement due to the movement of the object, we need to filter the

http://www.ijcrt.org/

www.ijcrt.org © 2022 IJCRT | Volume 10, Issue 6 June 2022 | ISSN: 2320-2882

IJCRT22A6539 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org e454

measurement to get the best estimate of for the exacttrace. The

Kalman filter can also optimally estimate the current position of each

vehicle and predict the position of the vehicle in future video frames

by minimizing noise interference. It is also used to stop tracking

vehicles driving in the opposite direction in street video. Edge

detection can find moving objects, but the Kalman filter makes

optimal position estimates based on a series of position

measurements.

The linear Kalman filter is simpler and used in proposed technique.

Consider parameter A as area of vehicle’ s bounding box, which has

been detected in frame differentiation phase and p(x, y) is the center

point of the vehicle where x and y are its distances from horizontal

and vertical edges. Now by integration of proposed parameter in (7)

and (8) equations resulted in the following vectors.

xk = [x, y, A, vx, vy, vA] T (7) yk = [x, y, A] T (8)

Where vA is the rate of changes in vehicle’ s bounding box, vx

and vy are the speed of changes in the movement of vehicle’ s center

point. Subsequently using the Kalman filtering technique, the

position of each vehicle can be estimated and tracked better. Finally

an identifier is allocated to each passing vehicle for counting and

classification purposes.

The Kalman Filter is a unsupervised algorithm for tracking a

single object in a continuous state space. Given a sequence of noisy

measurements, the Kalman Filter is able to recover the “ true state”

of the underling object being tracked. It is implemented using the

pykalman library of python.

Sample code-

from pykalman import KalmanFilter

kf = KalmanFilter(initial_state_mean=0, n_dim_obs=2)

The traditional Kalman Filter assumes that model parameters are

known beforehand. The KalmanFilter class however can learn

parameters using KalmanFilter.em() (fitting is optional). Then the

hidden sequence of states can be predicted using

KalmanFilter.smooth():

measurements = [[1,0], [0,0], [0,1]]

kf.em(measurements).smooth([[2,0], [2,1], [2,2]])[0]

array([[0.85819709],

[1.77811829],

[2.19537816]])

Common uses for the Kalman Filter include radar and sonar tracking

and state estimation in robotics. This module implements two

algorithms for tracking: the Kalman Filter and Kalman Smoother. In

addition, model parameters which are traditionally specified by hand

can also be learned by the implemented EM algorithm without any

labeled training data. All three algorithms are contained in the

KalmanFilter class in this module.

Counting and Classification Functions:
Vehicle counters are used in computing capacity, establishing

structural design criteria and computing expected roadway user

revenue. Typically in proposed technique vehicles are classified as

four common types:

• Type1: bicycles, motorcycles

• Type2: motorcars

• Type3: pickups, minibuses

• Type4: buses, trucks, trailers

It is necessary to have the width and length of each vehicle’ s

bounding boxes in pixels to diagnose that the passing vehicles

belongs to which of the mentioned types. The area of each bounding

box shows that which type should be allocated for the vehicle. Each

vehicle type can be shown by a special rectangle color. Type 1 has

been represented by red, where Type2, Type 3 and Type 4 have been

characterized by green, blue and yellow rectangles, respectively.

In counting step, four isolated counters used for each vehicle type

and a total counter is needed to store the sum value of them. All

counters should count just the vehicles which are passing in a specific

direction. So if a vehicle stops, turns or moves in wrong direction in

the detection zone, it should not be counted. In this technique,

counting is according to the number of moving vehicles detected in

the detection zone and classified in one of mentioned groups.

Total passed vehicles, which will be shown in yellow, help to analyze

traffic flow in a period of time. Also by calculating the bounding

boxes height and width in pixels, vehicle types can be distinguished

and counted by related counters. Furthermore, in both counted

vehicles, edges will be covered with green rectangles, which shows

that they belong to Type 2 (even the green numbers inside bounding

boxes confirm this result).

CONCLUSION
A methodology based on python language programming is

proposed in this research. Python has many useful libraries,

such as numpy, matplotlib, and scipy, that can assist engineers

count traffic, classify traffic, and save time. Traffic flow is

essential information for transportation planning, and getting it

right and processing it in a timely manner is a difficult task for

transportation and highway engineers. From the standpoint of

road construction design and traffic planning, these

technologies will be quite valuable.

REFERENCES

[1] D. Beymer, P. McLauchlan, B. Coifman, J. Malik, “A Real-time
Computer Vision System for Measuring Traffic Parameters,”
IEEE Conference on Computer Vision and Pattern
Recognition, 1997.

[2] M. Fathy, M. Y. Siyal, “An Image Detection Technique, Based
on Morphological Edge Detection and Background
Differencing for Real-time Traffic Analysis,” Pattern
Recognition Letters, Vol. 16, pp. 1321-1330, 1995.

[3] V. Kastrinaki, M. Zervakis, K. Kalaitzakis, “A Survey of Video
Processing Techniques for Traffic Applications,” Image and
Vision Computing, Vol. 21, pp. 359-381, 2003.

[4] D. A. Forsyth, J. Ponce, “Computer Vision: A Modern
Approach,” Prentice Hall, 2003.

[5] T. R. Currin, “Turning Movement Counts. In Introduction to
Traffic Engineering: A Manualfor Data Collection and
Analysis,” Stamford Wadsworth Group, pp. 13–23, 2001.

[6] W. Yao, J. Ostermann, Y. Q. Zhang, “Video Processing and
Communications,” Signal Processing Series, ISBN: 0-13-
017547-1, Prentice Hall, 2002.

[7] P. Choudekar, S. Banerjee, M. K. Muju, “Real Time Traffic
Light Control Using Image Processing,” Indian Journal of
Computer Science and Engineering, Vol. 2, No. 1, ISSN: 0976-
5166.

[8] N. Chintalacheruvu, V. Muthukumar, “Video Based Vehicle
Detection and Its Application in Intelligent Transportation
Systems,” Journal of Transportation Technologies, Vol. 2, pp.
305-314, 2012.

[9] R. Milances Gil, S. Pun, T. Pun, “Comparing Features for
Target Tracking in Traffic Scenes,” Pattern Recogition, Vol.
29, No. 8, pp. 1285-1296, 1996.

http://www.ijcrt.org/

www.ijcrt.org © 2022 IJCRT | Volume 10, Issue 6 June 2022 | ISSN: 2320-2882

IJCRT22A6539 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org e455

[10] E. Atkociunas, R. Blake, A. Juozapavicius, M. Kazimianec,
“Image Processing in Road Traffic Analysis,” Nonlinear
Analysis: Modelling and Control, Vol. 10, No. 4, pp.
315–332, 2005.

[11] X. Fu, Z. Wang, D. Liang, J. Jiang, “The Extraction of Moving
Object in Real-Time Web-Based Video Sequence,” 8th
International Conference on Digital Object Identifier, Vol. 1,
pp. 187-190, 2004.

[12] V. Khorramshahi, A. Behrad, N. K. Kanhere, “Over- Height
Vehicle Detection in Low Headroom Roads Using Digital
Video Processing,” World Academy of Science, Engineering
and Technology, 2008.

[13] J. Zhou, D. Gao, D. Zhang, “Moving Vehicle Detection for
Automatic Traffic Monitoring,” IEEE Transactions on
Vehicular Technology, Vol. 56, NO. 1, 2007.

[14] G. Welch, G. Bishop, “An Introduction to the Kalman
Filter”, The University of North Carolina at Chapel Hill,
2006.

[15] P. G. Michalopoulos, “Vehicle Detection Video Through
Image Processing: The Autoscope System,” IEEE
Transactions on Vehicular Technology, Vol. 40, No. 1, 1991.

[16] A. H. S. Lai, G. S. K. Fung, N. H. C. Yung, “Vehicle Type
Classification from Visual-Based Dimension Estimation,”
IEEE Intelligent Transportation Systems Conference, pp.
201-206, 2001.

[17] D. G. Lowe, “Distinctive Image Features from Scaled-
Invariant Keypoints,” International Journal of Computer
Vision, pp. 91-110, 2004.

[18] P. T. Martin, G. Dharmavaram, A. Stevanovic, “Evaluation
of UDOT’ s Video Detection Systems: System’ s
Performance in Various Test Conditions,” Report No: UT-
04.14, 2004.

[19] O. Hasegawa, T. Kanade, “Type Classification, Color
Estimation, and Specific Target Detection of Moving Targets
on Public Streets,” Machine Vision and Applications, Vol.
16, No. 2, pp. 116-121, 2005.

[20] R. Cucchiara, M. Piccardi, P. Mello, “Image Analysis and
Rule-based Reasoning for a Traffic Monitoring System,” IEEE
Transactions on Intelligent Transportation Systems, Vol. 1,
Issue 2, pp 119-130, 2000.

[21] Q. Cai, A. Mitiche, J. K. Aggarwal, “Tracking Human Motion
in an Indoor Environment,” International Conference on
Image Processing, USA, Vol. 1, pp. 215-218, 1995.

[22] T. Le, M. Combs, Q. Yang, “Vehicle Tracking based on Kalman
Filter Algorithm,” Technical Reports Published by the MSU
Department of Computer Science, ID: MSU-CS-2013-02,
2013.

[23] Sh. Agarwal, A. Awan, D. Roth, “Learning to Detect Objects in
Images via a Sparse, Part-based Representation,” IEEE
Transactions on Pattern Analysis and Machine Intelligence,
2004.

[24] Sh. Agarwal, D. Roth, “Learning a Sparse Representation for
Object Detection,” European Conference on Computer
Vision, Vol. 1, ISBN: 978- 3-540-43748-2, pp. 113-127, 2002.

[25] A. Torralba, K. P. Murphy, W. T. Freeman, “Shared Features
for Multiclass Object Detection,” Toward Category-Level
Object Recognition, ISBN: 978-3- 540-68794-8, pp. 345-361,
2006.

[26] L. Bohang, L. Qingbing, C. Duiyong, S. Hailong, “Pattern
Recognition of Vehicle Types and Reliability Analysis of
Pneumatic Tube Test Data under Mixed Traffic Condition,”
2nd International Asia Conference on Informatics in Control,
Automation and Robotics, ISSN: 1948-3414, pp. 44- 47, 2010.

[27] L. Feng, W. Liu, B. Chen, “Driving Pattern Recognition for
Adaptive Hybrid Vehicle Control,” SAE 2012 World Congress
and Exhibition, pp. 169- 179, 2012.

[28] D. Simon, “Optimal State Estimation: Kalman, H Infinity, and
Nonlinear Approaches,” Wiley- Interscience, 2006.

[29] R. Gonzalez, R. E. Woods, “Digital Image Processing,” 2nd
Edition, Prentice-Hall, 2002.

[30] S. Siang Teoh, T. Bräunl, “A Reliability Point and Kalman
Filterbased Vehicle Tracking Technique,” International
Conference on Intelligent Systems, pp. 134-138, 2012.

[31] K. Markus, “Using the Kalman Filter to Track Human
Interactive Motion Modeling and Initialization of the Kalman
Filter for Translational Motion,” Technical Report, University
of Dortmund, Germany, 1997.

[32] D. Nagamalai, E. Renault, M. Dhanuskodi. “Implementation
of LabVIEW Based Intelligent System for Speed Violated
Vehicle Detection”, First International Conference on Digital
Image Processing and Pattern Recognition, ISSN: 1865-
0929, pp. 23-33, 2011.

[33] I. E. Igbinosa, “Comparison of Edge Detection Technique in
Image Processing Techniques”, International Journal of
Information Technology and Electrical Engineering, ISSN:
2306-708X, Vol. 2, Issue 1, 2013.

[34] Learning OpenCV: Computer Vision with the OpenCV
Library By Gary Bradski, Adrian Kaehler.

http://www.ijcrt.org/

