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Abstract 

 This Paper provides an overview of estimation of change points. The paper discusses the statistical 

inference problem about a change point model: (1) to determine if any change point should exist in the 

sequence; and (2) estimate the number and position(s) of change point(s), and other qualities of interest 

which are related to the change (for example, the magnitude of the jump of the mean). Bayesian methods  

are proposed to study the estimates of change points in the sequence of Burr Type III Distribution under 

Squared error Loss function(SELF). A simulation study is done by R-programming. 
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1.1 Introduction        

      Statistical decision theory is concerned with the making of decisions in the presence of Statistical 

knowledge which sheds light on some of the uncertainties involved in the decision problem. We consider 

these uncertainties represented by unknown numerical quantities, say  (possibly a vector or matrix). 

  Classical Statistics is directed towards the use of sample information (the data arising from the Statistical 

investigation) in making inferences about  .These classical inferences are, mostly, made without 

considering the true state of parameter .In decision theory, on the other hand, an attempt is made to 

combine the sample information with other relevant aspects of the problem i.e. by considering the true 

state of parameter in form of probability model as prior distribution in order to make the best decision. 

  In addition to the sample information, two other types of information are typically relevant. The first is 

the knowledge of the possible consequences of the decisions. Often this knowledge can be quantified by 

determining the loss that would be incurred for each possible decision and for the various possible values 
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of . The incorporation of a loss function into Statistical analysis was first studied extensively by 

Abraham Wald; see Wald (1950),Which also reviews earlier work in decision theory. 

The approach to Statistics which formally seeks to utilize prior information is called Bayesian analysis 

named after Bayes (1763). Bayesian analysis and decision theory go rather naturally together, partly 

because of their common goal of utilizing non experimental sources of information, and partly because of 

some deep theoretical ties; thus, we will emphasize Bayesian decision theory in the chapter. There exists, 

however, an extensively developed non-Bays decision theory and an extensively developed non-decision-

theoretic Bayesian viewpoint, both of which we will also cover in reasonable depth. 

 In decision theory and estimation theory, a Bayes estimator is an estimator or decision rule that 

maximizes the posterior expected value of a utility function or minimizes the posterior expected value of a 

Loss Function (also called posterior expected Loss). 

1.2 Bayesian Inference 

     In a Bayesian setup, the unknown parameter is viewed as random variable. The uncertainty about the 

true value of parameter is expressed by a prior distribution. The parametric inference is made using the 

posterior distribution which is obtained by incorporating the observed data into the prior distribution using 

Bayes theorem. Hence we update the prior distribution in the light of observed data. Thus the uncertainty 

about the parameter prior to the experiment is represented by the prior distribution and the same, after the 

experiment, is represented by the posterior distribution. 

Since that the time of classical inferential procedure interest has alternated between periods of acceptance 

and rejection of the method as a base for the statistical inference. Often suitable and unsuspected 

difficulties with alternate methods of statistical inference have been largely responsible for the continued 

resurgence of the Bayesian method of reasoning and inferences. The method is currently riding a high tide 

of popularity in virtually all areas of statistical application. Defineti(1937), Good (1950), Jeffrey’s(1961), 

Lindley(1965), Ramsey(1931), Kendall and Stuart (1961), Box and Tiao(1973) and Savage(1954). 

     The Bayesian method of reasoning is much more direct that is “Deductive”. To achieve this direct 

approach the mean life θ is assumed to be a random variable with a priori or prior p.d.f. g(θ). This 

distribution expresses the state of knowledge or ignorance about θ before the sample data is analyzed. 

Given a prior distribution, the probability model f(y|θ) and the data y, Bayes theorem is used to calculate 

the so called posterior pdf  g(θ|y) of Ɵ given data y. A distinctive feature of Bayesian Inference is that it 

takes explicit account of prior information in the analysis. 
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1.3 Loss Function 

 Let θ be an unknown parameter of some distribution  and suppose we estimate θ by some 

statistic . Let   represent the loss incurred when the true value of the parameter is θ and we are 

estimating θ by the statistic . 

The most widely used loss function in estimation problems is quadratic loss function given as 

 where   is the estimate of    the loss function is called quadratic weighed loss 

function if   k=1, we have  

                                                                                      (1.3.1)                                                                                                                                                                                                                                                                                                                                                                            

Known as squared error loss function (SELF).  

1.4 Change or Shift Point 

       Physical systems manufacturing the items are often subject to random fluctuations. It may happen that 

at some point of time instability in the sequence of lifetimes is observed. Such observed point is known as 

Change or Shift point inference problem. Such Change or Shift point inference problem is useful in 

statistical quality control to study the Change or Shifting in process mean, Linear time series models, and 

models related to econometrics. The monographs, Broemeling and Tsurmi (1987) on structural changes 

and survey by Zack (1981) are useful references. Bayesian approach may play an important role in the 

study of such Change or Shift point problem and has been often proposed as a valid alternative in classical 

estimation procedure. A variety of Change or Shift point problems have studied in Bayesian frame work 

by many authors like Zellner (1986), Calabria and Pulcini(1994) and Jani and Pandya (1999). 

1.5 Burr Type III Distribution 

Burr type III distribution with two parameters was first introduced in the literature of Burr (1942) for 

modelling lifetime data or survival data. It is more flexible and includes a variety of distributions with 

varying degrees of skewness and kurtosis. Burr type III distribution with two parameters   and  , which 

is denoted by ( , ). Burr III , has also been applied in areas of statistical modelling such as forestry 

(Gove et al (2008)), meteorology (Mielke (1973)), and reliability (Mokhlis (2005)). 

     The Probability Density Function and the Cumulative Distribution Function of Burr III  are given by, 

respectively, 

>0                        (1.5.1)     

And the distribution function  

                                (1.5.2) Reliability 

function  
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                                          (1.5.3)    

Note that Burr type XII distribution can be derived from Burr type III distribution by replacing  X with  . 

The usefulness and properties of Burr distribution are discussed by Burr and Cislak (1968) and Johnson et 

al. (1995). Abd-Elfattah and Alharbey (2012) considered a Bayesian estimation for Burr type III 

distribution based on double censoring.                                        

    In this chapter the Bayes estimates of change point ‘m’ and  scale parameter ‘ ’ with known 

  of three parameter of Generalized Compound Rayleigh Distribution (G.C.R.D.) and also the 

change point ‘m’ and scale parameter   with known of Exponentiated Inverted Weibull distribution, 

Burr Type III distribution are obtained by using Squared Error Loss Function(SELF) and Natural 

conjugate Prior distribution as Inverted Gamma prior distribution. The comparison and sensitivity analysis 

of Bayes estimates of change point and the parameters of the distributions have been done by using R-

programming.   

1.6 Bayesian Estimation of Change Point in Burr Type III Distribution under Squared Error Loss 

Function (SELF) 

         A sequence of independent life times  were observed  from  

Burr Type III Distribution with parameter  .  But it was found that there was a change in the system at 

some point of time ‘m’ and it is reflected in the sequence after ‘ ’ which results change in a sequence as 

well as parameter value . The Bayes estimate of  and ‘m’ are derived for symmetric and asymmetric 

loss function under inverted Gamma prior as natural conjugate prior. 

 1.6.1 Likelihood, Prior, Posterior and Marginal  

Let ,  be a sequence of observed  discrete life times. First let observations 

 have come from Burr Type III Distribution with probability density function as                                                                    

                        (1.6.1.1)                                         

Let ‘m’ is change point in the observation which breaks the distribution in two sequences as  

   &   

The probability density functions of the above sequences are 

                                                                                                                                                                                                 

                                                        where   
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                                                where            

The likelihood functions of probability density function of the sequence are  

 

             

                                                                                                                                                                                                                                    

Where  

 

                     

                   

                                                                                                                                                                  

                                                                                                                                                                                                                             

       where                                                                                                        

     

 and                              

The joint likelihood function is given by 

                                                                                                                                                                                         

Suppose the marginal prior distribution of and are natural conjugate prior  
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The joint prior distribution of  ,  and change point ‘m’ is                               

                                                     

                                                      Where                 

The joint posterior density of  and m say  is obtained by using equations 

  &     

                                                          

   

Assuming      

              

           

        

       

     

Where             

The Marginal posterior distribution of change point ‘m’ using the equations   & 
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On solving which gives  

    

    

Assuming                        

            

          

   

                                                                                                                      

The marginal posterior distribution of  , using equations  and    

                    

On solving which gives   

   

Assuming                        
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The marginal posterior distribution of , using the equation  &  is 

       

  

Assuming   

  

                       (1.6.1.15)         

 1.6.2 Bayes Estimators under Squared Error Loss Function (SELF)  

The Bayes estimate of a generic parameter (or function there of )  based on a SELF is given by  

 ,where ‘d’ is a decision rule to estimate , is posterior mean .For the change 

point ‘m’ which is a non negative integer quantity   the loss function is defined 

as  

                                                                         (1.6.2.1)                           

Where  , is the smallest integer greater than analytical solution . 

The Bayes estimate   of ‘m’ under SELF using marginal posterior density equation   is 

given as                                                                                                                     

                                         (1.6.2.2) 

Bayes estimate of  under SELF using marginal posterior density equation  is given by  

    

http://www.ijcrt.org/


www.ijcrt.org                                                  © 2022 IJCRT | Volume 10, Issue 6 June 2022 | ISSN: 2320-2882 

IJCRT22A6482 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org d994 
 

On simplification which gives  

 

Assuming   

  

                                                                      (1.6.1.3)           

Bayes estimate of  under SELF using marginal posterior density equation   is given 

by  

    

  

Assuming   

Then   

 

                                                                      (1.6.1.4)                       

Numerical Comparison for Burr Type III Sequences 

   We have generated 20 random observations from Burr Type III distribution with parameter = 2 

and . The observed data mean is  1.8829 and variance is 23.8886. Let  the change in sequence is 

at 11th  observation, so the means and variances of both sequences (x1,x2,…,xm) and (x(m+1), x(m+2),…, xn)  

are = 0.8277, = 3.2668 and and   . If the target value of  is 
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unknown, its estimating ( ) is given by the mean of first m sample observation given m=11, 

. 

                                       Table 1.1 

 

1 2 3 4 5 6 7 8 9 10 

0.0136 1.4266 0.0597 1.6890 2.1583 1.6878 0.0383 0.2314 0.0377 1.5171 

11 12 13 14 15 16 17 18 19 20 

0.2448 0.3037 0.9397 4.9823 0.0043 22.0095 0.5433 0.0347 0.0001 0.5835 

 

 Now again we have generated the random samples of different sizes say 10, 20, 30. Obviously the 

change or Shift point occurs between 1 to 20  i.e  say 11. and calculated the Bayes estimates under squared 

error loss function by making programs in R-language, again repeating these steps for 1000 times we have 

calculated  the M.S.E. by making program in R and then analyze the data and given the conclusions.  

Sensitivity Analysis of Bayes Estimates 

 In this section we have studied the sensitivity of the Bayes estimates with respect to changes in the 

parameters of prior distribution  and . The means and variances of the prior distribution are 

used as prior information in computing these parameters. Then with these parameter values we have 

computed the Bayes estimates of m,  and  under squared error loss function (SELF) considering 

different set of values of and .We have also considered different sample sizes 

n=10(10)30. The Bayes estimates of the change point ‘m’ and the parameters  and  are given in 

table-1.2 under SELF . Their respective mean squared errors(M.S.E’s) are calculated by repeating this 

process 1000  times and presented in same table in small parenthesis under the estimated values of 

parameters. All these values appears to be robust with respect to correct choice of prior parameter values 

and appropriate sample size.  From the below table we conclude that - 

       The Bayes estimates of the parameters  and  of Burr Type III obtained with SELF are seems 

to be efficient as the  numerical values of their mse’s are very small  for    and     in  

comparison  with  . The Bayes estimates of  the parameters are  robust uniformly for all values   of 

prior parameters   and all sample size.  
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                                                     Table 1.2 

    Bayes Estimates of m, &   for Burr Type III and their respective M.S.E.'s Under  SELF 

( ) ( ) N    

( ) ( ) 10 4.6998 

(11.1087) 

0.5819 

(0.1066) 

0.5953 

(0.1289) 

  20 8.7134 

(64.0405) 

0.5079 

(0.0381) 

0.7758 

(0.0002) 

  30 13.1157 

(126.1777) 

0.8468 

(0.0018) 

0.5808 

(0.0106) 

( ) ( ) 10 4.8593 

(9.9631) 

0.7163 

(0.0326) 

0.6059 

(0.2890) 

  20 9.8093 

(52.2445) 

0.8189 

(0.0908) 

0.7598 

(0.0749) 

  30 12.4380 

(154.8102) 

0.8247 

(0.0092) 

0.6525 

(0.0117) 

( ) ( ) 10 4.8005 

(7.2842) 

0.6870 

(0.3071) 

0.7218 

(0.0500) 

  20 10.4658 

(75.0869) 

0.8321 

(0.0209) 

0.6022 

(0.1025) 

  30 16.3741 

(117.5707) 

0.4882 

(0.0466) 

0.6593 

(0.0389) 

( ) ( ) 10 4.8408 

(4.4745) 

0.7064 

(0.6720) 

0.6081 

(0.1058) 

  20 9.7542 

(63.8403) 

0.9618 

(0.0164) 

1.1311 

(0.1185) 

  30 14.4445 

(203.8680) 

0.6784 

(0.0343) 

0.8011 

(0.0022) 

( ) ( ) 10 4.8219 

(7.2820) 

1.2693 

(0.3476) 

0.8926 

(0.0905) 

  20 9.7935 

(39.5458) 

0.6494 

(0.0393) 

0.6775 

(0.1223) 

  30 13.9288 

(198.0454) 

0.8826 

(0.0041) 

0.6601 

(0.0684) 

( ) ( ) 10 

 

4.9879 

(9.2649) 

0.7849 

(0.0247) 

0.8419 

(0.0978) 

  20 10.0794 

(56.7361) 

0.6852 

(0.2133) 

0.5668 

(0.0451) 

  30 14.6203 

(35.1954) 

0.6186 

(0.2490) 

0.5544 

(0.3407) 
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