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ABSTRACT - A simple and efficient algorithm is proposed for solving the economic dispatch problem of power 

systems with valve point discontinuities employing a particle swarm optimization-based approach. Evolutionary 

methods such as GA and PSO are known to perform better than conventional gradient-based optimization methods 

for nonconvex optimization problems. The performance of the proposed method has been compared with Real-

coded genetic algorithm (RGA) results for validation. The effectiveness of the algorithm has been tested on a test 

system having three generating units. 

Index Terms - ELD, PSO, Valve Point Loading Effect. 

 

 

1. INTRODUCTION 
ECONOMIC dispatch is one of the main functions of the modern energy management system. It is formulated as 

an optimization problem with the objective of minimizing the total fuel cost while satisfying the specified 

constraints. Conventionally, input-output characteristics of generators, known as cost functions, are approximated 

using quadratic or piecewise quadratic functions, assuming that the incremental cost curves of generators are 

monotonically increasing [1]. However, in practice, this assumption is not valid because the cost functions exhibit 

higher order non-linearities and discontinuities due to valve point loading effects in units fired by fossil fuels [2].   

   Approaches, which avoid approximation of cost function and still do not require large computational time, are    

required for satisfactory handling of non convex optimization problems. A solution method, which does not 

directly rely on the incremental cost function, but performs a direct search, is required. The methods that qualify 

for solving such problems are dynamic programming [3], genetic algorithm [4- 6], evolutionary programming 

[7,8] and particle swarm optimization [9].etc. Although, these heuristic methods do not always guarantee global 

best solutions, they are often found to achieve a fast and near global optimum solution. Genetic algorithms [10] 

are effective search tools based on the mechanics of natural selection and survival of the fittest found in natural 

genetics. 

 

 They merge solution evaluation with randomized structured exchange of information between various solutions 

to obtain optimality. GAs are robust tools as no restriction is imposed on search space during the process of 

evaluation. The driving force behind these algorithms is their ability to exploit historical information from 

previous solutions to improve the performance of future solutions. GAs maintain a population of solutions 

throughout evaluation, therefore they are not limited by initial single point guesses. The PSO is a flexible, robust 

population based stochastic search/optimization algorithm with inherent parallelism [11]. Unlike conventional 

techniques, PSO can handle non-differentiable objective functions easily. This method is less likely to get trapped 

in local minima unlike GA. In a PSO, the search for optimal solution is conducted using a population of particles, 

each of which represents a possible solution to the optimization problem. Particles fly around in a multi 

dimensional search space by adjusting its trajectory towards its own previous best and the best of its neighbors. 

The PSO technique is capable of generating high quality solutions with stable convergence characteristics. It is 

increasingly gaining acceptance for solving various power system problems. The paper presents a PSO based 

approach for solving the ELD problem with non smooth cost functions. 
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 2. ECONOMIC DISPATCH WITH VALUE POINT EFFECT 

The generator cost function is usually considered as quadratic, when valve-point loading effects are neglected. The large 

turbine generators usually have a number of fuel admission valves which are operated in sequence to meet out increased 

generation. The opening of a valve the throttling losses rapidly and thus the incremental heat rate rises suddenly. This valve-

point loading effect introduces ripples in the heat-rate curves which introduces non-convexity in the generator fuel cost 

function as shown in Figure 1. The effect of valve-point loading effects can be modeled as sinusoidal function in the cost 

function. Therefore, the increases Advances in Electrical  Engineering 3 objective function for the non-convex ED problem 

may be stated as 

  

 

 

 

 

where 𝑎i, 𝑏i, and 𝑐i are the cost coefficients of the ith generator,𝑒i and fi are the valve-point effect coefficients,𝑃𝐺i is the 

real power output of the ith generator, and N𝐺 is the number of generating units in the system. 

 

Subject to the following constraints: 

 

(1) Power Balance Constraint 

 

The total power generation of all generators must be equal to the sum of total power demand plus the network power loss. The 

network power loss can be evaluated using 𝐵-coefficient loss formula. Therefore, the generator power balance equation may 

be stated as follows: 

 

 

 

 

where 𝐵ij is the transmission loss coefficient i =1, 2, . . . , 𝑁𝐺 and j = 1, 2, . . . , 𝑁𝐺, 𝐵i0 is the ith element of the loss 

coefficient vector. 𝐵00 is the loss coefficient constant. 

 

(2) Generator Constraint. 

 

For stable operation, power output of each generator is restricted within its minimum and maximum limits. The generator 

power limits are expressed as follows: 

 

 

 

(3)  Prohibited Operating Zones. 

 

Prohibited operating zones lead to discontinuities in the input output relation of generators. Prohibited zones divide the 

operating region between minimum and maximum generation limits into disjoint convex sub regions. The generation limits 

for the ith unit with j number of prohibited zones can be expressed as follows:  

http://www.ijcrt.org/


www.ijcrt.org                                                 © 2022 IJCRT | Volume 10, Issue 6 June 2022 | ISSN: 2320-2882 

IJCRT22A6462 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org d843 
 

 

where superscripts 𝐿 and 𝑈 stand for the lower and upper limit of prohibited operating zones of generators. 𝑁𝐺𝑃𝑍 and 𝑁𝑃𝑍i 

denote the total number of generators with prohibited zones and the total number of prohibited zones for the ith generator, 

respectively.

 

3. HYBRID PSO-ACO APROACH 

 

 
PSO is a population-based heuristic search algorithm that emulates the movement of swarm in finding best 

solution of an optimization problem. In PSO, the particles make parallel searches for optima in the search 

space by updating their velocity and position dynamically. In every iteration, the PSO keeps track of two 

updated values – one is the ‘pbest’ or the best value (fitness) achieved so far by a given particle while 

the other is the ‘gbest’ i.e. the best value attained so far by the population. ACO is another swarm based method 

for finding optimum solution by following the strategy of movement of an ant colony towards the source 

of food through the shortest path. Though each ant finds a new solution, better solutions are yielded by 

exchanging information with other ants through the ‘pheromone’ trail. Thus, analogous to an ant, the ACO 

algorithm constructively builds or improves a solution to an optimization problem by moving through nodes 

(or states) of a neighborhood graph. Though PSO is good for ELD problems for its flexibility, robustness and 

fast convergence, it sometimes give unsatisfactory result due to large accumulation of particles at ‘gbest’ 

position. ACO, on the other hand, known for its good downhill behaviour near the  global optimal 

region, imparts better balance between local and global search when combined with PSO in the 

hybrid PSO-ACO algorithm. 

 

 
 

 
4. METHODOLOGY   

 
Non-convex economic dispatch formulation 

The practical NCED problem with generator nonlinearities such as valve point loading effects, prohibited operating zones and 

ramp rate limits, are solved in this Paper using PSO based approaches. 

 

4.1.1 Valve point loading effects 

 

The valve-point effects introduce ripples in the heat-rate curves and make the objective function discontinuous, non-convex and 

with multiple minima. For accurate modeling of valve point loading effects, a rectified sinusoidal function is added in the cost 

function in this Paper. The fuel input-power output cost function of ith unit is given as  

 

))(sin()( min

2

iiiiiiiiii PPfecPbPaPF                                    

where ii ba ,
 and ic

 are the fuel-cost coefficients of the 
thi  unit, and ie

 and if
 are the fuel cost-coefficients of the 

thi  unit with 

valve-point effects. The NCED problem is to determine the generated powers Pi of units for a total load of PD so that the total 

fuel cost, TF
 for the N number of generating units is minimized subject to the power balance constraint and unit upper and 

lower operating limits. The objective is 
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For a given total real load PD the system loss PL is a function of active power generation at each generating unit. To calculate 

system losses, methods based on penalty factors and constant loss formula coefficients or B-coefficients are in use. The latter is 

adopted in this Paper as per which  transmission losses are expressed as  
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4.1.2 New Crazy PSO 

 

 To handle the problem of premature convergence in PSO, the concept of craziness was introduced. The idea was to randomize 

the velocities of some of the particles, referred to as “crazy particles”, selected by applying a certain probability. The probability 

of craziness 
cr is defined as a function of inertia weight,  
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Then velocities of particles are randomized as per the following logic: 
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If the PSO algorithm tends to saturate in the beginning a high value of 
cr  is used to create crazy particles, and a comparatively 

lower value is used at later stages of search. The performance of the PSO improves significantly with time varying inertia weight, 

constriction factor and crazy particles; however, the effectiveness and suitability of a PSO algorithm depends on type of function 

to be optimized . 

 

   4.1.3 Time-Varying Acceleration Coefficients (TVAC)  

 

The time-varying inertia weight (TVIW) can locate good solution at a significantly faster rate but its ability to fine tune the 

optimum solution is weak, due to the lack of diversity at the end of the search. It has been observed by most researchers that in 

PSO, problem-based tuning of parameters is a key factor to find the optimum solution accurately and efficiently. 

 

In TVAC, this is achieved by changing the acceleration coefficients c1 and c2 with time in such a manner that the cognitive 

component is reduced while the social component is increased as the search proceeds. A large cognitive component and small 
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social component at the beginning, allows particles to move around the search space, instead of moving towards the population 

best prematurely. During the latter stage in optimization, a small cognitive component and a large social component allow the 

particles to converge to the global optima. The acceleration coefficients are expressed as 
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where c1i, c1f , c2i  and c2f are initial and final values of cognitive and social acceleration factors respectively. 

                                                          
5. RESULT AND ANALYSIS  

 

 5.1 The PSO algorithm with crazy particles for practical non convex ED problem is tested on The first system has 3-generating 

units has a total load of 850 MW, and cost function includes the valve-point effects in addition to the constraints 

 
Fig. 5.1. Comparison of convergence characteristics (3-unit system) 

 

 

 

 

 

 

 

 

Table  5.1.  

Comparison of different PSO methods for three unit system (50 trials) 

S.no Method Minimum 

cost($/h) 

Maximum 

cost($/h) 

Average cost($/h) 

1 PSO 8234.0718 8421.5231 8330.8512 

2  New 

PSO-

crazy 

8234.0717 8382.0081 8279.1650 

3 RGA 8234.0725 8432.1571 8337.0334 

 

5.2 Computational Efficiency 

It can be seen from Table 5.2 that the PSO with crazy particles is computationally quite efficient as the cpu time required is 

almost comparable to the PSO method but the results are much superior.  Table 5.2 

 

The global minimum cost reported for the three-unit system without considering losses is $8234.07These Tables show that all 

three strategies achieve global minimum solution for the 3-unit systems, but New PSO_crazy performs better for the six-unit 

system which is more complex. The previous reported best cost is $15,450.00. The New PSO_crazy approach achieves $ 

15,449.3394 which is  lesser.  

 

Table 5.2. Generator output for least cost (three unit system; 50 trials) 

 

Unit power 

output 

PSO New 

PSO_crazy 

RGA 

P1(MW) 400.000 400.000 400.000 

P2(MW) 300.2667 300.2668 300.2653 
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Table 5.3 Comparison of different PSO strategies for three unit system (50 trials) 

 

Popula

tion 

size 

PSO 

variant 

Min 

cost($/

h) 

Max 

cost($/

h) 

Average 

cost($/h) 

50 PSO 8234.1

480 

8508.4

103 

8362.9334 

PSO_TV

AC 

8234.0

719 

8424.7

031 

8277.9354 

NEW 

PSO_CR

AZY 

8236.7

055 

8499.7

296 

8373.6601 

NEW 

PSO 

8242.0

734 

8668.1

003 

8378.3502 

 
Fig  5.2 Convergence characteristics of different PSO strategies (3-unit system) 

 

Table 5.4 Best results of PSO strategies for three unit system including loss (50 trials)\ 

 

 

 

Unit power output PSO PSO_TVA

C 

NEW PSO_CRAZY 

P1(MW) 400.050 400.604 399.885 

P2(MW) 324.125 324.572 326.376 

P3(MW) 150.402 149.462 149.740 

Total Load (MW) 850 850 850 

Total loss (MW) 24.577 24.638 26.389 

Total generation 

cost($/h) 

8454.501 8440.901 8631.737 

CPU time (seconds) 0.0900 0.0914 0.1080 

 

 

P3(MW) 149.7333 149.7332 149.7347 

Total power 

output(MW) 

850 850 850 

Total generation 

cost($/h) 

8234.0718 8234.0717 8234.072

5 
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6.CONCLUSION  

 

The non-convex economic problem of power dispatch is solved using PSO strategy. These results are compared with the results 

available in literature for 3-generator system and it is found that results are significantly improved by the proposed algorithm. 

Tuning of various parameters of PSO is important and it is found that the values of parameters in this paper are perfect for the 

improvement of results. The results demonstrate that PSO out performs other methods, particularly for non-convex cases, in 

terms of solution quality, dynamic convergence, computational efficiency, robustness and stability. The proposed algorithm can 

be applied to other non-convex, and non-smooth cost function having different constraints like prohibited operating zones, ramp 

rates and multi-fuel options. The proposed algorithm can also be applied to other power system optimization problems like 

dynamic economic dispatch and reactive power dispatch. 

 

The New PSO_crazy strategy is proposed for solving the complex problem of nonconvex economic power dispatch with multiple 

minima. The performance of this method is compared with RGA and PSO 

The PSO_TVAC outperforms other methods particularly for problems with multiple local minima. It has been clearly 

demonstrated that PSO_TVAC is capable of achieving global solutions.  
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